
Bootable Linux CD / PXE for
the remote acquisition of multiple computers

Dennis Cortjens
dennis.cortjens@os3.nl

REPORT
5th of July, 2014

Abstract

In the field of digital forensics the acquisition of multiple computers in large IT infrastructures have always
been a complex and time consuming task. Especially when one doesn’t know which computer to investigate
and therefore needs to acquire them all. Triage software has increased the efficiency in cases like this. The
software gives an indication which computers to acquire, but one still needs to disassemble and acquire
storage devices of the specific computers on the crime scene. In this study two concepts of automated remote
acquisition of multiple computers are researched and tested on performance. One of the concepts (based on
iSCSI) is developed into a proof concept, called the Remote Acquisition Boot Environment (RABE). Although
it is not yet feasible for the remote acquisition to succeed the traditional method of acquiring computers, it
could make the remote acquisition a time efficient solution in the near future.

Acknowledgement

I would like to thank the Netherlands Forensic Institute’s digital technology team for their hospitality and
pleasant and stimulating work environment. I want to extend my gratitude to Zeno Geradts and Ruud
Schramp for their trust and support.

Contents

1 Introduction 3
1.1 Problem . 3
1.2 Position . 3
1.3 Scope . 3
1.4 Hypothesis . 4

2 Background 4
2.1 Bootable Linux CD . 4
2.2 Preboot eXecution Environment (PXE) . 5
2.3 Network File System (NFS) . 6
2.4 Internet Small Computer System Interface (iSCSI) . 6

CONTENTS 2

3 Research 6
3.1 Approach . 6
3.2 Concepts . 6

3.2.1 NFS . 7
3.2.2 iSCSI . 7

3.3 Proof of concept . 8
3.4 Base environment . 8

4 Implementation 9
4.1 Live image . 9

4.1.1 Packages . 10
4.1.2 Services . 12

4.2 Authoring tool . 16
4.2.1 Dependencies . 18

4.3 Server . 18
4.3.1 Packages . 19
4.3.2 Web service . 21
4.3.3 Connect script . 22

4.4 Limitations . 23

5 Testing 24
5.1 Environments . 24

5.1.1 LAN . 24
5.1.2 Internet . 24

5.2 Tests . 25
5.2.1 NFS . 25
5.2.2 iSCSI . 25

5.3 Results . 25

6 Conclusion 27
6.1 General . 27
6.2 Achievements . 27
6.3 Future research . 28

6.3.1 Live image . 28
6.3.2 Authoring tool . 28
6.3.3 Performance testing . 28
6.3.4 Forensics . 29

References 30

List of Figures 31

List of Tables 32

Appendices 33

A Purged packages (list) 33

B send client information (code) 35

C Authoring tool 0.1 (code) 37

D Authoring tool 0.4 (code) 40

1 Introduction 3

1 Introduction

Over the last 10 years our world has been more and more digitized. We have access to computers at school,
our work and in public places. This has led to an increase of large IT infrastructures with multiple computers
(clients and servers). Within these infrastructures the system administration is automated or can be done
remotely. Unfortunately, this is not always the case in all IT fields.

1.1 Problem

In the field of digital forensics the acquisition of multiple computers in large IT infrastructures have always been
a complex and time consuming task. Especially when one doesn’t know which computer to investigate and
therefore needs to acquire them all. Triage software has increased the efficiency in cases like this. The software
gives an indication which computers to acquire, but one still needs to disassemble and acquire storage devices
of the specific computers on the crime scene. At companies, data centres and universities this is quite an issue.

It’s hard to automate the full acquisition process, but this could be automated. There is software avail-
able that could perform such tasks, but this software doesn’t give a clear insight on its process and is quite
expensive. With the available open source Linux distributions and software there could be a solution for this
problem. This will make the acquisition within large IT infrastructures easier and faster, while maintaining
the forensic value and validity.

1.2 Position

A study on the remote acquisition of computers with a bootable Linux CD / PXE environment resulted with
no information on the matter. However, there is some material closely related to the subject.

In 2004 Owen OConnor wrote an article on deploying forensic tools via PXE. He described PXE as an
automated and parallel solution for investigating computers in a network without the need for investigating
each computer in turn. He mentioned KNOPPIX as a working environment and also addressed some DHCP
issues with PXE. He focused on the triage part of a forensic investigation. [1] This article is somewhat out-
dated, but provides some theoretical basics for this research.

