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Abstract

In this project the viability of the Graph 500 benchmark on the cloud has been tested. The
performance one Graph 500 benchmark application has been evaluated on the DAS-4 and
Amazon EC2. We found that using the cloud is competitive with super computers. We
also created a model for predicting the performance of the benchmark given the resources.
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1. Introduction

The Graph 500 [1] is a list of top 500 graph processing machines. As of late the need
for network analysis is skyrocketing. Network analysis includes social networks, road
direction and even text analysis.

The Graph 500 is inspired by the TOP500 [2]. The TOP500 uses the LINPACK
benchmark which solves linear equations and linear least-squares problems. The metrics
used in the LINKPACK are useful for CPU intensive problems, but do not quantify
the ability to process graphs. For this reason, a new benchmark is made with metrics
which better suit data intensive problems. The benchmark was made with the following
ideas in mind: the kernel should generic and apply to many applications, the results
should map to real world problems and the data set should be comparable to real-world
problems. The benchmark is meant to push the industry to invest into building specific
hardware to more efficiently tackle data intensive of problems.

To get on the list, a benchmark should be run. This benchmark needs to comply to
the specifications which can be found on the Graph 500 website[3], but beyond these
specifications anything goes. This means that the benchmark can be optimized for the
hardware it runs on.

The benchmark consists of two kernels: the graph construction and the Breadth-First
Search(BFS). Both these kernels will be timed. The kernels are preceded by the creation
of an edge-list using a data Generator. The results of the second kernel is also validated
and the performance information is output.
The Graph 500 list, at the moment, consists mostly of super computers. The aim
of this project is to get an entry on the Graph 500 list using the public cloud. The
research focuses on defining a model to predict the performance given a certain amount
of resources and vice versa.

2. Research Question

The research question for this project is as follows:
Is it possible to make a model that can predict the performance of Graph500 on the
cloud, depending on the amount of resources?
To answer our main question, the following sub-questions have been formulated:

• What size of graph is reasonable to benchmark while working on the cloud?

• How well does the reference implementation[4] run on the public cloud?

• What model fits the results acquired from running the benchmark on the cloud?

We approach this research question empirically, i.e., we use the Graph 500 reference
implementation and perform experiments to determine the benchmarks behavior. The
reference implementations are created by the authors of the Graph 500 and there is
no doubt that the implementations adhere to the specifications. The Graph 500 times
two kernels: the graph generation and the BFS. From the two kernels timed in Graph
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500, we focus on the BFS. The BFS performance is the most important metric for the
benchmark and it is the one shown on the list.

3. Background and Related Work

This section contains information needed to understand the project and the related work.

3.1. Graph 500 Benchmark 1 (”Search”)

Benchmark 1 (”Search”)[3] consists of two kernels accessing a single data structure rep-
resenting an undirected graph. These kernels are: the construction of the graph from an
edge list and a search through the constructed graph.

The benchmark has defined a few different problem classes. These are shown in table
1. These problem classes give a sense of the size of the graph and the amount of storage
needed to run the benchmark. The scale is defined as a combination of the amount of
vertices and the edges connected to each of these vertices. The number of vertices is
given by the scale. For example, the Toy problem is a graph of 226 vertices. The other
parameter is the edgefactor. The edgefactor is ratio of edges to vertices. For each of the
problem classes the edgefactor has been set to 16.

Problem class Scale Edgefactor Approx. Storage size in TB

Toy (level 10) 26 16 0.0172

Mini (level 11) 29 16 0.1374

Small (level 12) 32 16 1.0995

Medium (level 13) 36 16 17.5922

Large (level 14) 39 16 140.7375

Huge (level 15) 42 16 1125.8999

Table 1: The lists of problem classes as defined by the Graph 500, assuming the storage
of the edge list is done n a 64-bit integer.

The benchmark consists of the following steps:

1. Generate the edge list.

2. Construct a graph from the edge list.

3. Randomly sample 64 unique search keys.

4. For each search key:

a) Do the Breadth First Search and store all all visited vertices in an array.

b) Validate that the array is a correct BFS search tree for the given search tree.

5. Compute the performance

In the following subsections all steps of the benchmark are explained in more detail.
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3.1.1. Generating the edge list

The first step of the benchmark is generating the edge list. For this a data generator is
used. The data generator constructs a list of edge tuples containing the start and end
vertex, but also contains a vertex identifiers, thereby creating a list of undirected edges.

The intent of the graph generation is to convert a the edge list, which has no locality,
into a data structure which can more easily be used. The list of generated tuples could
have some locality because of the way the edges are generated. To lose this locality the
edge list is randomized before inserted into the graph generation kernel.

The data generator is a Kronecker generator, which has many properties which are
seen in graphs in the real world[5].

3.1.2. Graph Construction

The graph construction is the first timed kernel. The kernel takes the previously cre-
ated edge list and transforms it into a data structure of choice. Examples of data
structures to store graphs are Compressed Row Storage(CRS) and Compressed Sparse
Column(CSC)[6, 7]. The kernel takes only two parameters, the edge list and the size of
the edge list. The number of vertices and other information that might be inferred from
the edge list must computed by the kernel.

One thing to note is that the data structure created in this kernel cannot be altered
by subsequent kernels.

3.1.3. Sampling 64 search keys

After the graph is constructed a 64 searches need to be done. By performing these
searches the speed of traversal can be measured. The search keys need to have at least
one other vertex connected to them, to prevent trivial searches. The search is done in a
Breadth First Search way.

3.1.4. Breadth First Search

Breadth First Search[8] (BFS) is the graph traversal which has been chosen by the Graph
500. BFS visits all vertices each on the level before moving on to the next level. It keeps
traversing the Graph 500 until all levels in the graph have been visited. The level of a
vertex is defined as the minimum number of edges that need to traversed to get to the
root. An example of the traversal can be seen in figure 1. Note that the Graph 500
benchmark only specifies the end results is a BFS, but does not specify how the program
gets to this result.

3.1.5. Validation

After the each of the 64 searches a validation is done. The validation does soft checking
of the results. Because there randomness in the process, validation against a reference
is not possible. The validation checks for the following things:
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Figure 1: An example of BFS traversal is shown here. The nodes are traversed in alpha-
betical order.

1. The BFS tree is a tree and does not contain cycles.

2. Each tree edge connects vertices whose BFS levels differ by exactly one.

3. Every edge in the input list has vertices with levels that differ by at most one or
that both are not in the BFS tree.

