riISsCurcC

Proving the wild jungle jump

Master Systems Network Engineering
University of Amsterdam
Research Project 2 (#48)

Supervisors:
Niek Timmers Student:
Albert Spruyt James Gratchoff

Lukasz Chmielewski james.gratchoff@os3.nl

What is a wild jungle jump? FISCUre

What is a wild jungle jump? FISCUrG

The effect of corrupting the program counter of the processor
In such a way that it points the attacker to a controlled address

Purpose
o Run arbitrary code on a secure device

Why?

o Riscure saw this behaviour happening while attacking systems
Implementing secure boot

Outline FlSCUrG

. Introduction
|. Scope
Il. Research question
. Related work
Target overview
. Approach
|.Set up
Il. Assumptions
IX. Results
X. Conclusions and future work

<<<<z

Introduction CISCUrG

Research performed at Riscure in Delft
o Specialised in side channel analysis and fault injection

Fl is a successful and cheap way to attack systems:
o Cryptographic systems (AES, RSA)
o Smartcards

Fault injection

o Clock
Temperature
Optical (Light)
Electromagnetic radiation
Power

O
O
O
O

Electromagnetic Fl

Scope riIsCurc

Power fault injection

o Insert an impulse or drop of power in the system to change the
behaviour of the processor without interupting its process

Targeting one kind of architecture
o ARM

Research questions Fiscure

What is the feasibility of a wild jungle jump?

o How can the PC be corrupted?
o What is the likelihood of a glitch corrupting the PC?
o What are the repercussions of a wild jungle jump?

Related work FIscure

o No research perfomed around PC corruption with FlI

o 2012
Barenghi et al: Fault injection attacks on cryptographic devices?

o Memory instructions are the only instructions prone to power Fl.

o 2014
Thessalonikefs: EMFI on a Wandboard

o Skip instructions

Target riscurc

Wandboard

o Freescale IMX6 platform with an ARM Cortex A9 processor
o RISC infrastructure
o 792 MHz (1,26 ns/cycle)
o 32-bit

This processor is also
present in:

Cortex A9 overview FISCUrQ

Register architecture

o 37 registers separated in 7 different banks
« User bank:

General purpose

registers Bank specific
“Stack Pointer, Link Register, [
. Program Counter _ MISHEE) Shared by all banks:

Define the next instruction to
execute

Program Status Register

10

Approach rIscure

* Hands on tool to perform Fl

» Assumptions about how to corrupt the PC
» Code implementation (assembly)

» Power FI test with wide parameters

» Result analysis

- Narrow parameters —s raise percentage of success

11

Set up

Set of hardware provided by Riscure
o VC glitcher: Glitch generator
o Glitch Amplifier

o Picoscope 5203: Digital oscilloscope for monitoring
o Wandboard

Set of software
o Picoscope 6.0: Oscilloscope software
o Inspector FI 4.8.3: Define FI parameters
o FIl Graphlt 1.0: Result analysis tool

riIscurc

12

Set up (2)

FISCUrc¢
Workstation [A
< > VC Glitcher
USB
7 N\ \ /
: * : .
A 4 Analog ; F
Glitch o801 ey
é E E E o * ™
€--7 :
. > Picoscope = —— s Power Glitcher
USB 3 :
\ ' : . - /
Trigger Amplified Vce
. ¥ k.
. » Wandboard
SERIAL . y
--------- Analog

13

Set up (3)

riscurc

14

Assumptions

To corrupt the PC a glitch could:

1. SKip one or more instructions
2. Corrupt an instruction

Code goals:
o Prove the feasibility of these assumptions

riIscurc

15

Results- Instruction skip
characterization

Target: Set of instructions incrementing a counter

Goal: Characterization of such attack vector

Results:
o Counter returned lower values than loop length
o Difference in number of instructions skipped observed

Success
Rate: 45%

riIscurc

16

Results- Instruction skip (2) FISCUrC

Target: End and start of consecutive functions

Goal: Glue functions together

o Value of the registers set in the first reused in the second
functions

Results: Success

Success
Rate: 0,01%

Remark: Exploitable code could not be found in open
source implementation investigated

17

Results — Instruction corruption
characterization (MOV)

rFISCUrcC
Target: MOV instruction i.e. MOV PC, R2
Goal: Flip the destination register (12-15 bit) to 1
313029282726252423222120191817 161514131211 10 9 8 7 6 5 4 3 2 1 0 Ox0000 Code Section
Cond |00l | Opcode |S Rn Rd Operand 2 Idr r2,=OXFFFF
€S> mov pc, r2

Result: Success!

Attack
vector. Arbitrary code execution
OXFFFF -
Success
Rate: 0,16% sayioad

Remark: Instruction often present but not
controllable by the attacker

Results — Instruction corruption

(LDR) riISsCurc¢
Target: Load instruction
Goal: Flip the destination register to PC

arraysrc={OxFFFF,OxFFFF,....}
Attack 00000 ——
vector: Memcopy o

LDR pc,[arraysrc], #4
STR rO,[arraydst], #4

Result: Success! pop pC

o Code execution by copying an address
pointing to the start of the attacker’s code

OXFFFF -

Success
Rate: 3 ,4 % Payload

Function

Remark: Presentin U-boot

Conclusions

Wild jungle jump is feasible with power FlI
o By skipping instruction
o Corrupting a MOV or LDR instruction

Attack is possible in existing implementation
o Memcopy

Downsides

o Dependencies to reproduce the attack:
compiler version or chain
Need of deep understanding of assembly code

o Finding the right FI parameters can be a tedious job

riIscurc

20

Future work cIscure

* Prove the possibility of a wild jungle jump in other
architectures (x86, AMD)

* Find other open source real life example of where a wild
jungle jump can occur

* Perform a wild jungle jump using other Fl techniques

21

riIscurc

References:

EMFI picture

https://www.riscure.com/

Fault injection attacks on cryptographic devices: Theory, practice, and
countermeasures. Barenghi, Breveglieri, Koren, Naccache. 2012

ARM logo:

https://commons.wikimedia.org/wiki/File:ARM logo.svg

Wandboard:

http://www.wandboard.org/

I-phone 4S5, Ipad2, Samsung GS llI:

https://wikipedia.org

ARM instruction decoding:
+http://emucode.blogspot.nl/2010/09/decoding-arm-instruction-set.html
Electro Magnetic Fault Injection Characterization. George Thessalonikefs 2014

Thank you for your attention

Questions?