In 2013 Martin B. Koopmans and Joshua I. James wrote a paper on automated network triage. They
described a working client-server network triage environment based on PXE booting and created a tool for
investigating client computers in large IT environments, called the Automated Network Triage (ANT). They
also focused on the triage part of a forensic investigation. [2] This paper provides a technological blue print
for one of the concepts in this research.

1.3 Scope

The main question for this research is:

Can a bootable Linux CD / PXE be build for the remote acquisition of multiple computers and how does it
perform compared to the traditional method?

This question is researched by the following sub questions:

1. Which Linux distribution will be suited as a bootable environment?
2. How will the bootable environment acquire storage devices securely across the network?
3. What is needed within the bootable environment?
4. Which settings need to be configured for the bootable environment?
5. Which concept will have the best performance?
6. Could the remote acquisition across a LAN be worthwhile?
7. Could the remote acquisition across the internet be worthwhile?
8. Are there other ways for the remote acquisition?

1.4 Hypothesis 4

This research focuses on the client side of the remote acquisition. However, a basic server side is build for
the proof of concept.

It creates a CD / PXE bootable environment with the following requirements:

• Requires minimal resources from the computer (client side)
• Runs on most hardware (universal)
• Sets configuration settings before CD / PXE image creation
• Requires no configuration after CD / PXE image creation
• Requires no configuration after bootable environment is loaded
• Distributes physical storage devices securely across the network

1.4 Hypothesis

The assumption/hypothesis for this research is:

The remote acquisition of multiple computers (in general) is slower then the traditional method and across
the internet it is slower then across a LAN. However, if the acquisition is performed remotely without being
on location, it can be done parallel to other activities. This could make it a time efficient solution for partial
and sparse acquisition in the future.

2 Background

2.1 Bootable Linux CD

A bootable Linux CD or so-called live image is a complete Linux operating system that can boot from an op-
tical disc, USB stick or Preboot eXecution Environment (PXE). It runs in the computer’s memory and allows
an operating system to run without installing or making changes to the computer’s original configuration and
files. [3] There are many live image of known Linux distributions. Well-known live images are KNOPPIX and
Ubuntu which can be used for various purposes. [4]

Live images can be adjusted to run special (start-up) scripts and contain special drivers and software. The
process of adjusting the contents of a live image is called remastering. [5]

Although live images run almost fully in the computer’s memory, running an operating system from an
optical disc is slower than running from a flash or hard disk drive. Therefore a live image is rarely used as the
default operating system of a computer. However, it is often used for system recovery and restore, because
it can recover files and restore configurations without the need for the broken or corrupt operating system.
Nowadays, it is also used in computer forensics. A live image provides the digital forensic investigator a
working environment that doesn’t change the computer’s original configuration and files, especially when the
live image doesn’t mount the storage devices automatically. Thus, forensic images of storage devices can be
made without disassembling the computer.

2.2 Preboot eXecution Environment (PXE) 5

2.2 Preboot eXecution Environment (PXE)

The Preboot eXecution Environment (PXE) is a boot system on most modern computers with cabled network
connectivity. It is a combination of several network protocols (IP, UDP, DHCP and TFTP) which provide a
client-server boot environment. It is therefore often referred to as a network boot. [6]

The PXE process consists of the following steps:

1. The PXE firmware of the client computer initiates a PXE session by broadcasting an extended DHCPDIS-
COVER with PXE options.

2. The client receives an extended DHCPOFFER with PXE info, containing a client IP address and the IP
address of the PXE server.

3. The client contacts the PXE server by broadcasting an extended DHCPREQUEST with PXE options
and continues the DHCP handshake.

4. The client receives an extended DHCPACK with PXE info, containing the IP address of the TFTP
server and the path of the file(s) and finishes the DHCP handshake.

5. The client contacts the TFTP server by unicasting a RRQ.
6. The client downloads the file(s) from the TFTP server.

The steps of the PXE process are illustrated in figure 1.

Figure 1: PXE process

2.3 Network File System (NFS) 6

2.3 Network File System (NFS)

The Network File System (NFS) is a distributed file system, allowing access to files across a network in the
same way local storage is accessed. The protocol is build on the Open Network Computing Remote Procedure
Call (ONC RPC). The common port number used for NFS is 2049. It is an open standard, described in several
RFCs (1094, 1813, 3530 and 5661).

