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What is a wild jungle jump? 
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The effect of corrupting the program counter of the processor 
in such a way that it points the attacker to a controlled address 

Purpose 
o  Run arbitrary code on a secure device 

Why? 
o  Riscure saw this behaviour happening while attacking systems 

implementing secure boot 

  

What is a wild jungle jump? 
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Outline 

4 



5 

Research performed at Riscure in Delft 
o  Specialised in side channel analysis and fault injection 

FI is a successful and cheap way to attack systems: 
o  Cryptographic systems  (AES, RSA) 
o  Smartcards 

Fault injection 
o  Clock   
o  Temperature 
o  Optical (Light) 
o  Electromagnetic radiation 
o  Power 

 

 
 

 

Introduction 

Electromagnetic FI 
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Power fault injection 
o  Insert an impulse or drop of power in the system to change the 

behaviour of the processor without interupting its process 

 

Targeting one kind of architecture 
o  ARM 

Scope 



 

 
What is the feasibility of a wild jungle jump? 

o  How can the PC be corrupted? 
o  What is the likelihood of a glitch corrupting the PC? 
o  What are the repercussions of a wild jungle jump? 

Research questions 
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o  No research perfomed around PC corruption with FI 

o  2012  
Barenghi et al: Fault injection attacks on cryptographic devices?  
o  Memory instructions are the only instructions prone to power FI. 
 

o  2014 
 Thessalonikefs: EMFI on a Wandboard 

o  Skip instructions 

Related work 
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Wandboard  
o  Freescale IMX6 platform with an ARM Cortex A9 processor 

o  RISC infrastructure 
o  792 MHz (1,26 ns/cycle) 
o  32-bit 

Target 

This processor is also  
present in: 
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Cortex A9 overview 

Register architecture 
o  37 registers separated in 7 different banks 

•  User bank: 

General purpose  
registers Bank specific 

Shared by all banks: 
Define the next instruction to  

execute  

Stack Pointer, Link Register,  
Program Counter 

Program Status Register 
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•  Hands on tool to perform FI 

•  Assumptions about how to corrupt the PC 

•  Code implementation (assembly) 

•  Power FI test with wide parameters 

•  Result analysis 

•  Narrow parameters       raise percentage of success 

Approach 
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Set of hardware provided by Riscure 
o  VC glitcher: Glitch generator 
o  Glitch Amplifier 
o  Picoscope 5203: Digital oscilloscope for monitoring 
o  Wandboard 

Set of software 
o  Picoscope 6.0: Oscilloscope software 
o  Inspector FI 4.8.3: Define FI parameters 
o  FI GraphIt 1.0: Result analysis tool 

Set up 
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Set up (2) 



14 

Set up (3) 
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To corrupt the PC a glitch could: 

 
1.  Skip one or more instructions 
2.  Corrupt an instruction 

 

Code goals:  
o  Prove the feasibility of these assumptions 

 

Assumptions 



16 

 

Target:   Set of instructions incrementing a counter 

Goal:   Characterization of such attack vector 

Results: 
o  Counter returned lower values than loop length 
o  Difference in number of instructions skipped observed 

Success  
Rate:   45% 

 

 

 

 

 

Results- Instruction skip 
characterization 
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Target:   End and start of consecutive functions 

Goal:   Glue functions together 
o  Value of the registers set in the first reused in the second 

functions 

Results:  Success 

Success  
Rate:   0,01% 

Remark:  Exploitable code could not be found in open  
   source implementation investigated 

 

 

 

 

 

Results- Instruction skip (2) 
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Target:  MOV instruction     i.e. MOV  R1, R2 

Goal:   Flip the destination register (12-15 bit ) to 1 

 

Result:  Success! 

Attack  
vector:  Arbitrary code execution 

Success 
Rate:   0,16% 

Remark:  Instruction often present but not  
   controllable by the attacker 

Results – Instruction corruption 
characterization (MOV) 
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Target:  Load instruction 

Goal:   Flip the destination register to PC 

Attack  
vector:  Memcopy  

Result:  Success!  
o  Code execution by copying an address  

pointing to the start of the attacker’s code 

Success 
Rate:   3,4 % 

Remark:  Present in U-boot 
 

Results – Instruction corruption 
(LDR) 
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Downsides 
o  Dependencies to reproduce the attack: 

•  compiler version or chain 
•  Need of deep understanding of assembly code 

o  Finding the right FI parameters can be a tedious job 

Wild jungle jump is feasible with power FI 
o  By skipping instruction 
o  Corrupting a MOV or LDR instruction 

Attack is possible in existing implementation 
o  Memcopy 

 

Conclusions 
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•  Prove the possibility of a wild jungle jump in other 
architectures (x86, AMD) 

•  Find other open source real life example of where a wild 
jungle jump can occur 

•  Perform a wild jungle jump using other FI techniques 

Future work 
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Questions? 

Thank you for your attention 