4. The BFS tree spans an entire connected component’s vertices.

5. A node and its parent are joined by an edge of the original graph.

3.1.6. Timing and Performance metrics

In code block 1 the output of the graph500 mpi simple.

Listing 1: Output of the benchmark.

1 SCALE: 24

2 edgefactor: 16

3 NBFS: 64

4 graph_generation: 16.2365

5 num_mpi_processes: 8

6 construction_time: 15.4957

7 min_time: 13.9349

9



8 firstquartile_time: 15.6177

9 median_time: 15.7516

10 thirdquartile_time: 15.8136

11 max_time: 16.1873

12 mean_time: 15.6812

13 stddev_time: 0.318657

14 min_nedge: 268435456

15 firstquartile_nedge: 268435456

16 median_nedge: 268435456

17 thirdquartile_nedge: 268435456

18 max_nedge: 268435456

19 mean_nedge: 268435456

20 stddev_nedge: 0

21 min_TEPS: 1.65831e+07

22 firstquartile_TEPS: 1.6975e+07

23 median_TEPS: 1.70418e+07

24 thirdquartile_TEPS: 1.71879e+07

25 max_TEPS: 1.92635e+07

26 harmonic_mean_TEPS: 1.71183e+07

27 harmonic_stddev_TEPS: 43826.4

The most important values from this output are:

SCALE Is the size of the graph used in the benchmark.

edgefactor The edgefactor used in the graph.

NBFS Number of BFS searches run.

graph generation Time for the edge list generation.

construction time Time for first kernel.

num mpi processes The number of processes used for this benchmark. It does not
specify how many nodes were used.

harmonic mean TEPS Mean of the kernel 2 TEPS. Note: Because TEPS is a rate, the
rates are compared using harmonic means[9].

The timing of the BFS starts right before visiting the root and ends when search has
written the last value to the memory. The metric used to define the performance is called
traversed edges per second (TEPS). The TEPS are measured through the benchmarking
of kernel 2. The equations is.

TEPS(n) = total number of edges /time of kernel 2 (1)
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3.2. Related Work

There is a lot of related work on the Graph 500 benchmark. Most papers focus on the
implementation of better BFS kernels and are not applicable to our study.

In a paper, by Chaktranont et al.[10], the difference is shown between graph500 mpi simple

on a virtual private cluster and on a physical cluster. The paper shows that the virtu-
alization overhead head is about 5% on the HPC Cloud they created. This is a cloud
solution specifically created for super computers. Comparing their results with other
cloud solutions might give some insights.

Toyotaro Suzumura et al. [11] investigated the Graph 500 reference implementations.
The paper gives a detailed explanation of three of the four implementations and provides
a performance evaluation of these implementations. Suzumaru et al. managed to reach
eight GTEPS for a scale 34 problem. The paper also provides insights into optimizing
the reference implementations. The implementation used in this project is described in
their paper. Their insights about the implementations and communication model have
been used for our research.

A technical paper by Angel et al.[12] runs the Graph 500 simple implementation on
UMBC High Performance Computing Facility. In this paper the simple implementation
runs on their cluster up to scale 32 and 64 nodes. They share a way of removing the
validation from the program. The experiments are done by running multiple instances of
the program on the same node for up to 64 nodes and explain the implication of running
the program in such a way. The hardware used by Angel et al. is similar to the DAS-4.
They also propose a method of turning off validation, which is used in our project.

To summarize, there has been a lot of work done on performing and optimizing the
Graph 500 benchmark, but to our knowledge no one has attempted to run the Graph
500 benchmark on a public cloud yet.
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4. Methodology

4.1. Tools

The goal of the project is to design a model to predict the performance of Graph 500
on the cloud. To do so, we use an empirical approach: we benchmark the Graph 500
kernels on the cloud and build a numerical model from the observed performance. To
create a baseline, experiments were also done on the DAS-4 and OpenNebula.

4.1.1. Das-4

The Distributed ASCI Supercomputer 4 (DAS-4) is a six-cluster wide-area distributed
system designed by the Advanced School for Computing and Imagining (ASCI)[13]. The
six-clusters are the following:

• Vrije Univeristeit (VU)

• Leiden Univeristeit (LU)

• Univeristeit van Amsterdam (UvA)

• Technische Universiteit Delft (TUD)

• Univeristeit van Amsterdam - The MultimediaN (UVA-MN)

• Astronomy institute Netherlands Institute for Radio Astronomy (ASTRON)

All computations have been done on the clusters from the VU and LU. The LU cluster
was not actively used at that time. The VU cluster has the most nodes available of
the all the clusters and has an OpenNebula cluster installed. The specifications of the
clusters can be found in table 2.

Each of the nodes in the clusters has a dual quad-core processor with a speed of 2.4
GHz. All the nodes are also connected with InfiniBand[14] to improve the inter-node
communication. The nodes on the cluster have CentOS release 6.6 (Final) installed.

Cluster Number of nodes Memory(GB)

VU 74 (41) for all purposed 24

LU 16 48

Table 2: The specifications of the clusters used in this project.

4.1.2. OpenNebula

To be able to compare the results from the public cloud to another cloud solution, Open-
Nebula was used. “OpenNebula provides the most simple but feature-rich and flexible
solution for the comprehensive management of virtualized data centers to enable private,
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public and hybrid IaaS clouds. OpenNebula interoperability makes cloud an evolution by
leveraging existing IT assets, protecting your investments, and avoiding vendor lock-in.”
[15]. The OpenNebula software installed on the VU cluster is version 3.8. The Open-
Nebula cluster on the DAS-4 consists of eight nodes. Table 3 shows the specifications of
the OpenNebula nodes. OpenNebula uses templates to define resources to give virtual
machines. The template needed to know how to instantiate virtual machines using a
given image and makes the resource provisioning flexible. The created virtual machines
used the following two templates seen in Appendix A.

CPU Number of cores RAM

Intel(R) Xeon(R) CPU E5-2620 0 2.00 GHz 24 66 GB

Table 3: The specifications of the OpenNebula host nodes.

4.1.3. Amazon EC2 instance types

The Amazon Elastic Compute Cloud(Amazon EC2) has many different types of in-
stances, each optimized for specific purposes[16]. The following types are available:

T - Burstable Performance Instances provide burst of CPU with a low baseline. This
means that it cannot maintain a constant high CPU load.

M - Balanced Well balanced in terms of memory, CPU and network resources.

C -Computation Optimized Used for computationally intensive tasks.

R - Memory Optimized Used for memory intensive tasks.

G - GPU Has a GPU.

I - High I/O Has large SSDs for fast I/O.