The typical implementation of NFS consists of the following set-up:

1. The server runs the NFS service to make NFS shares available.
2. The system administrator determines which locations may be exported as NFS shares in the /etc/exports

configuration file.
3. The system administrator determines which clients (by IP address or hostname) or subnet may access

the shares in the same configuration file.
4. The client requests access to the NFS share by mounting the location.
5. The client can read and/or write the files as if it is local storage. [7] [8]

2.4 Internet Small Computer System Interface (iSCSI)

The internet Small Computer System Interface (iSCSI) is a standard for storage networking and also known
as a Storage Area Network (SAN). It sends SCSI commands across a network in the same way as a local
storage device. It can be used to distribute storage devices across a LAN or the internet as if they are locally
attached disks. The common port number used for iSCSI is 3260. It is an open standard, described in several
RFCs (3720 and 3721).

The implementation of iSCSI requires the following set-up:

Target The iSCSI target is the server side of an iSCSI implementation. It runs the iSCSI target service and
distributes the storage device using a Logical Unit Number (LUN) and an addressing name (most of
the time the iSCSI Qualified Name).

Initiator The iSCSI initiator is the client side of the iSCSI implementation. It discovers iSCSI targets and
connects to the LUN and addressing name the same way as a local SCSI storage device does. [9] [10]

3 Research

3.1 Approach

To determine whether or not a bootable Linux CD / PXE can be build for the remote acquisition of multiple
computers, research is done on the possible concepts. The concepts need the basics for the remote acquisition
environment. These basics are provided by the sub research questions which determine the suitable Linux
distribution, software and settings for the environment. The concepts are tested across a LAN and the internet.
Further more, the concepts are tested on performance to appoint the better concept for future development
after this research. Eventually the results determine whether or not the hypothesis of this research is correct
and what is to expect for these concepts in the near future.

3.2 Concepts

Within a remote acquisition environment one is able to boot a computer (client or server) with a live image
from a PXE (preferred), an USB-stick or optical disc. The image needs to be configurable according to
network settings of IT infrastructure. The computer boots a Linux environment and starts a VPN connection
to communicate securely with a (forensic) server. From this point the storage devices should be acquired on
client-server bases.

The literature study for this research showed a concept used in a similar situation for triage. In the re-
search of Martin B. Koopmans and Joshua I. James an automated network triage environment was described
in which a client computer boots a preconfigured live image, loads key words from a NFS share on the server

3.2 Concepts 7

and starts to perform the triage. The discovered evidence is copied to the NFS share on the server for further
investigation. [2] For this research two concepts were developed. The first one is based on the study with a
NFS share on a server and the second one on the iSCSI standard.

3.2.1 NFS

This concept is based on the use of a NFS share on the server. The computer boots a live image from a PXE
or an optical disc and loads the Linux environment. Within this environment it starts an OpenVPN connection
to communicate securely with the server. When the connection is established, the acquisition starts auto-
matically if preconfigured or manually by accessing the client itself. Both situations have their requirements.
The automated acquisition requires the server to be online at boot and doesn’t give any control of the ac-
quisition process. The manual acquisition requires direct or remote access to each of the client to be acquired.

This concept is illustrated in figure 2.

Figure 2: NFS concept

3.2.2 iSCSI

This concept is based on the use of iSCSI to distribute storage devices across a network to the server. The
computer boots a live image from a PXE or an optical disc and loads the Linux environment. Within this
environment it starts an OpenVPN connection to communicate securely with the server and distributes the
storage devices. The acquisition of the storage devices can be started from the server at any time. The
acquisition of multiple clients can be managed from a central location (the server) which is a huge advantage
of the iSCSI concept.

3.3 Proof of concept 8

This concept is illustrated in figure 3.

Figure 3: iSCSI concept

3.3 Proof of concept

In this research both concepts are developed for performance testing, but the focus will be on the iSCSI
concept. As mentioned in section 3.2.2 this concept has a huge advantage on the NFS concept. Therefore
the iSCSI concept will be developed into a proof of concept. This proof of concept will be called the Remote
Acquisition Boot Environment (RABE).

3.4 Base environment

The base environment was the test environment for and during development. It consisted of a dedicated
computer (also the server for the environment) and four virtual machines (VMs), each with a single task.
This environment is illustrated in figure 4.

dedicated computer The dedicated computer runs a Windows operating system (Windows 8) and four
virtual machines (VMware Workstation). This computer also served as the RABE server for the envi-
ronment, running the OpenVPN and iSCSI initiator service.

