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Abstract

This project deals with gathering Intelligence about IT Security
incidents by mining data originating from the public Web. Our aim is
to propose the architecture of a software system that is able to collect,
preprocess and mine public information as well as alert and assess the
threat level.

A small Proof of Concept implementation for the proposed System
Architecture is an outcome of this research.

This project was proposed by and carried out in cooperation with
Deloitte Netherlands.
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1 Introduction

With the increasing number of cyber-attacks and the growth of computer
crime worldwide, it becomes apparent that IT security is a major concern and
crucial survival factor for large companies, organisations and institutions of
any sort. Security Operations departments working to ensure confidentiality,
integrity and availability for the system infrastructure of their organisation,
invest large parts [1] of their time and effort in detecting threats in real
time. A really valuable source of security intelligence, vital to cyber-risk
assessment, is information mined from data posted on public sites such as
”pastebins” or social networks. However, this is a very cumbersome task
due to the lack of Natural Language Processing capabilities in most of the
existing tools.

The aim of our research is to propose a system that is capable of
detecting possible security threats and creating alerts about incidents. The
system will apply Data Mining tasks on the data collected from various
different public Web sources, after this data has been further structured and
filtered. The proposed system is configurable and consists of several distinct
modules that work in a pipelined feedback loop.

For each distinct part in the proposed System Architecture, we define
its specifications and describe certain example implementations that helped
us build a Proof of Concept in order to demonstrate the operation of the
system.

The rest of this chapter is dedicated to introducing the research questions
that we tried to answer, briefly presenting previous work around this
specific topic, as well as talking about certain ethical implications that our
research involves. The second chapter is the main part of this report and
it presents the methodology we followed to specify and test the function of
the proposed system. All the results that we gathered during the testing of
each distinct module are also included in each corresponding section of the
same chapter. The third chapter summarises our conclusions and the fourth
chapter proposes possible system extensions and future work.
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1.1 Research Questions

This topic is admittedly very open but it can be narrowed down to several
specific research questions some of which we will try to answer to some extent.
The main question that we will be trying to answer is the following:

How can we effectively use public sources to obtain real time information
about security incidents?

This question can be analysed into more specific parts that cover the topic
to some extent, as follows:

1. How can the raw data be effectively collected from the public sources?

• How can we effectively detect the reliable sources?

• What search terms can we deploy during the retrieval phase?

• How can the unstructured data be pre-processed?

2. How can the data be analysed in respect to security operations?

• How can we apply current Data Mining and Analytics techniques
on Security issues?

• How can we derive the risk assessment model from the above?

• How can we apply the model on new data?

3. How can the collected knowledge be applied on a system implementation?

• What is a reliable and extensible System Architecture that can be
designed?

• What extensions can be proposed for that system?

The proposed system extensions can spawn further research questions, namely
on the topics of presenting the analysed data, reacting to the real time events
and finally assessing the situations that arise and providing feedback to the
system.
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1.2 Related work

There is a lot of literature around the field of Data Mining and more
recently Web Mining. The most prominent and recent case is the book
”Mining The Social Web”, Second Edition by Matthew Russell [3] that deals
with exploring and mining information from social websites (e.g., Facebook,
Twitter, LinkedIn, Google+, GitHub, etc.).

There are also several academic papers and books that deal with applying
Data Mining to System Security. One example is a system proposed by the
university of Minnesota, called MINDS [4], that applies Anomaly Detection
and Association Pattern Analysis for Intrusion Detection. Their input,
however originates from Network flows and they do not deal with Web
mining at all. The system is described in their paper ’Data Mining for Cyber
Security’.

Another example is a system proposed by the Dutch company Sentient
in cooperation with the Amsterdam Police Force [5] aiming to provide
Data Analytics operations automation while on the same time minimising
the technical expertise needed by the system user. Their system
combines spatio-temporal clustering with Associative-spatial prediction to
help visualise criminal activities such as robberies, car burglaries, etc.

An example related to the previously discussed system, is a study conducted
by Shyam Varan Nath within Oracle Corporation[7], which presents a
technique for speeding up the process of solving crimes [6] by identifying
crime patterns using data mining. In order to accomplish the proposed task
this paper suggests the use of Clustering along with Geographic Location
analysis for identifying and predicting possible criminal activity.

Another system called uberVU aims to find insights, detect influencer
mentions, detect trending stories and suggest engaging content to post [9] from
social networks such as Twitter, Facebook or Youtube and it is targeted
to Marketing departments in order to gather Social Intelligence.
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1.3 Ethical implications

The main part of this research comprises of exploring current techniques and
their application on IT security, as well as the specification of a system that
employs Data Mining techniques to collect security intelligence. In order for
the models to be defined certain amount of raw data had to be collected.
This raw data has been gathered solely from public sources such as Social
Media and has been used only as test sample for further processing without
its original content being of any interest. We have not collected or stored any
personal information of Social Media users. All the collected information will
be discarded after the end of this project. The usage of shared computational
and network infrastructure has only been used for the needs of this project
and within the legal limits.
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2 Methodology and Results

This project was carried out in collaboration with Deloitte Risk Services,
Netherlands. We first got acquainted with the Cyber-Risk Services team and
were introduced to the effort already carried out towards the development of
a Cyber Threat Intelligence (CTI) system.

Based on the expert knowledge collected we defined the parts needed
for complementing the portal developed by Deloitte, in order to derive a
generalised System Architecture. The next step was to start developing the
building blocks of the System to a level that would allow the creation of a
functional Proof of Concept. We first developed Data Aggregators for four
distinct data sources. We then looked into methods for determining the
interesting parts of information as well as prepossessing the raw data into a
format suitable for further analysis. Afterwards, we researched various Data
Mining techniques and algorithms and realised and tested some of them
against a realistic data sample.

The last steps were to evaluate our results, put together a limited proof
of concept and proposed system extensions and future work.

The above will be described in detail in the following sections.

2.1 Hardware and Software Used

Most of the work was carried out on end laptops using the Guest WiFi
network of the Deloitte[10] headquarters for internet connectivity. For the
execution of the demonstration software and storage of the collected data,
one of our assigned OS3 servers was used.