D - Dense Storage Has large HDD for storing a lot data.

From these types, two types are interesting for this project, namely: C and R. They were
selected because we want to determine whether using a compute- or memory-optimized
instance will make a difference for the performance of the benchmark. The R and C
types both have five different sizes of instances and different generations of hardware.
Generation three has been chosen for both the R and C type. Size “large” is the smallest
size which can be used for this type. We chose this size and generation because these
are the cheapest instances that fit the project1. The specifications c3.large and r3.large
can be seen in table 4.

1 All experiments have been run on the Ireland region
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Type Number of
vCPUs

Memory
(GB)

Processor

c3.large 2 4 Intel Xeon E5-2680 v2 (Ivy Bridge) Processors 2.80 GHz

r3.large 2 16 Intel Xeon E5-2670 v2 (Ivy Bridge) Processors 2.50 GHz

Table 4: The specifications of the Amazon EC2 instances chosen for this project.

4.1.4. Reference Implementations

The Graph 500 reference code[4] used is version 2.1.4. This version has four different
MPI implementations which all perform the BFS in the same way. The differences
between the implementations are the data structures used to store the graph and the
way the graph is distributed. The names of the applications are: graph500 mpi simple,
graph500 mpi one sided, graph500 mpi replicated and graph500 mpi replicated csc.
The graph500 mpi one sided is not be considered, because the one sided implementa-
tion expects high performance remote memory access to work properly. This is a tech-
nique which can not be relied on in the public cloud, because you have no control over
the environment. The graph500 mpi replicated and graph500 mpi replicated csc

store the complete graph in each of the nodes. This will take a lot of RAM per node.
We would like to use as little hardware as possible on the public cloud, so we avoided
these applications.

Thus, we are using graph500 mpi simple. Other reasons to choose this application
are: it is the most simple to understand, it has been thoroughly studied and it requires
the least amount of RAM on each of the nodes.

A detailed description of the graph500 mpi simple application can be found in [11].
The implementation uses 2 queues for the BFS. The first queue is used to store all

nodes that should still be visited in this iteration. The second queue is used to store all
the nodes that should be visited in the next iteration. When the first queue is empty
the roles will be swapped of the queues and the next iteration will start. This is done
until there are no more nodes that should be visited. On each level the vertices are
evenly distributed between all participating processes. The graph is stored by using
Compressed Row Storage[7] to minimize the amount of data that needs to be stored in
the RAM.

Listing 2: Pseudo code taken from paper [11]

1 for all vertex v do

2 | pred[v] -1;

3 | visited[v] 0;

4 CQ Empty;

5 NQ Empty;

6 CQ[root] 1;

7

8 fork;

9 this GetMyRank ();

10 loop
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11 | while CQ != Empty do

12 | | for each received vertex v and its predecessor u do

13 | | | if visited[v] = 0 then

14 | | | | visited[v] 1;

15 | | | | pred[v] u;

16 | | | | Enqueue(NQ , v);

17 | | u Dequeue(CQ);

18 | | for each vertex v adjacent to u do

19 | | | r GetOwner(v);

20 | | | if r = this then

21 | | | | if visited[v] = 0 then

22 | | | | | visited[v] 1;

23 | | | | | pred[v] u;

24 | | | | | Enqueue(NQ , v);

25 | | | else

26 | | | | send (v, u) to r;

27 | if new queue of all the processes is empty then

28 | | break;

29 |

30 swap(CQ, NQ);

31 join;

In the pseudo code CQ is the current queue and NQ is the queue for the next level.

Initial modeling

Graph traversal is a traditional memory-intensive application. When running on a dis-
tributed system, the inter-node communication can also become a bottleneck, depending
on the speed of the nodes and the communication links. The paper by Suzumura [11]
proposes an estimate of the amount of communication in the graph500 mpi simple .
The formula is:

C(n,M) = A ∗B ∗ C ∗D (bytes). (2)

Where A = M ∗ 2 , B = (n− 1)/n, C = 2, D = 8, M = total number of edges, and n =
the number of MPI processes. The outcome of the equation is the communication size
in bytes.
Knowing the amount of data is useful to calculate the amount of messages that need be
sent and could also be used to calculate the network load.

4.1.5. Message Passing Interface and OpenMP

The Graph 500 reference code is created in C and uses MPI and OpenMP to parallelize
the program.

“Message Passing Interface (MPI) is a standardized and portable message-passing
system designed by a group of researchers from academia and industry to function on a
wide variety of parallel computers.”[17]

“OpenMP is an implementation of multithreading, a method of parallelizing whereby
a master thread (a series of instructions executed consecutively) forks a specified number
of slave threads and the system divides a task among them. The threads then run con-
currently, with the runtime environment allocating threads to different processors.”[18].

15



4.1.6. Intel MPI Benchmark

Because Graph 500 is a communication intensive benchmark, we need to understand the
inter-node communication performance. For this we use the Intel MPI benchmark(IMB).
The IMB is a free benchmark used to determine how well MPI performs on a certain
platform. The benchmark consists of a few different tests, each measuring a different
aspect of MPI. Of these tests “PingPong” is the one important to us. “PingPong”[19]
is used to measure the start up and throughput of a single message sent between two
processes.

For our purposes, IMB’s “PingPong” is compiled using the OpenMPI compiler; details
of the compilation can be found in Appendix B.

4.2. Experiments

This section explains which experiments have been done and which parameters are used.

4.2.1. Communication

The MPI Graph 500 benchmark is a communication heavy application. The time it
takes to send messages might have an impact on the performance. To evaluate how
much time is spent on sending messages, the total amount of messages send needs to be
approximated. The model shown in equation 2 approximates inter-node communication
size. This can be used to calculate the total number of messages that needs to be sent.
To confirm that the model fits application, we have logged each time a MPI message is
send by a node. By doing this, the total number messages sent can be observed.

There are 3 types of messages sent in this program. The first type is sent when the
message buffer is full. The buffer has a fixed size (2 kB) in each of the experiments but
it can be changed to get better performance.

The second type of message is used to flush the buffer. If all nodes have been visited
by the program and the buffer has some vertices for other nodes visit, the node will flush
the buffer.

The last message is used to report that the program is done. The node sends an empty
message to other nodes meaning that sender is done visiting vertices.

Because the communication is asynchronous, all nodes can send messages at the same
time. The time it takes for one node to send all it’s messages is the communication
time of the whole program. We assume that on average all nodes need to send the
same amount of messages. This assumption is based on the observation that the queues
generate a reasonable load balancing for the application. With this assumption in mind
the total number of messages needs to be divided by the number of nodes to get the
number of messages per node. This can then be multiplied by the time it takes to send
a message to obtain the theoretical communication time.