VM1: RP2 - DHCP Server The virtual machine ran a Linux operating system (Ubuntu Server 14.04) and
DHCP service. The VM was used to distribute network configuration settings (IP addresses and PXE
parameters) and to test the PXE use of a RABE live image.

VM2: RP2 - PXE Server The virtual machine ran a Linux operating system (Ubuntu Server 14.04) and
TFTP service. The VM was used to transfer boot files and to test the PXE use of a RABE live image
(together with the DHCP server).

4 Implementation 9

VM3: RP2 - iSCSI Client The virtual machine ran a Linux operating system (Ubuntu Desktop 14.04) and
was configured to have three hard disk drives. The VM was used to boot the RABE live image with an
optical disc, USB stick or a PXE. The hardware configuration of three hard disk drives (sda, sdb and
sdc) was used to test the distribution of available storage devices on a RABE client.

VM4: RP2 - Ubuntu Remastering The virtual machine ran a Linux operating system (Ubuntu Desktop
14.04) and was configured to remaster Ubuntu live images. The VM was used to create the first live
image through manually remastering the standard Ubuntu image and after the creation of the authoring
to remaster and configure the RABE live images.

Figure 4: Base test environment

4 Implementation

4.1 Live image

The implementation started with the remastering of a standard Linux distribution live image to create a
default RABE live image. At first KNOPPIX 7.2.0 was chosen as the distribution, because this is often used
for forensic live images and has an easy remastering process. However, there where some problems with
implementatoion of the iscsitarget package within KNOPPIX, so Ubuntu Desktop 14.04 was chosen as
the distribution.

The concept needed to contain some packages and services for the live image in order to boot an auto-
mated client environment in which the following aspects were implemented:

1. setting the network configuration for the eth0 interface
2. loading firewall rules to only permit communication with the server
3. starting a VPN connection to communicate securely with the server
4. distributing all storage devices across the network
5. sending a log file with the client’s IP address, VPN IP address, iSCSI targets and disk (meta) information

to the server

4.1 Live image 10

This resulted in an client environment as illustrated in figure 5.

Figure 5: Client side implementation

4.1.1 Packages

The default Ubuntu Desktop 14.04 live image contained a lot of unnecessary packages, resulting in a live
image of 970 MB. To reduce the size of the default live image 62 packages (including its dependencies) where
purged. These where mostly GUI related packages which where discovered by research in the Ubuntu Software
Center. A list of purged packages is mentioned in appendix A. For the mentioned aspects to work, the live
image also needed four new packages to be installed. Eventually this led to a live image of 785 MB. The
packages needed for the concept are described next.

nfs-common The nfs-common packages contains the basic programs for NFS. It includes the mount.nfs

program which easily mount NFS shares. This is needed for the send_client_information service as
described in section 4.1.2.

iptables The iptables package is a firewall program, installed by default in all Ubuntu distributions. It
allows and blocks network IPv4 and IPv6 traffic. By default it allows all network traffic back and forth,
but for the concept there is a need for the allowance of specific traffic and blocking the rest. The firewall
rules are determined by the network settings of the IT infrastructure. These settings are configured with
the authoring tool. The explicit firewall rules are mentioned in section 4.2. However, the firewall rules
are not boot persistent. Booting a client won’t automatically load the firewall rules and that’s where the
iptables-persistent packages comes in.

iptables-persistent The iptables-persistent package is an addition to the iptables packages. It
starts where the iptables leaves off, being boot persistent. The packages runs as a service at boot and
loads firewall rules from the configuration files located at /etc/iptables/rules.v4 for IPv4 rules and
/etc/iptables/rules.v6 for IPv6 rules.

iscsitarget The iscsitarget package is the iSCSI Enterprise Target (IET) program. It is an open source
iSCSI target program for distributing storage devices in an enterprise environment. [11] This packages is used
for distributing storage devices as iSCSI targets across the network. The service needs to be enabled by setting
ISCSITARGET_ENABLE=true in /etc/default/iscsitarget to be loaded at boot. The iSCSI targets need
to be set manually in the configuration file located at /etc/iet/ietd.conf. [12] For the concept this
configuration is set by the set_iscsi_targets service as described in section 4.1.2.