For the storage of the raw, as well as the processed data we used MongoDB[8],
a free and open source NoSQL database system. All the applications
implemented were tested on an Ubuntu Server 14.04 LTS [11] operating
system.
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All software developed for the purposes of this project was written in
the Python[14] programming language using standard as well as external
libraries. The external libraries and tools used were Tweepy [39], Scrapy
[20], Numpy [38], PyMongo [13], Orange [41], scikit-learn [37], NLP-Toolkit
[12]. More details on their usage can be found in the next chapters, where
each software module is explained.

2.2 Proposed System

As an outcome of our research we propose a system that will be able to
aggregate information from the public web which it will preprocess and
analyse in order to gather Intelligence regarding IT Security incidents and
raise real time alerts.

2.2.1 General Outline

The proposed system will be modular in the sense that there will be standalone
software processes responsible for a very specific task. The output of each
module feeds the next module in succession thus forming a pipeline of modules
that compose the whole system.

Moreover we propose the integration of the system under a central Control
Portal that will be responsible for the initial configuration and overview of
the status of each Software module.

We distinguish five different steps in the system each one of them corresponding
to a different software module. These are:

1. Configuration
The System Operator defines a set of configuration options (keywords,
data sources, thresholds etc.) that will be propagated to each separate
module.

2. Data Aggregation
The agents belonging to the Aggregator module collect raw data from
their designated sources. At this point a first structure is given to the
raw data collected before they are stored to the corresponding database.

3. Preprossesing & Filtering
A common format is given to all the data collected from different
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sources. We have to be able to distinguish the interesting from the
uninteresting documents so at this point some sort of scoring system
is applied for each document collected. The documents that have been
distinguished are then inserted into the warehouse in a format suitable
for further processing.

4. Analytics & Alerting
A series of Data Mining operations is run against the collected dataset
to extract previously unnoticed patterns. Based on the outcome, and
after the application of certain predefined criteria, the corresponding
module will have to be able to raise alerts and notify the appropriate
parties for any probable security incident in progress.

5. Feedback & Reconfiguration
A Security Analyst checks the raised alerts and assesses the real risk.
The divergence from the estimated risk is calculated and according to
that a set of readjustments is propagated to the configurable parts of
the system.

Having introduced the last step it becomes apparent that the system operates
as a feedback loop since the system returns to the configuration step after
assessment, in order to achieve better accuracy.

The previously described steps can be captured in the schematic presented
on Figure 2.1

Each part of the system is described in detail in the following sections. All
steps taken towards building an initial proof of concept for this system are
described as well.
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Figure 2.1: System Architecture overview

2.2.2 Configuration

The system needs to be as versatile as possible. To that aim, each separate
part of the system must be able to read a set of configuration options
that will be inserted into the system through a common control portal.
These configuration sets can include (but not be limited to) Data Mining
criteria, filtering thresholds, execution intervals for the distinct modules,
search keywords, etc.

2.2.2.1 Specification

The configuration set that is most crucial to the operation of the system,
is the categorisation of the most common security threats, such as DDoS
attacks, malware, exploits and vulnerabilities, etc. This involves the definition
of a set of search terms (keywords) associated with each class of threats.
Each defined keyword must have an importance level attached to it (weight)
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denoting the contribution of an occurrence of this word to the score of each
document. These keyword lists must follow the format below:

- Threat Class 1:
keywords: {[keyword1, weight], [keyword2, weight]...[keywordN, weight]}

- Threat Class 2:
keywords: {[keyword1, weight], [keyword2, weight]...[keywordN, weight]}

.

.

.
- Threat Class N:

keywords: {[keyword1, weight], [keyword2, weight]...[keywordN, weight]}

The next step is to define the sources of information. This can be a very
cumbersome task that demands expert knowledge and experience, as well as
extensive field survey. This study focuses on data originating from public web
sources. This can include websites dedicated to one or more security threats
as well as social media (Twitter, Facebook, etc.) where general discussions
take place. The source list must have a standard format as well:

- Threat Class 1:
sources: {[url1, type], [url2, type]...[urlN, type]}

- Threat Class 2:
sources: {[url1, type], [url2, type]...[urlN, type]}

.

.

.
- Threat Class N:

sources: {[url1, type], [url2, type]...[urlN, type]}

Having mentioned that we can distinguish two separate categories of sources
which we will name ’Targeted’ and ’General’. Targeted sources are websites
that provide real time information about security related issues. These
sources usually provide their information in a format that is structured to
some extent. Their constant monitoring can be used to raise alerts without
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much further processing.

General sources are much more unpredictable and unstructured. The data
collected from such sources have to be further processed in order for the
system to distinguish the important from the not important documents as
well as to look for previously unknown patterns hidden in the dataset.

We also need to monitor the names of certain companies or organisations
for which the service will be provided. Moreover, we would need to look
for several software and hardware vendor name to discover vulnerabilities
and known malfunctions for software tools and machinery that are used by
companies and organisations. Thus, the last thing the operator has to specify
is a list of Clients and Vendors. This list must also have weights attached to
them, which, however, must be the same for all their members.

At this point it is useful to mention that we also can monitor certain
’anti-keywords’ with negative weights to sort out irrelevant information. For
example the word ’attack’ might be correlated with the word ’football’ or
the word ’bug’ can be correlated with the word ’insects’. This is a good
indication that the subject of the document is probably not security related.

Keyword Definition

As it has been mentioned before, it is fundamental to be able to detect
different threat types and define the associated search keywords and their
weights correctly. In order to be able to select the relevant keywords we can
inspect security related news [36] or discussions related to specific threats.
Those keywords that carry most information must be assigned bigger weights.
In contrast, commonly appearing words should have a lower weight associated
with them since they carry less information.

For example we can select three of the most common and popular security
threats[35] and associate a possible list of keywords to them.
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Type of Attack Related keywords
Denial-of-Service (DoS) ddos attack

take down website
server/computer crush
server take down
...

SQL Injection plain text password
clear text password
plain text password username
clear text password username
dump customers
dump passwords
blackmail dump accounts
leaked passwords
...

Account hijacking account hacked
account images changed hack
take control account
account add/remove content
...

... ...

Table 2: The table contains some example keywords related to possible
attacks. When used in combination with a Client or Company Name they
might indicate an upcoming or past attack.

