
Known plaintext attack on
encrypted ZIP files

Barosan Dragos Laurentiu

Supervisor: Armijn Hemel

University of Amsterdam

System and Network Engineering

Why?

• There is no open source implementation
• Source Code available for PkCrack by Peter Conrad

• Interesting to study a successful attack on encryption

Research Questions

• How feasible is to obtain plaintext?

• What implementation options are for the attack?

Is it still used ?

• Winzip
• default AES, can use classic ZIP encryption

• Winrar
• only classic ZIP encryption for ZIP format

• 7ZIP
• default classic ZIP encryption, can use AES

• PKZIP
• default AES, can use classic ZIP encryption

• ZIP utility on Linux
• Only classic ZIP encryption

Zip encryption

• Stream cipher

• Internal state represented by 3 variables on 32 bits each
• Key0, key1, key2

• Default known internal state updated by the password
• Afterwards updated by plaintext

• key3 is the actual encryption key and is derived from key2

• 12 bytes encryption header prepended

Internal state keys dependency

• key0i = f(key0i-1, char)

• Key1i = g(key0i, key1i-1)

• Key2i = f(key2i-1, key1i)

• Key3i = h(key2i)

• Ciphertexti= key3i XOR plaintexti

Attacks

• Original attack
• Eli Biham and Paul C. Kocher

• Requires 13 plaintext bytes

• ZIP Attacks with Reduced Known Plaintext
• Michael Stay

• Requires only 2 plaintext bytes at the cost of complexity

• Can exploit the PRNG used by InfoZIP

• Yet another plaintext attack to ZIP encryption scheme
• Mike Stevens and Elisa Flanders

• Exploit in the PRNG from IBDL32.dll used by WinZip

Compressed ?

• Some files are not compressed
• Even with maximum compression level

• Because the compression algorithm needs redundancy

• In the table: maximum size of a file so it is not compressed

Deflate level 1-9 Bzip2

One letter 8 43

Lorem Ipsum 56 129

Kafka 64 140

Pangram 78 162

Random symbols 127 237

Values are in bytes

Plaintext

• The last byte of the encryption header
• MSB of the data CRC

• File headers
• Executable files

• ZIP files

• Known files from the Internet
• Pictures

• Setup files

Chosen plaintext attack

• We have a list of key3’s from the plaintext

• The goal is to find internal state (key2i, key1i, key0i) for some i

1. From the list of key3’s find possible key2 lists

2. For each key2 list find possible key1 lists

3. For each key1 list find one key0 list

4. Discover true key0 list

Locate data

en.Wikipedia.org/wiki/Zip_(file_format)

http://www.codeproject.com/Articles/8688/Extracting-files-from-a-remote-ZIP-archive

Zip archive format

Stage 1

• From the list of key3’s find possible key2 lists

• For efficiency precompute a number of tables as hash maps
• The inverse of the CRC function

• Using the equations in the paper we come to 222 possible key2n

• trim the plaintext and select n as 13

• use extra plaintext to reduce the number of key2’s

0

10000

20000

30000

40000

50000

60000

70000

80000

122 506 1002 3990 10000

Number of key2’s vs amount of plaintext

PkCrack PoC Paper

Number of keys

Amount of

plaintext in

bytes

Implementation

• key2 reduction is computation heavy in this stage
• The function iterates for the number of extra plaintext bytes and returns

the reduced list of keys

• Serial

• Parallel
• Python Global Interpreter Lock does not allow use of threads in parallel

• Use parallel processes

• Creating new processes at every iteration

• Using shared data between processes

Parallel

• Parallel with new processes every iteration

• The parallel reduction computation runs 4 times faster then the serial
one

• The program as a whole runs slower as the amount of plaintext
becomes larger

• The cost of managing new processes stays constant while the gains of
running parallel become smaller

• Parallel with shared data

• 80 times slower than previous solution

Measurements

Plaintext

(bytes)

Execution time

Parallel

(minutes)

Execution time

Serial

(minutes)

System/User

time

Parallel

System/User

time

Serial

40 0:34.44 1:03.6 0.0647 0.0026

122 1:08.5 1:38 0.1648 0.0017

309 1:49.3 1:56 0.3411 0.0014

506 2:29 2:07.2 0.5066 0.0012

1002 3:28 2:22 0.7455 0.0011

3990 10:07 3:02.1 1.4550 0.0009

Conclusions

• While difficult there are ways of obtaining the necessary amount
of plaintext
• Using the newer attacks, in some cases it is not even necessary

• The attack can be implemented by taking advantage of multiple
cores
• Python makes it difficult because processes must be used instead of

threads

Future work

• Implement full attack and release under open source license
• In C to take advantage of the parallel sections of the algorithm

• Compare performance with PkCrack

• Detailed analysis of the other attacks

Questions ?

Contact: Barosan.dragos@gmail.com