4.1 Live image 11

openvpn The openvpn package is the OpenVPN program. It is an open source SSL VPN program for
creating a routed IP tunnel (TUN) or ethernet tunnel (TAP). The package contains the programs for client
and server implementations. [13]. This package is used for starting the client side of the routed VPN tunnel
(TUN) to communicate securely with the server. The automatic start of a specific VPN connection needs
to be enabled by setting IAUTOSTART="<name-of-vpn-connection>" in /etc/default/openvpn to be
loaded at boot. [14] The client configuration file for the concept is shown in figure 6. This figure contains
only enabled settings, except for the ;comp-lzo setting which is important. The settings are described and
explained from a server perspective in section 4.3.1.

1 c l i e n t
2
3 dev tun
4
5 p r o t o tc p
6
7 remote 1 9 2 . 1 6 8 . 6 . 1 5 1194
8
9 r e s o l v−r e t r y i n f i n i t e

10
11 nob ind
12
13 p e r s i s t −key
14 p e r s i s t −tun
15
16 ca ca . c r t
17 c e r t r a b e c l i e n t . c r t
18 key r a b e c l i e n t . key
19
20 ns−c e r t−t y p e s e r v e r
21
22 c i p h e r AES−256−CBC
23 k e y s i z e 256
24 auth SHA256
25
26 ; comp−l z o
27
28 v e r b 3

Figure 6: OpenVPN client configuration file

4.1 Live image 12

4.1.2 Services

The live image needed new features that couldn’t be provided by the installation of packages, because these
features could only be achieved by scripting. These features are provided by newly created services which are
described next.

set network interfaces The set_network_interfaces service configures the network settings of the in-
terfaces at boot by replacing the default interfaces configuration file located at /etc/network/interfaces
with a file located at /etc/network/interfaces_new which is created by the authoring (line 18 of figure
7). It brings the eth0 interface down (line 13) before replacing the configuration file and brings the interface
back up afterwards (line 23). Stopping the service will bring the eth0 interface down (line 29). Restarting
the service will bring the eth0 interface down and back up (lines 35, 40). This service is needed, because
removing the network-manager without completely removing the Ubuntu Desktop feature leaves a compli-
cated configuration for network managing. Researching the complete removal of the Ubuntu Desktop feature
could resolve this, but was beyond the scope of this research. As a workaround, this service was created.

set iscsi targets The set_iscsi_targets service searches for SCSI block devices and configures the de-
vices as iSCSI targets in the iscsitarget configuration file located at /etc/iet/ietd.conf (lines 19-21,
26-27 of figure 8). The service extracts the MAC address of the eth0 interface from the ifconfig command
(line 11). It searches for SCSI block devices (sdX) on the client (line 19) and for each device an iSCSI target
is configured, using the MAC address and block device as the addressing name (lines 26-27). An example
configuration for an iSCSI target block device is shown in figure 9.

send client information The send_client_information service creates a log file with the network, iSCSI
target and disk (meta) information of the client on the NFS share of the server. The service extracts the IP
address of the eth0 interface from the ifconfig command (line 19 of appendix B) and then extracts the
VPN IP address of the tun interface also from the ifconfig command (line 22). It sets the log file’s name
and path (lines 28-29) and creates a log file with the IP address on the NFS share of the server (line 32). From
that moment on it appends the VPN IP address (line 33), iSCSI targets with heading (lines 39-41) and disk
(meta) information with heading (lines 47-49) to the log file. An example of the log file’s content is shown in
figure 10. The meta information of storage devices is not distributed with the iSCSI targets. However, it is very
important for the forensic acquisition of a device. Information on the make (vendor), model (product), logical
block device name, serial number (serial) and size of the device is needed to distinguish one storage device
from another. This information is obtained by the lshw command which lists all hardware in a system and
with a parameter (-c disk) only lists disk related hardware, including the meta information. Before extracting
the IP addresses it mounts the NFS share on the server (line 14) and it unmounts the NFS share afterwards
(line 54). The full script is (because of its size) mentioned in appendix B.