Source Definition

Discovering real time threats within an acceptable margin of error, is a
challenging task. One of the reasons is that the Web is essentially an enormous
database filled with random information. Within this chaotic data space, big
amounts of security related knowledge can be discovered. Therefore, it is vital
to be able to define the reliable sources that can provide valuable information
that will allow us to build Security Intelligence.
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The question might arise, which sources can be considered as reliable? In
order to answer this question expert knowledge has to be gathered. At
this point we were provided with a list of possible sources compiled by the
developers of the CTI portal in Deloitte. Among all the possible raw data
sources, four were recommended to collect a certain amount of data to be
used as a testbed.These are Phishtank, Pastebin, Twitter and Reddit. The
importance level of the above websites can be seen via the fact that critical
vulnerabilities were revealed through posted messages[36].

Since this project is focused on the public Web, other sources such as RSS
feeds or IRC channels will not be investigated due to time limitations.

2.2.2.2 Implementation

There has been no implementation effort from our side on this particular
system module. However, as it has been mentioned before, there is ongoing
effort inside the company towards the development of a CTI portal which will
be in essence a configuration provider for the rest of the system. This project
proposes the integration of the suggested system with the aforementioned
CTI portal that will act as the configuration module.

2.2.3 Data Aggregation

After the desired configuration options have been submitted, the system can
start its operation by collecting raw data from the various specified sources.
Since we are dealing with more or less unstructured data, some first form of
structure must be given during this step.

2.2.3.1 Specification

The corresponding module will be composed of several agents, each one
responsible for a different source of raw data. Each agent must read its
configuration from the appropriate file which will be of a certain format for all
the agents. The configuration file will contain information such as the source
code directory of the specific agent, associated API keys, the type of each
retrieval method (e.g. request based, streaming, etc.), the time intervals that
each must be executed etc. Sensitive data such as API keys and Passwords,
must be kept in a separate, protected file.
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This module will also be responsible for filtering out unrelated information
such as profile pictures and uninteresting user details (Twitter, Facebook,
etc.) or surrounding html code for sources that have no other means of
collection rather than traditional scraping.

As it has been mentioned before some structure can be given at this point
to aid further processing. Text based documents, however, must be kept as
close to the original content as possible so that if manual inspection is needed
the document can be retrieved even if the related Web Resource has been
removed.

2.2.3.2 Implementation

This module was developed as a collection of separate agents, each
aggregating a different web resource. Special care had to be given so that
this part is easily extensible. If a developer needs to develop new agents for
new sources, they will be presented with a uniform interface that will allow
them to include the new agents to the system with minimal effort.

A tool chaining script was written to allow the agents to be triggered
simultaneously and share common configurations.

The script reads the list of available agents and loads their respective
configuration options. It then parses the parameters given by the user
regarding which agents need to be run and at what time interval. If the user
provides no parameters then the default configuration options are chosen.
The user can specify if they need a certain agent not to be executed by
passing a -1 parameter. The script reads all the agents selected for execution
and loads their source code dynamically on runtime. This last step accounts
for extensibility.

The system must be in a way to determine if the agent opens new connections
per request or runs over a persistent connection (e.g. streaming). This must
be specified in a common configuration file that lists all the agents. In our
particular example this file is formatted in YAML.
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Twitter
Twitter exposes both Streaming and RESTful APIs. While the RESTful
approach requires separate HTTP connections for each request to the API,
Streaming requires keeping a persistent HTTP connection open [21].

For our example we selected the Streaming API approach which provides
developers with low latency access to Twitter’s global stream of Tweet data
[21].

Connecting to the Streaming API requires authentication via an OAuth
signature. To generate this signature the user has to register their application
and generate four parameters named Consumer key, Consumer secret, Access
Token and Access token secret.

One particular endpoint, provided by the Public Stream [22], was used,
namely ”POST statuses / filter”. This endpoint can be reached via the
following URL:https://stream.twitter.com/1.1/statuses/filter.json.

Status filtering allows the user to retrieve tweets that contain certain keywords
(up to 400 keywords can be specified), follow specific Twitter users (up to
5000 different users) or retrieve tweets originating from a specific location
[23].

In our demonstration we only used the keyword (track) option in order to
track specific tweets containing security related words (e.g. attack, hack,
vulnerability, etc.)

The data returned from this particular API call are JSON formatted.

The Twitter aggregation agent was developed with the use of Tweepy [39], an
external Python library that provided OAuth authentication and connection
to the streaming API.

This agent reads its configuration from an external YAML file. This includes
Authentication credentials, as well as the specific keywords that we want to
track.

18

https://stream.twitter.com/1.1/statuses/filter.json


The sofware parses the returned JSON object, scrapes all unnecessary
information (user profile pictures, background colours, etc.) and stores the
rest of the information in the database.

Pastebin

Pastebin websites [15] [16] allow everyone with or without registration to
share blocks of text or code snippets. They have attracted many users
during past years including cybercriminals such as malware developers[17].
The enormous flow of information ranges from database dumps, containing
e-mails and passwords, to harmful backdoor programs. With a deeper
examination of these publicly pasted messages possible future attacks may
be discovered.

From all possible pastebins (e.g. fpaste.org [15], paste2.org, pastie.org[18],
paste.ubuntu.org.cn [19] etc.) pastebin.com [16] has been selected to be
further inspected.

Pastebin exposes an API that offers different options for developers. More
specifically these include creating new pastes, listing trending pastes or the
posts of a particular user. The above functionalities can be used once one
obtains a unique Developer API Key.

At this moment Pastebin API [16] does not offer any option for listing all
new messages posted by unregistered users. The only option available, is to
list the posts of a specific registered user. However, any information posted
might be of potential interest. This makes our work rather challenging but
not impossible.

One could possibly use the search method provided by Pastebin.com for
retrieving posts containing a combination of keywords. This functionality,
however, makes use of Google Custom Search. Therefore, if one desires to
retrieve all posts related to certain specified keywords, they would have to
use the Google custom search API. This, however, limits free users to 1000
searches per day.

To overcome the above limitations and collect all new pastes that arrive, a
web crawler module was implemented. Scrapy [20], an open source framework
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for building extensible webcrawlers was used, integrated into a Python script.
Pastebin’s Archive page contains all pastes posted during the last 10 minutes.
For that reason, we will crawl and fetch the contents of this page each 10
minutes. Not all data from the page provides interest this is why we will
scrape the html and keep only the information that is relevant for further
examination. This includes the url, the paste, the posting date and the
number of unique views. By inspecting the elements required from the DOM
tree, we then can parse these nodes and extract only the raw paste text.
Once all this data has been gathered, it will be stored in the database.