The IMB benchmark will be performed for each of the environments to measure the
time it takes to send messages (see section 4.1.6).
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4.2.2. Measurements

The MPI program takes two parameters: scale and edgefactor. The measurements are
run for the scale 9,12,15,21,24,27 and 30 on 2,4,6,16 and 32 nodes. Each node of the MPI
program will only contain one process. The benchmark will be run one time for each of
the experiments. It is run only one time because the benchmark already does 64 different
searches to get statics of the performance. The platforms on which the measurements
will be done are: DAS-4, OpenNebula and Amazon Webservices. The specifications of
these platforms can be found in section 4.1.

The memory consumption is important determine which scales can be run on which
machines and how many machines are needed. Equation 3 determines the memory
footprint of each scale, and it is used to calculate the memory footprint of different
scales, seen in table 5 which predicts the memory consumption:

M(Scale) = (2Scale ∗ (2 ∗ edgefactor + 1)) ∗ 8 (3)

Scale Predicted total memory consumption (GB)

9 0.000135168

12 0.001081344

15 0.008650752

18 0.069206016

21 0.553648128

24 4.429185024

27 35.433480192

30 283.467841536

Table 5: The predicted total amount of memory used by the program. To find out how
much memory is used per node divide the total by the number of nodes that
will be used.

4.2.3. OpenMP

The simple mpi simple uses OpenMP for some of the loops in the program. To find out
what the performance effect of OpenMP is, we have tested the benchmark on a single
node, by measuring the performance when fixing different numbers of CPUs to use. By
default, OpenMP will decide how many nodes will be used for the problem at hand by
checking the amount of available cores. By forcing OpenMP to use a specific amount
of CPUs, the influence of the number of CPUs on the performance can be measured.
For the OpenMP experiments a small change needed to be made in the code to turn
off the dynamic assignment, such that the number of CPUs to be used can be specified.
The experiments were done on one node of the LU cluster. The experiments were only
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done for a limited number of scales, because only one node is used. Validation was still
turned on for these experiments. We expect that using more CPUs for the program will
improve the performance.

4.2.4. MPI

The MPI measurements have been conducted to find out the effect of the number of nodes
and scale on the performance2. The experiments are done on the DAS-4, OpenNebula
and the Amazon EC2. The DAS-4 and OpenNebula experiments serve as a baseline for
the Amazon EC2 results. DAS-4 will serve as the comparison of the cloud results to a
super computer. The OpenNebula will serve as comparison for another cloud platform.
The following experiments sets were done:

1. With validation

2. Without validation

3. Without Infiniband

4. On the OpenNebula

5. On Amazon EC2 c3.large and Amazon EC2 r3.large

The first two sets of experiments are, the graph500 mpi simple with and without
validation. These experiments are done to decide if turning of the validation has an
impact on the results and how much large this impact is. We expect the results to be
similar in behavior, but the experiments without validation will give a higher perfor-
mance, because the execution time is divided by the total number of edges instead of
the number of visited edges.

The third set of experiments, running the bechmark without InfiniBand, will provide
a better comparison between the DAS-4 and Amazon EC2. The cloud does not have
InfiniBand, turning will bring the results closer together with this the locality of the
environment can be measured. An Amazon data center is larger than the DAS-4 and
the machines will most likely be further apart, this means that the results will most
likely be comparable, but the Amazon EC2 would perform worse.

The OpenNebula experiments are done in the same environment as the DAS-4 ex-
periments, but use different hardware and a virtualization layer on top. The expected
results from the OpenNebula experiments is that they will be comparable to the results
of the Amazon EC2 and the DAS-4.

The expectations of the Amazon EC2 set of experiments, is that the results is will be
comparable to the DAS-4 without Infiniband, but have lower performance.

2Technically experiments could be done with 64 nodes, but some of the nodes were out of service and
even if all nodes were available there is always someone else using one of other nodes which made it
impossible to run an experiment with 64 nodes.

18



Removing validation

To run the experiments for scales larger than 15, validation needed to be removed.
For these scales the program gets stuck while validating. During the validation also
the performance of the search is calculated. To be able to run the program without
validation3 and still measure the performance, the following has been done. Instead of
dividing BFS search time by the number of traversed edges during the search it will be
divided by the total number of edges as proposed in [12]. Calculating the performance
in this way can have a impact and needs to be investigated. Therefore the first set
experiments were run. The code with the changes to remove validation can be found
here [20]

DAS-4

To run programs on the DAS-4, prun needs to be used. This program reserves nodes
and places all the required files on the node for the mpirun command. For prun to run
the specified program, it needs to run a script to find out all environment variables and
what flags should be used for mpirun. One adjustment needed to be made to the default
script to get prun working for graph500 mpi simple. The file can be found in Appendix
D.

OpenNebula

Running experiments on OpenNebula was done by using mpirun. The experiments done
with 2, 4, 8 and 16 nodes had 24 GB of memory available. This amount has been chosen
because this is the same amount of memory as the nodes on the VU cluster. For the
experiment with 32 VMs, the nodes have only 10 GB. 10GB was chosen because the
eight physical nodes could not handle 32 nodes with 24 GB of RAM. With this setup,
the experiments could still be run. The VMs used for the OpenNebula experiments have
CentOS release 5.11 (Final) installed. The version of MPI was 1.4. On the VMs no
InfiniBand has been installed.

Amazon EC2

For the experiments on Amazon EC2 a new image was created similar to the image
used on OpenNebula. To create this image a publicly available image was used with 5.x
version of CentOS. There is one difference between the experiments done on OpenNebula
and the Amazon EC2. The mpirun command is started from one of the participating
nodes instead of running it from a node which is not participating. Running MPI in
such a manner might have an influence on the performance.

3The graph does not need validation, because this is the reference implementation
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5. Results

In this section the results of this project are shown.

5.1. Communication

As mentioned in section 4.2.1 the Graph 500benchmark is communication heavy and
this might be the determining factor for its performance. With the following results we
would like to get feel for the amount of time spent sending messages.

5.1.1. IMB benchmark

On each of the platforms the IMB benchmark has been performed to determine time it
takes to send messages between two machines. The communications which are relevant
are 0, 1028 and 2048 bytes. The 0-bytes result shows the time it takes to send the final
message of the MPI program, 1028 bytes gives an indication of how much time it will
take to send a message a not completely filled buffer, and lastly the 2048 shows the time
it takes to send a full buffer. The complete table is shown in Appendix C.

