
Proving the wild jungle jump

Master Systems Network Engineering
University of Amsterdam
Research Project 2 (#48)

Student:
James Gratchoff
james.gratchoff@os3.nl

Supervisors:
Niek Timmers
Albert Spruyt
Lukasz Chmielewski

What is a wild jungle jump?

2

3

The effect of corrupting the program counter of the processor
in such a way that it points the attacker to a controlled address

Purpose
o  Run arbitrary code on a secure device

Why?
o  Riscure saw this behaviour happening while attacking systems

implementing secure boot

What is a wild jungle jump?

I.  Introduction
II.  Scope
III.  Research question
IV.  Related work
V.  Target overview
VI.  Approach
VII. Set up
VIII.  Assumptions
IX.  Results
X.  Conclusions and future work

Outline

4

5

Research performed at Riscure in Delft
o  Specialised in side channel analysis and fault injection

FI is a successful and cheap way to attack systems:
o  Cryptographic systems (AES, RSA)
o  Smartcards

Fault injection
o  Clock
o  Temperature
o  Optical (Light)
o  Electromagnetic radiation
o  Power

Introduction

Electromagnetic FI

6

Power fault injection
o  Insert an impulse or drop of power in the system to change the

behaviour of the processor without interupting its process

Targeting one kind of architecture
o  ARM

Scope

What is the feasibility of a wild jungle jump?

o  How can the PC be corrupted?
o  What is the likelihood of a glitch corrupting the PC?
o  What are the repercussions of a wild jungle jump?

Research questions

7

o  No research perfomed around PC corruption with FI

o  2012
Barenghi et al: Fault injection attacks on cryptographic devices?
o  Memory instructions are the only instructions prone to power FI.

o  2014
 Thessalonikefs: EMFI on a Wandboard

o  Skip instructions

Related work

8

9

Wandboard
o  Freescale IMX6 platform with an ARM Cortex A9 processor

o  RISC infrastructure
o  792 MHz (1,26 ns/cycle)
o  32-bit

Target

This processor is also
present in:

10

Cortex A9 overview

Register architecture
o  37 registers separated in 7 different banks

•  User bank:

General purpose
registers Bank specific

Shared by all banks:
Define the next instruction to

execute

Stack Pointer, Link Register,
Program Counter

Program Status Register

11

•  Hands on tool to perform FI

•  Assumptions about how to corrupt the PC

•  Code implementation (assembly)

•  Power FI test with wide parameters

•  Result analysis

•  Narrow parameters raise percentage of success

Approach

12

Set of hardware provided by Riscure
o  VC glitcher: Glitch generator
o  Glitch Amplifier
o  Picoscope 5203: Digital oscilloscope for monitoring
o  Wandboard

Set of software
o  Picoscope 6.0: Oscilloscope software
o  Inspector FI 4.8.3: Define FI parameters
o  FI GraphIt 1.0: Result analysis tool

Set up

13

Set up (2)

14

Set up (3)

15

To corrupt the PC a glitch could:

1.  Skip one or more instructions
2.  Corrupt an instruction

Code goals:
o  Prove the feasibility of these assumptions

Assumptions

16

Target: Set of instructions incrementing a counter

Goal: Characterization of such attack vector

Results:
o  Counter returned lower values than loop length
o  Difference in number of instructions skipped observed

Success
Rate: 45%

Results- Instruction skip
characterization

17

Target: End and start of consecutive functions

Goal: Glue functions together
o  Value of the registers set in the first reused in the second

functions

Results: Success

Success
Rate: 0,01%

Remark: Exploitable code could not be found in open
 source implementation investigated

Results- Instruction skip (2)

18

Target: MOV instruction i.e. MOV R1, R2

Goal: Flip the destination register (12-15 bit) to 1

Result: Success!

Attack
vector: Arbitrary code execution

Success
Rate: 0,16%

Remark: Instruction often present but not
 controllable by the attacker

Results – Instruction corruption
characterization (MOV)

19

Target: Load instruction

Goal: Flip the destination register to PC

Attack
vector: Memcopy

Result: Success!
o  Code execution by copying an address

pointing to the start of the attacker’s code

Success
Rate: 3,4 %

Remark: Present in U-boot

Results – Instruction corruption
(LDR)

20

Downsides
o  Dependencies to reproduce the attack:

•  compiler version or chain
•  Need of deep understanding of assembly code

o  Finding the right FI parameters can be a tedious job

Wild jungle jump is feasible with power FI
o  By skipping instruction
o  Corrupting a MOV or LDR instruction

Attack is possible in existing implementation
o  Memcopy

Conclusions

21

•  Prove the possibility of a wild jungle jump in other
architectures (x86, AMD)

•  Find other open source real life example of where a wild
jungle jump can occur

•  Perform a wild jungle jump using other FI techniques

Future work

References:

	

EMFI	
 picture	

h.ps://www.riscure.com/	
 	

Fault	
 injec:on	
 a.acks	
 on	
 cryptographic	
 devices:	
 Theory,	
 prac:ce,	
 and	

countermeasures.	
 Barenghi,	
 Breveglieri,	
 Koren,	
 Naccache.	
 2012	

ARM	
 logo:	

h.ps://commons.wikimedia.org/wiki/File:ARM_logo.svg	

Wandboard:	

h.p://www.wandboard.org/	

I-­‐phone	
 4S,	
 Ipad2,	
 Samsung	
 GS	
 III:	

h.ps://wikipedia.org	

ARM	
 instruc:on	
 decoding:	

+h.p://emucode.blogspot.nl/2010/09/decoding-­‐arm-­‐instruc:on-­‐set.html	

Electro	
 Magne:c	
 Fault	
 Injec:on	
 Characteriza:on.	
 George	
 Thessalonikefs	
 2014	

Questions?

Thank you for your attention