Phishtank

Phishtank is the only ’targeted’ source that we examined in this project.
It is a website dedicated to tracking Phishing attempts. Any registered user
can submit websites that they suspect of Phishing. Other users can log in
later and verify if the website is indeed Phishing or not. Phishtank also
informs the user if the website is still online or not.

Developing over the Phishtank API is pretty simple and straight forward.
Phishtank offers its whole database to be downloaded either in CSV, JSON,
XML or serialised PHP format. The database includes all websites that are
verified as phishing and are still online, and it is updated every hour. The
user is advised to register their applications and obtain an access token in
order not to be constricted by download limits.

The aggregator code simply downloads the whole database from the following
url http://data.phishtank.com/data/online-valid.json, parses the
JSON entries and stores in the database all useful information.

Since Phishtank is a targeted source, all returned information can be handled
directly from the system in order to raise security alerts without much further
processing.

Reddit

The Reddit community comprises of social media and news sites. It contains
over 5000 channels called ”subreddits” which belong to different categories.

20

http://data.phishtank.com/data/online-valid.json


In this project we will collect Reddit [24] data originating from the following
subreddits:

• /r/blackhat [25]

• /r/malware [26]

• /r/netsec [27]

• /r/pwned [28]

• /r/vrd/ [29]

Although the Reddit API [24] provides a rich list of methods, we have chosen
a few of them for the purposes of this project.

In order for a user to list new, top, controversial, etc. messages they would
just have to add ”/” and the name of the operation they want to perform
to the end of the subreddit url in question. The user can provide additional
parameters in order to filter, sort, and limit the number of posts retrieved.

All ingredients needed for implementing an aggregation agent for Reddit
are supplied by the API. The only part we need to add is some filtering
capabilities that will allow us to keep the parts of the information that can
help with defining the relevance of each document.

First a connection needs to be opened to the the targeted subreddit, for
example /r/blackhat. This is what the following line of code does:

response = urllib2.urlopen(’http://www.reddit.com/r/blackhat/new

.json?sort=new&limit=100’)

The response will be a JSON formatted string. From all the fields in the
structure we will only store the title, the number of comments and score.
It is important to also store the date of each retrieved message, in order to
monitor its voting trends within a specific time period.

All the collected data are stored in the database.
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2.2.4 Preprocessing and Filtering

The documents collected from all the public sources must be given a common
format suitable for further analysis. Also the system must be able to easily
distinguish which documents carry importance for further Security Analysis.

2.2.4.1 Specification

We propose a ’deflation’ and scoring model that will help reduce the raw
data into a common format as well as help determine the documents that
present interest for further analysis.

The proposed model works in a very targeted and aggressive way, counting
the occurrences of each predefined word and deflating the whole document
to a list of these keywords.

Then it multiplies the number of occurrences of each keyword with its
associated weight and produces the score for each document. If that score
passes a certain predefined threshold the document is marked as interesting
and it is moved in its deflated format into the warehousing database.

The proposed format for the deflated documents is the following:

{document: ”DocID”, keywords: [[keyword1, occurences],[keyword2, occurences],
..., [keywordN, occurences]] vendors:[[vendor1, occurences], [vendor2, occurences],
... [vendorN, occurences]], clients :[[client1, occurences], [client2, occurences],
... [clientN, occurences]] score: ”score”}

Certain issues have to be taken into account when following the above
approach. First of all we have to make sure that even one occurrence of
a client’s name will mark the document as interesting. That can be achieved
either by associating the client list with a weight higher than the threshold
or by performing binary checks for the occurrences of client names (is present
or not).

It is also possible that many occurrences of a certain keyword, even if its
importance level is minimal, can mark a certain document as interesting
even though it carries no interest. This can be avoided by performing more
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sophisticated checks by calculating the entropy of each document. This
however falls out of the scope of this research.

It also becomes apparent that since this approach creates documents
containing only the predefined keywords, other interesting but previously
unknown keywords, might be filtered out. Certain ways to mitigate this
problem are described in the next sections.

2.2.4.2 Implementation

To test this approach we created a few thousands of fake documents containing
random computer terminology, using a free python script called ’Bullshit
Generator’ [40]. We slightly modified the script to include certain additional
keywords as well as to produce exactly 10000 documents and store them in
our database.

We tested the previously defined model to test its efficiency and time
consumption. For 10000 documents the code takes less than one second to
run, thus we believe that this model can easily be used in any realistic amount
of data. An example output produced by one execution of the software can
be seen in Figure 2.2
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{’count’: [[’amro’, 4], [’apple’, 3], [’exploit’, 0], [’vulnerability’,

0], [’attack’, 0], [’ddos’, 0], [’deloitte’, 0], [’ing’, 4], [’bug’, 0]],

’doc’: ObjectId(’54d0bf08aa4ece1e08930ec6’), ’score’: 110.0}

{’count’: [[’amro’, 3], [’apple’, 2], [’exploit’, 2], [’vulnerability’,

1], [’attack’, 0], [’ddos’, 3], [’deloitte’, 2], [’ing’, 3], [’bug’, 0]],

’doc’: ObjectId(’54d0bf09aa4ece1e08930f3e’), ’score’: 109.0}

{’count’: [[’amro’, 2], [’apple’, 6], [’exploit’, 0], [’vulnerability’,

2], [’attack’, 1], [’ddos’, 1], [’deloitte’, 1], [’ing’, 1], [’bug’, 0]],

’doc’: ObjectId(’54d0bf09aa4ece1e08930fb4’), ’score’: 105.0}

{’count’: [[’amro’, 3], [’apple’, 3], [’exploit’, 3], [’vulnerability’,

0], [’attack’, 0], [’ddos’, 0], [’deloitte’, 1], [’ing’, 5], [’bug’, 0]],

’doc’: ObjectId(’54d0bf09aa4ece1e08930ff1’), ’score’: 122.4}

{’count’: [[’amro’, 4], [’apple’, 2], [’exploit’, 2], [’vulnerability’,

0], [’attack’, 1], [’ddos’, 2], [’deloitte’, 1], [’ing’, 4], [’bug’, 0]],

’doc’: ObjectId(’54d0bf09aa4ece1e08931039’), ’score’: 115.8}

.

.

.

Figure 2.2: Deflation example with a threshold of 100

The above results are produced after applying a threshold of 100. This is
probably an unrealistic scenario, however.