Bytes DAS-4 (µsec) DAS-4 no InfiniBand(µsec) OpenNebula (µsec) AWS EC2 (µsec)

0 3.81 46.55 112.75 81.82

1024 4.93 56.97 130.76 91.40

2048 5.96 4 68.36 269.74 102.96

4096 7.36 79.08 344.64 125.58

Table 6: This figure shows the IMB benchmarks on the different platforms used. All
times are an average of a 1000 messages sent. Only the relevant sizes have been
shown.

5.1.2. Message count

The message count is a metric to calculate the communication time. The amount of
data which is sent per message can be estimated. By using this estimation the number
of messages can be calculated. As mentioned before in [11], an estimation of the amount
of bytes is computed using Equation 2. Figure 2 shows that the observed number
of messages is lower than the calculated number. We found that computed messages
sent is two times larger than the observed amount of messages. The model is a good
approximation of the number of message, but it is a factor two off.

5.2. OpenMP

In figure 3 we present the results from the OpenMP experiments. The figure shows that
the performance of the modified graph500 mpi simple does not depend on the number
of CPUs used. This does not change as the scale of the problem increases (see figure 3b).
Essentially, these results show that the performance does not depend on the number of

20



Figure 2: The number of messages sent per node for 4 different scales and 2 to 16 nodes.
The observed number is the number of messages sent per node when the buffer
is full plus the messages send with left overs(see section 4.2.1)

CPUs (i.e. , cores or threads) used per node. This is an unexpected result, which needs
investigation. However, as this analysis is beyond the scope of our project, we simply
use no OpenMP for our further cluster and cloud analysis.

(a) Against CPU (b) Against scale

Figure 3: The effect of different scales and the numbers of CPUs on the (TEPS)

5.3. DAS-4

In this section we discuss the results of the experiments on DAS-4.
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5.3.1. Turning validation off

Figure 4 shows the performance, in TEPS, as a function of the scale (figure 4b) and the
number of nodes (figure 4a). The results show that there is a difference in the number
of TEPS with and without the validation. The difference in performance can be up to
50% in the case of scale 15 with 16 nodes. What can be noticed in figure 4a is that the
same trends are followed as the number of nodes increases. Figure 4b shows that for
larger scales the difference between the validation and non validation becomes larger. As
mentioned in section 4.2.4 the way the performance is measured between validation and
no validation is different. Dividing the search time by the total amount of edges instead of
the visited edges does make a difference for the performance. Although the performance
differs the behavior seen in the results is similar. Having a higher performance without
validation, but still having the same behavior in the results is the expected result.

(a) As a function of nodes (b) As a function of scale

Figure 4: The effect of different scales and the numbers of nodes on the TEPS between
the program with and without validation.

5.3.2. Nodes and Scale

Figure 5 shows that the performance increases as the number of nodes increases. The
more nodes participate, the more edges can be traversed, as seen in figure 5b. This
increase in performance can be seen up till a certain point. After this tipping point the
amount of TEPS decreases again. The tipping point should be found for any number of
nodes and it happens at scale 15,18, and 21 for 2, 4, and 8+ nodes.

Figure 5a shows the same data, but then as a function of the number of nodes. What
can be seen in this figure is that the amount TEPS increases as the nodes increase
for each scale. There is an almost linear correlation between the number of nodes and
the TEPS for higher scales except for scale 30. One interesting behavior which can be
observed in figure 5b the decline after the tipping point. The performance decline is
significant, and seems to be related with the behavior of the network and the inter-node
communication. In section 5.3.3, we see that when InfiniBand is disabled, this behavior
disappears, confirming our hypothesis that the network becomes a bottleneck when the
number of nodes and the amount of messages grow larger.
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(a) TEPS as a function of nodes for different
scales.

(b) TEPS as a function of scale for different
amount of nodes.

Figure 5: Performance (in TEPS) as a function of the number of nodes (a) and scale (b)
for DAS-4 with Infiniband.

5.3.3. No InfiniBand

The experiments on the DAS-4 have also been run without InfiniBand. The results
show similarities with the DAS-4 results with InfiniBand. Figure 6b shows an increase
in performance as the scale increases till a certain tipping point, but unlike what has
been seen in figure 5b the tipping point has not been yet been reached at scale 24.
Figure 6a shows similar results to figure 5a. The performance difference can be as large
as 6 times when InfiniBand is used, which further proves that this application is heavily
dependent on the inter-node communication. Figure 6b also shows the same trends as
figure 5b. However, we note that the bottleneck has disappeared, and the performance
does not deteriorate after the tipping point.

(a) TEPS as a function of nodes for different
scales.

(b) TEPS as a function of scale for different
amount of nodes.

Figure 6: Performance (in TEPS) as a function of the number of nodes (a) and scale (b)
for DAS-4 without Infiniband.
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5.4. OpenNebula

The OpenNebula results can best be compared with results on the DAS-4 without Infini-
Band, because the VMs on the OpenNebula do not use InfiniBand. Looking at figure 7,
the performance seems to vary significantly. The performance that can be achieved on
OpenNebula is much lower than that achieved on the DAS-4 even without InfiniBand.

The difference in performance between using four and eight nodes is much less clear
on the OpenNebula, and higher performance can sometimes be achieved with four nodes
compared to eight nodes as seen in figure 7a. This was not the case on the DAS-4. For
the larger scales 21 and 24, a linear correlation can be seen between the number of nodes
and the performance.

The performance is an order of magnitude lower than what can be seen on DAS-4
without InifiBand. One of the possible reasons for this is the hardware it is running on.
By looking at table 3 we see that the clock speed is lower than the other machines. Also
the communication time in the OpenNebula cluster 6 is more than two times longer
than the communication time within Amazon EC2 and about four times longer than
the DAS-4 without InfiniBand. Furthermore, the fact that there are only eight physical
machines hosting all the nodes plays a part in the performance. By looking at 7b the
tipping points are harder to distinguish but for four and eight nodes it can be found at
scale 18. For the experiments on the DAS-4 can be found a bit later around the 18-21
point.

(a) TEPS as a function of nodes for different
scales.

(b) TEPS as a function of scale for different
amount of nodes.

Figure 7: Performance (in TEPS) as a function of the number of nodes (a) and scale (b)
for OpenNebula on DAS-4.

