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What is a wild jungle jump? FISCUre




What is a wild jungle jump? FISCUrG

The effect of corrupting the program counter of the processor
In such a way that it points the attacker to a controlled address

Purpose
o Run arbitrary code on a secure device

Why?

o Riscure saw this behaviour happening while attacking systems
Implementing secure boot
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Introduction CISCUrG

Research performed at Riscure in Delft
o Specialised in side channel analysis and fault injection

Fl is a successful and cheap way to attack systems:
o Cryptographic systems (AES, RSA)
o Smartcards

Fault injection

o Clock
Temperature
Optical (Light)
Electromagnetic radiation
Power

O
O
O
O

Electromagnetic Fl



Scope riIsCurc

Power fault injection

o Insert an impulse or drop of power in the system to change the
behaviour of the processor without interupting its process

Targeting one kind of architecture
o ARM




Research questions Fiscure

What is the feasibility of a wild jungle jump?

o How can the PC be corrupted?
o What is the likelihood of a glitch corrupting the PC?
o What are the repercussions of a wild jungle jump?



Related work FIscure

o No research perfomed around PC corruption with FlI

o 2012
Barenghi et al: Fault injection attacks on cryptographic devices?

o Memory instructions are the only instructions prone to power Fl.

o 2014
Thessalonikefs: EMFI on a Wandboard

o Skip instructions



Target riscurc

Wandboard

o Freescale IMX6 platform with an ARM Cortex A9 processor
o RISC infrastructure
o 792 MHz (1,26 ns/cycle)
o 32-bit

This processor is also
present in:




Cortex A9 overview FISCUrQ

Register architecture

o 37 registers separated in 7 different banks
« User bank:

General purpose

registers Bank specific
“Stack Pointer, Link Register, [
_._ Program Counter _ MISHEE) Shared by all banks:

Define the next instruction to
execute

Program Status Register
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Approach rIscure

* Hands on tool to perform Fl

» Assumptions about how to corrupt the PC
» Code implementation (assembly)

» Power FI test with wide parameters

» Result analysis

- Narrow parameters —s raise percentage of success
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Set up

Set of hardware provided by Riscure
o VC glitcher: Glitch generator
o Glitch Amplifier

o Picoscope 5203: Digital oscilloscope for monitoring
o Wandboard

Set of software
o Picoscope 6.0: Oscilloscope software
o Inspector FI 4.8.3: Define FI parameters
o FIl Graphlt 1.0: Result analysis tool

riIscurc
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Set up (2)
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Set up (3)

riscurc
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Assumptions

To corrupt the PC a glitch could:

1. SKip one or more instructions
2. Corrupt an instruction

Code goals:
o Prove the feasibility of these assumptions

riIscurc
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Results- Instruction skip
characterization

Target:  Set of instructions incrementing a counter

Goal: Characterization of such attack vector

Results:
o Counter returned lower values than loop length
o Difference in number of instructions skipped observed

Success
Rate: 45%

riIscurc
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Results- Instruction skip (2) FISCUrC

Target: End and start of consecutive functions

Goal: Glue functions together

o Value of the registers set in the first reused in the second
functions

Results: Success

Success
Rate: 0,01%

Remark: Exploitable code could not be found in open
source implementation investigated
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Results — Instruction corruption
characterization (MOV)

rFISCUrcC
Target: MOV instruction i.e. MOV PC, R2
Goal: Flip the destination register (12-15 bit ) to 1
313029282726252423222120191817 161514131211 10 9 8 7 6 5 4 3 2 1 0 Ox0000 Code Section
Cond |00l | Opcode |S Rn Rd Operand 2 Idr r2,=OXFFFF
€S> mov pc, r2

Result: Success!

Attack
vector.  Arbitrary code execution
OXFFFF -
Success
Rate:  0,16% sayioad

Remark: Instruction often present but not
controllable by the attacker




Results — Instruction corruption

(LDR) riISsCurc¢
Target: Load instruction
Goal: Flip the destination register to PC

arraysrc={OxFFFF,OxFFFF,....}
Attack 00000 ——
vector:  Memcopy o

LDR pc,[arraysrc], #4
STR rO,[arraydst], #4

Result: Success! pop pC

o Code execution by copying an address
pointing to the start of the attacker’s code

OXFFFF -

Success
Rate: 3 ,4 % Payload

Function

Remark: Presentin U-boot




Conclusions

Wild jungle jump is feasible with power FlI
o By skipping instruction
o Corrupting a MOV or LDR instruction

Attack is possible in existing implementation
o Memcopy

Downsides

o Dependencies to reproduce the attack:
compiler version or chain
Need of deep understanding of assembly code

o Finding the right FI parameters can be a tedious job

riIscurc
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Future work cIscure

* Prove the possibility of a wild jungle jump in other
architectures (x86, AMD)

* Find other open source real life example of where a wild
jungle jump can occur

* Perform a wild jungle jump using other Fl techniques
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Thank you for your attention

Questions?