24



2.2.4.3 Alternative Approaches

Besides the previously mentioned deflation method we have also tested
different options. This subsection will outline some alternative methods for
cleaning documents by employing NLP techniques as well as the use of the
TF-IDF algorithm for determining the relevance and importance of each
document.

Natural Language Processing

Natural Language Processing consists of numerous different tasks such
as automatic summarisation, parsing, relationship extraction, topic
segmentation and recognition, part of speech recognition, etc [30].

Although all of the aforementioned functionalities are important for
text processing, part-of-speech tagging [31] in particular can be used in our
case to distinguish the meaning of a certain fragment of text. Being able
to tell if a certain word is a noun, verb or adjective can help discover the
importance of that specific word within a specific topic [3]. We are mostly
interested in distinguishing the nouns since they determine the topic of a
sentence.

Compared to the suggested deflation method, this technique does not require
specifying certain keywords beforehand. This is mainly due to the fact that
it allows us to build structured data tables or trees in order to extract the
meaningful entities.

The aggregation module collects unstructured data, thus in order for us to
get the meaning of a certain block of text and determine its relevance, we
would have first process it and give it structure.

The first step would require removing all stop words such as the, an, a,
about, what, where, etc. This list can be further expanded to contain any
word that one would consider not important, such as numbers, punctuation
marks, technical abbreviations (e.g. http), etc.

Another task called Stemming performs suffix removal on verbs, adjectives,
etc.
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We tested how this process works by applying it on posts from pastebin.com.
However, since lots of pastes contain pieces of source code it is a cumbersome
task attempting to recognize different topics, especially after removing the
stop words. Previous research papers [?] have shown promising results if the
methods described are applied on grammatically correct structured articles.
For this reason we tested them on data originating from Reddit.com.

----------------------------------------------------

http://www.youtube.com/watch?v=wLtREbONtuI

----------------------------------------------------

business phone line hacked, calls intercepted. no record or

knowledge of calls in the system. how was it done?

--------------------Analyze-------------------------

Searched word appeared : 1 times

This post has 15 score

And it got : 10 comments

===================NLTK=============================

Num Sentences: 3

Num Words: 23

Num Unique Words: 21

Num Hapaxes: 19

Top 10 Most Frequent Words (excluding stop words):

system (1)

business (1)

calls (2)

knowledge (1)

intercepted (1)

phone (1)

done (1)

hacked (1)

line (1)

record (1)

Figure 2.3: NLTK result applied on Reddit data

The Natural Language Toolkit [12] can be integrated into Python code.
It provides methods that allow working with human language data. We
used a few of the functions provided to perform sentence counting, total
words counting and most frequent words determination. The result, seen
in Figure 2.3, includes the following: the posted URL, the title associated
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to it, and the output of the nltk process. In this particular example, a
keyword search was first performed to find the posts that contain the word
hacked. For these messages the produced results can be used to determine
their importance level, by producing statistical view of the keywords that
appear in the text. Using the gathered knowledge and by exploring more
NLP capabilities we can determine the importance level of separate posts.

TF-IDF

TF-IDF [33] stands for Term Frequency-Inverse Document Frequency and
it is used to statistically score the importance of a word in a document or
across a collection of documents. A word will be considered important if it
appears multiple times into a document. TF is calculated by counting how
many times the specific word appears, over the total number of words within
that document. If that word appears in other documents as well it will be
less unique and thus receive a lower score. That score refers to the IDF
calculation.

To determine the documents most relevant to specific keywords, it is first
required to define certain query terms relevant to known threat categories.
The algorithm will take the query into account and will produce a statistical
list of the most significant documents as a result. This is an automated
method for sorting document importance according to a specified search
term. To test how this algorithm actually works we applied it on approximately
5000 real messages gathered from pastebin.com. We queried the database to
get the total number of documents in the collection:

> show collections

system.indexes

pastebin

> db.pastebin.count()

5141

We chose as our main query terms words such as attack and hack to see
how the algorithm will behave and which documents are possibly associated
with our search. Due to implementation misconfiguration the execution took
longer then expected. Considering that our main purpose was to test Data
Mining algorithms we did not perform a more profound analysis of the code.
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Overall TF-IDF scores for query ’attack hack’

54c009ecd177b4682d5165c1 0.0801762787248

54c00c7ad177b4685475c1d8 0.113754378362

54c00c82d177b4685475c1e5 0.0875609359758

54c01232d177b4687bd24088 0.123999337904

54c014ddd177b4689699a889 0.0375967860687

54c01d5ad177b468f5807552 0.151241616685

54c0cf17d177b46fa541e070 0.0361664735552

54c0cf24d177b46fa541e084 0.0373855681694

54c0d1a8d177b46ff35304b8 0.0375967860687

54c0d1bfd177b46ff35304dd 0.0375967860687

54c0d9c6d177b470832e5407 0.120993293348

54c0e83bd177b47185269e51 1.98389124491

54c0eae7d177b4719596d5df 0.0924254324189

54c0ee14d177b471b6f3f212 0.0489311112806

54c22910d177b47c8bc1e305 0.0403310977828

54c2613fd177b47f785493eb 0.0891636514564

54c662c3d177b4279d30aecd 0.0610516617813

54c69aefd177b429c8745051 0.193550365357

54c75a8dd177b431883f5d1b 0.495972811226

54c75ff7d177b431d9186d0d 0.0373855681694

54c76b2ed177b432825caf8a 0.0545461568374

54c76e02d177b432b0ca7d0b 0.610428075355

54c7e373d177b43790433dde 0.0386897158963

Figure 2.4: Overall TF-IDF Result applied on Pastebin data, that specifies
document ID with the associated score, for the query terms attack, hack

The main reason that contributes to high computational costs was the function
that multiplies the TF with the IDF scores and produces the overall score.
For 5141 messages the total execution time came to around 15 minutes. If we
just calculate the TF and IDF scores the algorithm will run in the following
time values:

real 0m0.694s

user 0m0.508s

sys 0m0.023s

However costly, this method still provides a good statistical view on the
importance of the documents associated to the specified keywords.
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....