5.5. Amazon

In figures 8 and 9 we show the results of the experiments done on Amazon. The figures
show almost identical in terms of performance and behavior, but the r3.large can run
experiments of a higher scale. The experiments done with the c3.large show that the
c3.large reaches linear behavior faster than the r3.large which can be seen in figure 8a
and 9a. For the c3.large scale 18 already shows linear behavior where as r3.large this
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starts at scale 21. All lines above scale 18 tightly packed on each other, as seen in figure
8a. For the results of the r3 machines figure 9a shows a more discrepancies between the
scales 18 and higher. The thing to notice is that by doubling the amount of nodes used
the performance also doubles.

Both figures show that for scales lower than 15 the performance is almost constant
for each number of nodes that have been tested. For these scales, we have empirically
found the tipping point (i.e. the point at which adding more nodes does not improve
performance). For larger scales, the tipping point has not been found.

Comparing these results with the results of the OpenNebula and the DAS-4 without
InfiniBand, the Amazon experiment can traverse about ten times as much edges com-
paring to OpenNebula. The Amazon has about 50% less TEPS than DAS-4 without
Infiniband.

Both figures show a slow decline in performance after the tipping point in figure 8b
and 9b. The parallelism becomes saturated at an earlier point for the Amazon EC2
instances than for the DAS-4. With the Amazon instances it happens at about scale 18
and for the DAS-4 18 and higher scales. Furthermore, when looking at the figures 8a
and 9a the tipping point has not been reached for scales above 15.

The behavior for the scales up to scale 15 is most likely due to the communication
time. As shown in table 6 the time taken to send messages on Amazon EC2 is twice as
long compared to the DAS-4 no InfiniBand. While looking at the OpenNebula results
where the communication is even longer than for EC2 the constant performance for each
number of nodes is still seen up to scale 18. This makes us believe that this constant
behavior for lower scales is the communication time.

(a) TEPS as a function of nodes for different
scales.

(b) TEPS as a function of scale for different
amount of nodes.

Figure 8: This figure shows the TEPS vs the scale and nodes for the experiments done
on AWS c3.large machines
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(a) TEPS as a function of nodes for different
scales.

(b) TEPS as a function of scale for different
amount of nodes.

Figure 9: Performance (in TEPS) as a function of the number of nodes (a) and scale (b)
for Amazon c3.large.

6. Model

The results in section 5.5 show that there is a linear correlation between performance
and number of nodes for each scale above 15.

Figure 10: The linear behavior for the DAS-4,c3.large and r3.large.

We general model will be:

TEPS(scale) =

{
a ∗ #nodes+ b ≤ T if scale > 15

slow decrease > T if scale > 15
(4)
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Where T is the tipping point and is defined as: T = f(scale, architecture). Equation 4
calculates the performance for given scale for a specific number of nodes.

Experiment a (MTEPS) b (MTEPS)

DAS-4 scale 21 2.03 7.70

DAS-4 scale 24 2.11 7.00

Amazon EC2 c3.large scale 21 1.76 3.45

Amazon EC2 c3.large scale 24 1.76 3.41

Amazon EC2 r3.large scale 21 1.78 3.36

Amazon EC2 r3.large scale 24 1.75 3.42

Table 7: The values for a and b from equation 4 for different scale and architectures.

To calculate the a and b for a different architectures and scale, a regression line has
been made for the experiments seen in figure 10. Table 7 shows the results of creating
these regression line. The table show there is not much difference between the a and b
on the same architecture. This means a more general formula can be created for each of
the architectures.

First the equation for the DAS-4:

TEPS(scale) = 2.03 ∗ x+ 7.70 (5)

Second the equation for Amazon EC2:

TEPS(scale) = 1.76 ∗ x+ 3.45 (6)

Where x is the number of nodes used for the application. Both equations return a value
in 106 TEPS (MTEPS).

As can be seen from these two equations the slope and the starting value depend on
the architecture on which the Graph 500 benchmark runs. To calibrate the experiments
at least 3 experiments need to be done with the hardware of choice. When a and b have
been found the model is complete and a prediction can be made for different experiments.

The model made can only predict the performance of the as a function of the number
of nodes for large scales. The point where maximum parallelism can be achieved and
the point of the diminishing return cannot be calculated with equation 5 or 6.
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7. Discussion

7.1. Validation vs No Validation

Figure 4 shows that approximation to divide the search time by the total number of
edges instead of the actually visited edges by Angel et al.[12] is a rough approximation.
The scales used for the validation experiments were small and different behavior might
be observed for higher scales. To further investigate approximation, experiments need
to be done on a platform with a newer version of MPI installed, because then validation
can be left on.

7.2. DAS

There are two kinds of tipping points in these graphs. The first can be seen in figure 5a,
in which the TEPS as a function of nodes is shown. For example, a tipping point can
be seen at 8 nodes with scale 12. After this tipping point, adding more nodes leads to
a sharp decrease in performance. Thus this tipping point, shows the optimal number of
nodes for a certain scale. In the case of the DAS-4 results in figure 5, this is for 8 nodes
for scale 12. Figure 5b shows the other tipping point, which can be seen at scale 21 for
32 nodes. This tipping point shows the point where paralellization has reached its peak.
Adding more data(i.e., using a graph of larger scale) to the application will not improve
the performance anymore.

7.3. OpenNebula

There were some problems with getting the program to work on OpenNebula. The cluster
on which the latest version of OpenNebula was installed was shutdown in preparation of
the new DAS-5. For this reason the older version 3.8 needed to be used. The OpenNebula
marketplace does not store any images for version 3.8 anymore, which made the setup
time longer. Also public images available on the OpenNebula VU cluster did not work
out of the box. One thing to note is that when you are running MPI it is best not to
have a firewall between the hosts. The MPI nodes need to be able to open ports to each
other for the messages.

7.4. Amazon

Experiments on the Amazon EC2 were only done once and on one region. The results
did not show much variance, the standard deviation is about one percent of the mean
value.

The experiments were run on Friday and over the weekend. We expect that, during
the day or peak hours the performance might can change, due to higher demands on
Amazon EC2 (assuming these instances, r3.large and c3.large, see demand variability
over time). More experiments should have been done to confirm that the cloud is this
stable. The performance might also change per region.
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Using Amazon EC2 does have some limitations. With a new account you can only
make a limited amount of machines. To raise this limit you need to present a business
case. This might not be a problem in most cases, but for huge experiments might not
be possible. Getting the machines ready is also a huge task when working with more
instances. Starting up 32 machines on amazon took longer 15 minutes and the VMs
also need to the latest code after creation. When doing experiments with a lot amount
of nodes it is better to create a special image where everything is ready. After all
the machines are ready, all the machines need to be added to the known hosts file(see
Appendix E for the Amazon setup scripts.). If this is not done the MPI program will
get stuck, because it needs to accept a key. Adding all machines to the known hosts

might also take a long time, depending on how this is done.

