University of Amsterdam
System and Network Engineering

X
X
%

Known plaintext attack on
encrypted ZIP files

Barosan Dragos Laurentiu

Supervisor: Armijn Hemel

Why?

* There Is no open source implementation
e Source Code avallable for PkCrack by Peter Conrad

* Interesting to study a successful attack on encryption

Research Questions

* How feasible Is to obtain plaintext?

* What implementation options are for the attack?

Is 1t still used ?

* Winzip
 default AES, can use classic ZIP encryption

* Winrar
« only classic ZIP encryption for ZIP format

e //ZIP
 default classic ZIP encryption, can use AES

 PKZIP
 default AES, can use classic ZIP encryption

* ZIP utility on Linux
« Only classic ZIP encryption

ZIp encryption

e Stream cipher

* Internal state represented by 3 variables on 32 bits each
« KeyO0, keyl, key2

« Default known internal state updated by the password
« Afterwards updated by plaintext

 key3 Is the actual encryption key and is derived from key?2
* 12 bytes encryption header prepended

Internal state keys dependency

* keyO, = f(keyO, ,, char)

* Keyl; = g(keyO,, keyl,;,)

» Key2, = f(key2. ,, keyl)

* Key3, = h(key2,)

* Ciphertexti= key3; XOR plaintext;

Attacks

* Original attack
 Eli Biham and Paul C. Kocher
« Requires 13 plaintext bytes

« ZIP Attacks with Reduced Known Plaintext
« Michael Stay
« Requires only 2 plaintext bytes at the cost of complexity
« Can exploit the PRNG used by InfoZIP

 Yet another plaintext attack to ZIP encryption scheme
« Mike Stevens and Elisa Flanders
« Exploit in the PRNG from IBDL32.dll used by WinZip

Compressed ?

« Some files are not compressed
« Even with maximum compression level

» Because the compression algorithm needs redundancy
* In the table: maximum size of a file so it is not compressed

Deflate level 1-9 Bzip2

One letter 8 43
Lorem Ipsum 56 129
Kafka 64 140
Pangram /8 162
Random symbols 127 237

Values are in bytes

Plaintext

* The last byte of the encryption header
« MSB of the data CRC

* File headers
 Executable files
o ZIP files

« Known files from the Internet

* Pictures
» Setup files

Chosen plaintext attack

* We have a list of key3’s from the plaintext
« The goal is to find internal state (key2,, keyl, keyO,) for some I

From the list of key3’s find possible key2 lists
—or each key? list find possible keyl1 lists

—or each keyl list find one keyO list

Discover true keyO list

> w e

Locate data

Zip archive format

ZIP local file header

Central Directory | —

File name length (n)

Extra field length (m)

=1 axtra data in Local Header File name

http://www.codeproject.com/Articles/8688/Extracting-files-from-a-remote-ZIP-archive

Offset Bytes Description'”
Local Header 0 4 Local file header signature = Ox04034b50 (read as a little-endian number)
file # 4 2 Version needed to extract (minimum)
Local Header |~ | 6 2 General purpose bit flag
_ 8 2 Compression method
flie 10 2 File last modification time
Local Header | ™| 12 |2 File last modification date
file # 14 4 CRC-32
18 4 Compressed size
- 22 q Uncompressed size
2
2
n
m

Extra field

en.Wikipedia.org/wiki/Zip_(file_format)

Stage 1

* From the list of key3'’s find possible key2 lists

 For efficiency precompute a number of tables as hash maps
* The inverse of the CRC function

« Using the equations in the paper we come to 222 possible key2,
« trim the plaintext and select n as 13
 use extra plaintext to reduce the number of key2'’s

Number of keys
80000

Number of key2’'s vs amount of plaintext
70000
60000
50000
40000
30000

20000

10000

o

Amount of

plaintext in

bytes
506

122 1002 3990 10000

mPkCrack mPoC mPaper

Implementation

* key2 reduction is computation heavy In this stage

« The function iterates for the number of extra plaintext bytes and returns
the reduced list of keys

e Serial

 Parallel
« Python Global Interpreter Lock does not allow use of threads in parallel
« Use parallel processes
« Creating new processes at every iteration
» Using shared data between processes

Parallel

 Parallel with new processes every iteration

* The parallel reduction computation runs 4 times faster then the serial
one

* The program as a whole runs slower as the amount of plaintext
becomes larger

« The cost of managing new processes stays constant while the gains of
running parallel become smaller

 Parallel with shared data
80 times slower than previous solution

Measurements

Plaintext Execution time | Execution time System/User System/User
(bytes) Parallel Serial time time

(minutes) (minutes) Parallel Serial
40 0:34.44 1:03.6 0.0647 0.0026
122 1:08.5 1:38 0.1648 0.0017
309 1:49.3 1:56 0.3411 0.0014
506 2:29 2:07.2 0.5066 0.0012
1002 3:28 2:22 0.7455 0.0011
10:07 3:02.1 1.4550 0.0009

3990

Conclusions

* While difficult there are ways of obtaining the necessary amount
of plaintext

« Using the newer attacks, in some cases it IS not even necessary

* The attack can be implemented by taking advantage of multiple
cores

« Python makes it difficult because processes must be used instead of
threads

Future work

* Implement full attack and release under open source license
 In C to take advantage of the parallel sections of the algorithm

« Compare performance with PkCrack
 Detailed analysis of the other attacks

Questions ?

Contact: Barosan.dragos@gmail.com