TF Doc: 54c0d9c6d177b470832e5407 0.0181818181818 -> attack

TF Doc: 54c00c7ad177b4685475c1d8 0.017094017094 -> attack

TF Doc: 54c01d5ad177b468f5807552 0.0227272727273 -> attack

TF Doc: 54c009ecd177b4682d5165c1 0.0120481927711 -> attack

TF Doc: 54c0d1bfd177b46ff35304dd 0.00564971751412 -> attack

TF Doc: 54c0d1a8d177b46ff35304b8 0.00564971751412 -> attack

IDF: attack -> 6.65463113416

TF_IDF: 54c662c3d177b4279d30aecd attack -> 0.0610516617813

TF_IDF: 54c014ddd177b4689699a889 attack -> 0.0375967860687

TF_IDF: 54c7e373d177b43790433dde attack -> 0.0386897158963

TF_IDF: 54c00c82d177b4685475c1e5 attack -> 0.0875609359758

TF_IDF: 54c0eae7d177b4719596d5df attack -> 0.0924254324189

TF_IDF: 54c0cf24d177b46fa541e084 attack -> 0.0373855681694

TF_IDF: 54c01232d177b4687bd24088 attack -> 0.123999337904

....

Figure 2.5: A sample from the complete TF-IDF algorithm result

What is actually interesting here is to look at the documents that
are included in the Overall TF-IDF scores for query "attack hack"

section (Figure 2.4). The document with the highest score (the ones with a
score greater than 1 should not be considered), is the most relevant. In this
example it is the document 54c76e02d177b432b0ca7d0b with a score equal
to 0.610428075355 (Figure 2.6).

> db.pastebin.find({_id:ObjectId(’54c76e02d177b432b0ca7d0b’)})

{ "_id" : ObjectId("54c76e02d177b432b0ca7d0b"), "url" :

"http://pastebin.com/QNxg2fGz", "uniq_visitors" : [ "152" ],

"paste" : [ "http://besthacksgames.com android cheat engine cheat engine

for android cheat engine android android games hack cheat engine 5.5

android game hack android game hacks android cheat engine" ], "time" : [

"Tuesday 27th of January 2015 04:51:41 AM CDT" ] }

Figure 2.6: Document 54c76e02d177b432b0ca7d0b with the associated fields
url, paste, uniq visitors and time, that presents a higher score for the
word hack compared to document 54c0d9c6d177b470832e5407
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> db.pastebin.find({_id:ObjectId(’54c0d9c6d177b470832e5407’)})

{ "_id" : ObjectId("54c0d9c6d177b470832e5407"), "url" :

"http://pastebin.com/dKnHTH1H", "uniq_visitors" : [ "147" ],

"paste" :

[ "<!DOCTYPE html> <html> <head> <title>Scripting Attack

Demo</title> <link /> <script>

// find out the location url

name=decodeURIComponent(window.location.search.substring(1));

console.log(name); name=fred is the sort of thing we expect to

append...

//

script alert You are under

attack /script

or this... script src=siteB/evil.js /script

// a trivial fixer

name = name.replace(/</g, \"&lt;\").replace(/>/g, \"&gt;\");

document.write(’Hello ’ + name);

</script> <meta /> </head> <body></body></html>" ],

"time" : [ "Thursday 22nd of January 2015 05:02:13 AM CDT" ] }

Figure 2.7: Document I54c0d9c6d177b470832e5407 with the associated
fields url, paste, uniq visitors and time, that has a lower score for the
word attack compared to document 54c76e02d177b432b0ca7d0b

The word hack appears four times in this block of Text (Figure 2.6), and
it has a higher TF-IDF value. If we look at another document for example
54c0d9c6d177b470832e5407 (Figure 2.7), it presents a lower score equal to
0.120993293348, which means that this word appears fewer times. However,
not only the frequency of the word attack within a certain document is taken
into consideration but also its frequency across all documents.
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2.2.5 Analytics and Alerting

After the data has been collected and preprocessed into a common format it
can be analysed in order for Security Intelligence to be extracted. This will
be achieved by employing various Data Mining tasks and using their output
to create Security Incident alerts.

2.2.5.1 Specification

Data Mining is the analysis step of the Knowledge Discovery in Databases
(KDD) [46]. Its aim is to extract previously unnoticed patterns and behaviours
within the data set. Data mining involves six common classes of tasks [46].
These tasks are described below and the manner they fit our use case is
described briefly. The tasks that have been tested are described in further
detail.

Data mining tasks

• Classification: Refers to the task of generalising known structures
and applying them to new data. For example, an e-mail program
might attempt to classify an e-mail as ”legitimate” or as “spam”.
Since this involves training of the algorithm before use, it might not
be ideal for use in threat discovery. However, it can be very useful
for providing feedback to the system and fine tuning it to be able to
classify the documents for each threat category, acting together with
the configuration step

• Anomaly detection (Outlier/change/deviation detection): This task
refers to identification of unusual data records that might imply unusual
behaviour in the dataset. For example, in our use case, a first indication
that something might be possibly wrong would be an exceptional mention
of a company name within a certain period of time. The problem here
is to determine what can be defined as exceptional. This of course
is not possible without the use of old data so a certain threshold can
be determined. Until sufficient amount of data has been gathered we
can naively implement this by setting the thresholds manually. This
operation is particularly popular in intrusion detection systems.

• Association rule learning (Dependency modelling): This task refers
to the search for relationships between variables. One example of this
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is the infamous beer and diapers story. This test requires no training
set and can be performed on any structured set of data. In our use case
this can help us determine trends between the occurrences of keywords,
such as the name of a company together with the name of a name of an
attack. The output of this test also contains metrics about the support
(percentage of the documents supporting the association) as well as
confidence (ratio of the support percentage of either part of each rule).

• Clustering: Refers to the task of discovering groups and structures
in the data that present some sort of similarity, without using known
structures in the data. In our case this can help us determine new
categories of documents that have not been predefined (remember the
threat categorisation we mentioned in the beginning).

• Regression: This task attempts to find a function which models the
data with the least error. This might not be directly applicable to our
specific example but based on the experience gathered after a certain
period of time that the system will be operated, we can attempt to
design an analytic model using regression analysis techniques.

• Summarisation: This task aims to provide a more compact representation
of the data set, including visualisation and report generation. In our
case this applies to the creation of the alerts to be presented to the
Security Analysts. The alerting will consist of a common format that
will apply to automatically generated events that will be propagated to
the appropriate parties. One proposed format could be the following:

{alert_id: "id", subject: "Subject", importance: "importance_level",

backing_documents:["documents"]}

This presents the analyst with an event informing them about a security
incident with a certain importance level. The way of determining the
level of importance falls out of the scope of this document. Notice also
the list of supporting documents resulting from different sources. At
this point the analyst can go and inspect each one of this documents
manually, assess the risk themselves and take the appropriate measures
such as further informing the involved parties, or ignoring the alert.
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2.2.5.2 Implementation

Association Rule Learning

Association Rule Learning is usually performed on databases that contain
sales transactions (e.g. {milk, butter, bread, jam}) and for that reason it
is sometimes referred to as Market Basket Analysis [42]. However, since we
have documents deflated to contain only certain keywords, this method is
very suitable to help us distinguish frequent item sets.