7.5. Reference implementation

There were some problems with running the graph500 mpi simple on the DAS. The
first problem was that the MPI version on the DAS-4. The version used is 1.4. This
MPI 1.4 is not compatible with the reference code, which uses data types defined in later
versions. Because of this the textttworkaround.h needed to be changed. Changing the
file made it possible to compile this program on the DAS-4. In the commands of this file,
it is stated that this would help out with the validation and will prevent the program
from hanging. This was the case for a scale up to 15. At a scale higher than 15 program
would get stuck while validating the first BFS. To avoid this problem, experiments have
been run with validation turned off.

7.6. Model

The initial intuition for the model is that there are two factors which contribute to cal-
culating the TEPS, namely: the computational time and the communication time. The
computation time is the taken to traverse all the edges in the graph. The communication
time is the time it takes to send all the messages. Trying to make a model with these
two parameter resulted in straight lines. The computation is a linear function of the
number of nodes and the communication is a function of the scale and the number of
nodes, because everything is parallel and the number of and the messages which are sent
are non-blocking the calculations need to be done for one node. The paper by Angel
proposes that there is another factor which is contention on the network. What the
paper suggest is that at some point the network is getting saturated. This is due to the
shear amount of nodes that need to be transported over the network. This is also what
can be seen in the results. As the nodes stay constant and the scale goes up there is a
tipping point as mentioned in the results. After this tipping point the amount of TEPS
keeps reducing. This can be explained, by looking at contention. If the scale goes up
but the number of nodes stay the same the chance of contention keeps increasing. As
the contention increases the network will reach is minimum value which is the maximum
one link can handle. This means that it will return to a state between two nodes instead
of having a parallel system of n nodes. This problem would be less prominent in the
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Amazon EC2 environment. In this environment congestion will occur much less likely
because the network is much larger and there are no direct connections between the
machines which might get clogged. With this new insight in mind there are multiple
ways to test if this is true. One easy way to increase the buffer size. By increasing
the buffer size the amount of messages that will not decrease but the timings of these
messages will differ and there will not be a continues stream coming from one node only
bursts.However, this test is left as future work.

8. Conclusion

The project focused on finding a model to predict the performance of the a Graph 500
benchmark depending on the amount of resources.

A reasonable size of graph to process on Amazon EC2 is a scale of 30. Processing a
scale 30 graph can be done with 32 r3.large instance and takes for five hours to complete.
Getting 32 instances of the r3.large on Amazon EC2 does not take a lot of effort.

The performance of the Graph 500 benchmark on the DAS-4 has been compared to
the performance of the Amazon EC2. From the results we can conclude that the public
cloud can be competitive with a super computer. Although there is no InfiniBand in the
cloud, the latency and compute power of the machines is competitive with the DAS-4 in
terms of performance.

A model has been created. This model is dependent on the tipping performance point.
Before the point, the model is linear. After the tipping point, we approximate the model
with a constant performance, which is an optimistic prediction. The parameters of this
linear function are dependent on the architecture on which the benchmark is running.

9. Future Work

Our results are promising so far, but more research needs to be done in validating and
refining the model.

To validate the proposed model, more experiments still need to be run. Larger amount
of nodes and higher scales should be tested. Behaviors can differ for larger scales. It
has only been shown that the behavior is different for smaller, because the tipping point
has been identified empirically. The same behavior could also occur for larger scales and
more nodes.

The graph500 mpi simple could run multiple processes on one node. The program
does not make use of multiple processes during the BFS. This means that if there is
enough memory on the computer it would be possible to run multiple processes per
node. This has already been shown in the paper by Angel et al.[12], but it is something
that we have not looked at yet.

Other implementations could also be used to run on the cloud. The graph500 mpi simple

is a not an optimized implementation. The performance can be improved by having a
more optimized implementation on each node. The implementation should be hardware
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agnostic, if it is to run on cloud. The implementation by [21] which do a two dimensional
version of the BFS algorithm might be a good first step.

Furthermore, other types of cloud instances and public cloud services should be tested.
Only Amazon EC2 has been benchmarked in this project and only two of its instances.
Although these instances seemed the most relevant for this project, larger instances
should be tested to find out if the model still holds. Also the, using the m3.large
might provide a good comparison to the other results. The Google cloud might also be
interesting option to run the application on.

DAS-4 with InfiniBand showed a different behavior than all the other experiments we
have performed. This behavior is unrelated to the Graph 500 on the cloud, but it is
interesting to investigate further.
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A. OpenNebula Templates

The templates used for OpenNebula.

Listing 3: Template used for 16 nodes on OpenNebula

1 NAME = Centos5 -disk

2 CPU = 1.0

3 MEMORY = 24000

4 VCPU = 8

5

6 REQUIREMENTS = "CLUSTER_ID = 101"

7

8 OS = [

9 arch = x86_64

10 ]

11

12 DISK = [

13 IMAGE_ID =908

14 ]

15

16 NIC = [

17 # NETWORK = "Small network"

18 # OpenNebula API change: now refer to NETWORK ID:

19 NETWORK_ID =1

20 ]

21

22 GRAPHICS = [

23 TYPE = "vnc",

24 LISTEN = "0.0.0.0"

25 ]

26

27 FEATURES = [

28 # Needed for graceful shutdown with KVM:

29 acpi="yes"

30 ]

31

32 RAW = [

33 type = "kvm",

34 data = " <serial type=’pty ’> <source path=’/dev/pts/3’/> <target port

=’1’/> </serial >"

35 ]

36

37 CONTEXT = [

38 hostname = "$NAME",

39 # OpenNebula API change: now refer to NETWORK ID:

40 dns = "$NETWORK[DNS , NETWORK_ID =1]",

41 gateway = "$NETWORK[GATEWAY , NETWORK_ID =1]",

42 netmask = "$NETWORK[NETMASK , NETWORK_ID =1]",

43 files = "/cm/shared/package/OpenNebula/current/srv/cloud/configs/

centos -5/ init.sh /var/scratch/hdermois/OpenNebula/id_dsa.pub",

44 target = "hdc",

45 root_pubkey = "id_dsa.pub",

46 username = "opennebula",
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47 user_pubkey = "id_dsa.pub"

48 ]

Listing 4: Template used for 32 nodes on OpenNebula

1 NAME = Centos5 -disk

2 CPU = 1.0

3 MEMORY = 10000

4 VCPU = 8

5

6 REQUIREMENTS = "CLUSTER_ID = 101"

7

8 OS = [

9 arch = x86_64

10 ]

11

12 DISK = [

13 IMAGE_ID =906

14 ]

15

16 NIC = [

17 # NETWORK = "Small network"

18 # OpenNebula API change: now refer to NETWORK ID:

19 NETWORK_ID =1

20 ]

21

22 GRAPHICS = [

23 TYPE = "vnc",

24 LISTEN = "0.0.0.0"

25 ]

26

27 FEATURES = [

28 # Needed for graceful shutdown with KVM:

29 acpi="yes"

30 ]

31

32 RAW = [

33 type = "kvm",

34 data = " <serial type=’pty ’> <source path=’/dev/pts/3’/> <target port

=’1’/> </serial >"

35 ]

36

37 CONTEXT = [

38 hostname = "$NAME",

39 # OpenNebula API change: now refer to NETWORK ID:

40 dns = "$NETWORK[DNS , NETWORK_ID =1]",

41 gateway = "$NETWORK[GATEWAY , NETWORK_ID =1]",

42 netmask = "$NETWORK[NETMASK , NETWORK_ID =1]",

43 files = "/cm/shared/package/OpenNebula/current/srv/cloud/configs/

centos -5/ init.sh /var/scratch/hdermois/OpenNebula/id_dsa.pub",

44 target = "hdc",

45 root_pubkey = "id_dsa.pub",

46 username = "opennebula",

47 user_pubkey = "id_dsa.pub"
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48 ]

B. Intel MPI Benchmark compilation

To compile the Intel MPI Benchmark the following has been done on all platforms[22].

Listing 5: Compilation of IMB

1 # For example the MPI_HOME needs to be the OpenMPI compiler.

2 make -f make_mpich MPI_HOME =/usr/lib64/openmpi /1.4-gcc

C. Intel MPI becnhmark “PingPong”

Bytes DAS-4 (µsec) DAS-4 no InfiniBand(µsec) OpenNebula (µsec) AWS EC2 (µsec)

0 3.81 46.55 112.75 81.82

1 2.25 47.68 114.01 81.32

2 4.19 45.65 114.98 80.25

4 2.62 41.81 114.93 80.95

8 2.18 44.69 117.94 80.7

16 5.11 42.08 115.68 80.71

32 3.26 47.92 114.91 81.02

64 5.85 48.22 100.11 82.87

128 5.47 48.43 100.87 81.76

256 3.69 49.51 105.15 83.15

512 4.04 50.95 108.65 87.67

1024 4.93 56.97 130.76 91.4

2048 5.96 68.36 269.74 102.96

4096 7.36 79.08 344.64 125.58

8192 9.93 103.12 362.49 143.53

16384 19.66 209.36 519.48 216.97

32768 25.84 262.14 3715.68 258.57

65536 29.42 581.46 1755.55 479.69

131072 53.2 1031.22 2577.59 568.67

262144 98.92 1581.03 4411.18 1010.47

524288 260.8 2796.03 8466.25 1660.28

1048576 561.83 5116.38 18058.36 8829.55

2097152 738.45 9648.28 37539.18 17482.83

Table 8: The timing results for benchmark of the IMB.
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D. DAS-4 environment script

Listing 6: Script used to run MPI on the DAS

1 #!/bin/sh

2

3 # Sanity checks to make sure we are running under prun/SGE:

4 if [ "X$JOB_ID" = X ]; then

5 echo "No JOB_ID in environment; not running under SGE?" >&2

6 exit 1

7 fi

8 if [ "X$PRUN_PE_HOSTS" = X ]; then

9 echo "No PRUN_PE_HOSTS in environment; not running under prun?" >&2

10 exit 1

11 fi

12

13 # Construct host file for OpenMPI ’s mpirun:

14 NODEFILE =/tmp/hosts

15

16 # Configure specified number of CPUs per node:

17 ( for i in $PRUN_PE_HOSTS; do

18 echo $i slots=$PRUN_CPUS_PER_NODE

19 done

20 ) > $NODEFILE

21

22 # Need to disable SGE ’s PE_HOSTFILE , or OpenMPI will use it instead or

the

23 # constructed nodefile based on prun ’s info:

24 unset PE_HOSTFILE

25

26 . /etc/bashrc

27 module load openmpi/gcc

28

29 $MPI_RUN $OMPI_OPTS --hostfile $NODEFILE $PRUN_PROG $PRUN_PROGARGS

E. Amazon preparation scripts

Listing 7: Script to start the Amazon instances and create the hosts file

1 #!/usr/bin/python

2

3 import boto.ec2

4 import boto.ec2.address

5 import sys

6

7 def create_instance(connection):

8 instance_t = "r3.large"

9 image = "ami -5 ab4f02d"

10

11

12

13 connection.run_instances(image , key_name=’key ’,security_group_ids =[’sg -

ee16dc8b ’,
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14 ’sg -01 c99764 ’], instance_type=instance_t)

15

16 nr_instances = 0

17 if len(sys.argv) > 1:

18 nr_instances= int(sys.argv [1])

19

20 connection = boto.ec2.connect_to_region("eu -west -1")

21

22 print connection.get_all_instance_status ()

23 print connection.get_all_instances ()

24

25 for i in range(nr_instances):

26 create_instance(connection)

27

28 instances = connection.get_only_instances ()

29 #

30 f = open(’hosts ’, ’w+’)

31 for i in instances:

32 if i.ip_address and i.key_name == "key":

33 f.writelines("root@%s\n"%i.ip_address)

Listing 8: The script used to prepare all Amazon EC2 instances.

1 #! /bin/bash

2 #hosts is the file with all the participating instances.

3 HOSTS=$(cat hosts)

4 FIRST=$(head -1 hosts)

5 for i in $HOSTS

6 do

7 tmp=$(echo $i | cut -c 6-)

8 ssh -oStrictHostKeyChecking=no $i "cd project; git pull" &> /dev/null

9 ssh -oStrictHostKeyChecking=no $i "cd project/code/graph500/mpi;make

clean; make" &> /dev/null

10 # ssh $i "cd project; git pull"

11 # ssh $i "cd project/code/graph500/mpi;make clean; make"

12 ssh -oStrictHostKeyChecking=no $FIRST "ssh -keyscan -t rsa ,dsa $tmp 2>&1

>> ~/. ssh/known_hosts;"

13 done

14 scp hosts $FIRST :/root
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