The most commonly used algorithm for performing this operation is called
Apriori [43]. It employs a ”bottom up” approach, during which frequent
subsets are extended one item at a time, a step known as candidate generation.
All groups of candidates are tested against the data. The algorithm terminates
when no further successful extensions can be found. The algorithm produces
two part rules that have the format X → Y . This denotes that when subset
X occurs, subset Y is likely to occur as well.

We produced an example implementation of the algorithm by using the
associate[44] package from the Orange[41] analytics and visualisation
framework. The code was tested on actual documents originating from
Twitter, deflated against certain keywords.

For each association rule produced (Figure 2.8), three quantitative statistical
measures that denote the importance of the rule. This measures are called
Support, Confidence and Lift. Support refers to to the fraction of the
documents that contain both X and Y parts of the rule, while Confidence
measures how often each item in Y appears in documents that contain X.
Lift is an expectance measure denoting the correlation between each part of
the rule. A Lift value greater than 1, for example, shows that the two parts
of the rule appear together more often than expected, i.e it is more possible
to find these two sets together rather than alone.
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supp conf lift, rule

0.014 0.276 9.196 "exploit" -> "vulnerability"

0.014 0.465 9.196 "vulnerability" -> "exploit"

0.032 0.640 2.165 "exploit" -> "attack"

0.032 0.109 2.165 "attack" -> "exploit"

0.014 0.154 1.072 "charlie" -> "paris"

0.014 0.096 1.072 "paris" -> "charlie"

0.012 0.133 0.960 "charlie" -> "paris" "attack"

0.012 0.865 2.928 "charlie" "paris" -> "attack"

0.012 0.165 1.148 "charlie" "attack" -> "paris"

0.012 0.083 1.148 "paris" -> "charlie" "attack"

0.012 0.086 0.960 "paris" "attack" -> "charlie"

0.012 0.040 2.928 "attack" -> "charlie" "paris"

0.072 0.808 2.735 "charlie" -> "attack"

0.072 0.245 2.735 "attack" -> "charlie"

0.079 0.517 1.565 "password" -> "account"

0.079 0.240 1.565 "account" -> "password"

0.013 0.082 0.340 "password" -> "hacked"

0.013 0.052 0.340 "hacked" -> "password"

0.122 0.758 5.199 "nude" -> "jennifer"

0.122 0.836 5.199 "jennifer" -> "nude"

0.011 0.071 2.197 "nude" -> "jennifer" "leaked"

0.011 0.093 0.701 "nude" "jennifer" -> "leaked"

0.011 0.230 1.580 "nude" "leaked" -> "jennifer"

0.011 0.078 1.580 "jennifer" -> "nude" "leaked"

0.011 0.353 2.197 "jennifer" "leaked" -> "nude"

0.011 0.085 0.701 "leaked" -> "nude" "jennifer"

0.015 0.211 1.584 "sony" -> "leaked"

0.032 0.108 1.479 "attack" -> "sony"

0.032 0.437 1.479 "sony" -> "attack"

0.014 0.185 0.560 "sony" -> "account"

0.014 0.041 0.560 "account" -> "sony"

0.011 0.150 0.623 "sony" -> "hacked"

0.011 0.046 0.623 "hacked" -> "sony"

0.190 0.575 2.392 "account" -> "hacked"

0.190 0.790 2.392 "hacked" -> "account"

Figure 2.8: Example output of the Association Rule implementation. The
first 3 columns show the Support, Confidence and Lift for each produced
rule.
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Clustering

For our specific use case Clustering is important for automating the process
of finding new types of Security Threats that arise during a specific period
of time.

The method described below, groups documents that refer to a specific topic
into clusters and provides a list of the most frequently occurring terms within
each cluster.

For clustering a number of collected documents within the database in K
categories we could use the K-means[45] algorithm, also known as Lloyd’s
algorithm. This algorithm [47] attempts to find K non-overlapping clusters.
It takes the desired number of clusters, K, and selects K initial centroids
in a random manner. Thus the information will be divided into K clusters.
It assigns each observation point(word) to its closest centroid, where each
collection of points(words) forms a cluster. Within the cluster a new centroid
selected by calculating the Euclidean distance between the gathered words.
This process runs iteratively and stops when the clusters do not change any
more.

There is no guarantee that the result produced will be optimal. The outcome
might differ each time, depending on how the initial centroids have been
chosen. An important factor that we need to mention at this point is the
selection of number K, as an incorrect choice might lead to non-optimal
results. There are several procedures[48] for calculating the favourable number
of clusters but this is out of scope of this project. For this example we will
chose the number of clusters that will make sense compared to the amount
of data gathered.

In order to implement the proposed algorithm the free and open source
scikit-learn [37] toolkit was used. It provides a library collection called
SKlearn which can be used in Python scripts. Following an example that
attempts to categorize 20 news groups [49], provided as a tutorial at the
sklearn website, and adapting it to use our collected data we tried to find out
which are the documents related to each other in each cluster. We applied
the algorithm on over 600000 messages from Twitter and the expected to
have them categorised in 20 groups. From all the clusters obtained, three
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of them showed considerable interest as they present real world events that
took place recently (Figure 2.9).

Cluster 13: paris charlie hebdo attack http mayor nypd

rt victims french honor visited nyc france terror muslim

bolsters security jewish cover

Cluster 15: photos leaked upton kate jennifer lawrence

nude victoria justice megan fox http seen rt hoeuu2dubr

itweetlikegirls hilarious kardashian kim aigbtbpmvv

Cluster 18: attack http rt titan panic bus hotel tel aviv killed

terror amp deadly anxiety people terrorist tripoli video use

Figure 2.9: A sample from the complete K-means Clusters Result produced
from 600000 messages originated from Twitter.com

By inspecting the clusters that the algorithm produced we can say with
some certainty that the algorithm behaved well considering that it is an
unsupervised method. We can clearly see that top frequent terms for Cluster
13, highlight the recent attack in Paris[50]. Also Cluster 15 is totally unrelated
to the previous topic, and instead refers to the incident of the leaked celebrity
photos[51]. The same with Cluster 18 that discusses a terrorist attack in
Israel[52].
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Classification

We propose the use of the Classification task to help us map our data into
certain threat or attack categories.

For implementing an example of this method we selected the ”one-vs-the-rest”
multi-class algorithm[53], since we have to classify the information given into
multiple categories. This example will help showcase how the method works
and that is a useful technique. We used the example code [54] provided
within the scikit-learn.org website, with minor modifications.

Classification is a supervised method and it requires a training set. Therefore
we built a set that contains a list of sentences as it can be seen in Figure
2.11. In each sentence an attack name might or might not be explicitly
mentioned. This, however, does not constrain the algorithm, since each
sentence already belongs to a certain class that has been added to the
training list. The targeted categories are the following: ddos,xss,spoof

with their corresponding numbers being {0,1,2}. The algorithm attempts
to recognize patterns in each incoming sentence by checking it against the
list of predefined classes and assigns the sentence to its corresponding class.
We should mention at this point that for more accurate results the number
of the samples in the training set should be greater than the number of the
members in the input dataset. This is the reason why we suggest in Future
Work section, to build real training sets for the system. It is possible to
automate the recognition process by having large sets of data, against new
arriving messages.

Spoofed addresses found on this site => spoof

ddos lala somewhere in the sky => ddos

hello frm my spoofed mail and here boom ddos attack => ddos, spoof

Figure 2.10: The result of the multi-label classification. It matches the class
to which each input sentence belongs to.
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X_train = np.array(["On the following site there is evidence of ddos

attack ",

"a lot of attacks have been ddos encountered",

"some attacks are not only ddos or xss",

"ddos will make your computer impossible to use",

"e-mail addresses for spoofing",

"there has been noticed some spoofing action",

"someone’s email got spoofed",

"spoofing is for attackers fun",

"nothing can compare with ddos attack and spoofing

same time",

"some ddos and spoofing has been monitored",

"I just want to type something spoofing more about

ddos"])

y_train = [[0],[0],[0,1],[0],[2],[2],[2],[2],[0,2],[0,2],[2,0]]

target_names = [’ddos’, ’xss’,’spoof’]

Figure 2.11: A simple example of a training set along with its associated
trained list and targeted categories.
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2.2.6 Feedback and Assessment

During the last step of the operation the system will have to be able to
produce reconfiguration sets in order to adjust its behaviour and produce
more accurate results in the future.

At this point a Security Analyst will have to be presented with a way
of assessing each alert and determining the real importance level of each
presented event.

Their assessment will be recorded in the events database along with the initial
alert record so that the divergence between the estimated and the actual
threat level can be calculated. This result will be propagated to the various
modules of the system which can afterwards re-adjust their configurable parts
to achieve better accuracy.

Unfortunately the exact way of how this is going to be realised, also falls
out of the scope of this project due to time limitations. However, we are
in a position to suggest that certain Data Mining techniques discussed in
the previous sections (e.g. Clustering, Classification, Regression) can be
employed during this phase as well. Once large enough training sets have
been built these techniques can provide valuable guidelines to the system.
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3 Conclusions

We have designed and proposed the architecture of a system capable of
generate Security Intelligence. We have also specified the distinct modules
that compose this system and implemented the most important of them
with the aim of building a Proof of Concept and an initial test of the System
Architecture.

We proposed a uniform way of providing initial configuration options for
the system. We specified the format that the search terms will be inserted
to the system and how their importance levels can be determined.

We developed aggregation agents for four different Web sources and collected
2GB of data which we used as a test dataset for the next parts of the system.

We tested different methods for preprocessing and filtering the collected
documents. Due to the fact that mature methods such as Natural Language
Processing techniques or TF-IDF needed to be investigated more deeply in
order to fit our purpose, we instead proposed a different document deflation
and scoring method. After putting this method to the test we can conclude
that it is fast and efficient enough to be included at the preprocessing phase.

For the analysis of the collected data we tested several Data Mining tasks,
namely Association Rule Learning, Clustering and Classification. The use
of the remaining Data Mining techniques in our proposed system was briefly
mentioned. The results produced by the tested algorithms were deemed as
promising.

Apparently this system has to be tested thoroughly with real world data
and within a significant amount of time so its accuracy and efficiency can
be measured. Also its installation and operating costs have to be estimated.

There is a lot of effort to be invested towards the correct implementation
of this system. Several extensions and corrections can be proposed after
careful inspection the system operation.
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4 Future Work

At this moment we have specified a modular and pipelined system and
implemented a Proof of Concept by using open source tools. The first future
task would be to actually try to implement the full system architecture, and
integrate it with the CTI portal that is being currently developed by Deloitte
NL.

Once the system has been built, we can put it in production and use
it to gather a significant amount of data over a certain period of time
(approximately one year) which we can use to test the data mining algorithms
thoroughly.

We can also use the data to build historical data sets that will help train
the supervised data mining methods. This also allow us to implement even
more methods such as Regression or Anomaly Detection.

A valuable extension to the analytics phase would be to take into account
other metrics provided with each document such as votes on Reddit or number
of followers on Twitter to determine the importance of each produced result.

We can investigate Machine Learning techniques in order to implement
the Feedback module and provide accurate readjustments to the System.
Furthermore, methods that have already been mentioned such as
Classification can be used for Sentiment Analysis something that would
provide valuable insights that can be used for the feedback and sorting out
false positives.

By exploring NLP capabilities we can add support for other languages
especially those that do not use Latin scripts (e.g. Chinese, Korean, Russian,
Greek etc.).

At this moment no special effort has been invested in determining best format
for presenting the appropriate parties with security alerts. Special care has
to be taken so the information is presented in a way that allows Security
Analysts to respond as quickly as possible.
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After the System has been built and tested, new requirements can be
added that for example can contribute to better communication between
the modules. For example this can include message brokers or triggering
mechanisms that inform the System of the termination of the operation of a
module.

Lastly we could look extensively into other systems that provide similar
services and assess the functions they provide to further improve the
functionality and efficiency of our proposed architecture.
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Appendix A Source Code

All the Source Code that we have used for the demonstration of our Proof
of Concept can be found in the following repository:
https://github.com/SecurityIntelligenceOS3/OS3Demo
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