4.1 Live image 13

enter

1 #!/ b i n / bash
2
3 # SERVICE : s e t n e t w o r k i n t e r f a c e s
4 # USAGE : s t a r t / s t o p / r e s t a r t
5
6 c a s e ”$1” i n
7 s t a r t)
8 echo \ [s e t n e t w o r k i n t e r f a c e s \] s t a r t i n g s e r v i c e
9

10 echo \ [s e t n e t w o r k i n t e r f a c e s \] b r i n g i n g eth0 down
11
12 # b r i n g i n t e r f a c e eth0 down
13 i f do w n eth0
14
15 echo \ [s e t n e t w o r k i n t e r f a c e s \] add ing new network s e t t i n g s f o r

eth0
16
17 # copy new i n t e r f a c e s f i l e and o v e r w r i t e o l d
18 cp / e t c / network / i n t e r f a c e s n e w / e t c / network / i n t e r f a c e s
19
20 echo \ [s e t n e t w o r k i n t e r f a c e s \] b r i n g i n g eth0 up
21
22 # b r i n g i n t e r f a c e eth0 up
23 i f u p eth0
24 ; ;
25 s t o p)
26 echo \ [s e t n e t w o r k i n t e r f a c e s \] b r i n g i n g eth0 down
27
28 # b r i n g i n t e r f a c e eth0 down
29 i f do w n eth0
30 ; ;
31 r e s t a r t)
32 echo \ [s e t n e t w o r k i n t e r f a c e s \] b r i n g i n g eth0 down
33
34 # b r i n g i n t e r f a c e eth0 down
35 i f do w n eth0
36
37 echo \ [s e t n e t w o r k i n t e r f a c e s \] b r i n g i n g eth0 up
38
39 # b r i n g i n t e r f a c e eth0 up
40 i f u p eth0
41 ; ;
42
43 ∗)
44 echo SERVICE : s e t n e t w o r k i n t e r f a c e s
45 echo $”USAGE : $0 { s t a r t / s t o p / r e s t a r t }”
46 e x i t 1
47
48 e s a c
49 e x i t 0

Figure 7: set network interfaces service (code)

4.1 Live image 14

enter

1 #!/ b i n / bash
2
3 # SERVICE : s e t i s c s i t a r g e t s
4 # USAGE : s t a r t
5
6 c a s e ”$1” i n
7 s t a r t)
8 echo \ [s e t i s c s i t a r g e t s \] s t a r t i n g s e r v i c e
9

10 # e x t r a c t MAC a d d r e s s (eth0) from i f c o n f i g
11 MAC=$ (i f c o n f i g eth0 | gr ep − i ’ hwaddr ’ | awk ’{ p r i n t $5 } ’ | sed ’ s

/ : / / g ’)
12
13 # s e t c o u n t e r
14 COUNTER=0
15
16 echo \ [s e t i s c s i t a r g e t s \] s e a r c h i n g SCSI s t o r a g e d e v i c e s
17
18 # s e a r c h SCSI s t o r a g e d e v i c e s
19 f o r SCSI i n $ (l s / dev / sd ∗ | gr ep ’ sd [a−z] $ ’)
20 do
21 DISK=$ (echo $SCSI | sed ’ s /\/ dev \///g ’)
22
23 echo \ [s e t i s c s i t a r g e t s \] s e t t i n g i S C S I t a r g e t $MAC: $DISK
24
25 # add t a r g e t to c o n f i g u r a t i o n f i l e
26 echo Target $MAC: $DISK >> / e t c / i e t / i e t d . c o n f
27 echo Lun $COUNTER Path=$SCSI , Type= f i l e i o >> / e t c / i e t / i e t d .

c o n f
28
29 # i n c r e a s e c o u n t e r
30 COUNTER=$ [COUNTER+1]
31 done
32 ; ;
33
34 ∗)
35 echo SERVICE : s e t i s c s i t a r g e t s
36 echo $”USAGE : $0 { s t a r t }”
37 e x i t 1
38
39 e s a c
40 e x i t 0

Figure 8: set iscsi targets service (code)

Target b8ac6f8b81bd:sda

Lun 0 Path=$SCSI,Type=fileio

Figure 9: iSCSI target block device configuration

4.1 Live image 15

enter

IP ADDRESS: 192.168.10.15

VPN IP ADDRESS: 10.8.0.6

iSCSI TARGETS:

==============

b8ac6f8b81bd:sda

b8ac6f8b81bd:sdb

DISK INFORMATION:

=================

*-disk

description: ATA Disk

product: ST3250824AS

vendor: Seagate

physical id: 0.0.0

bus info: scsi@0:0.0.0

logical name: /dev/sda

version: 3.AD

serial: 9ND0CZDL

size: 232GiB (250GB)

capabilities: partitioned partitioned:dos

configuration: ansiversion=5 sectorsize=512 signature=8d4b79a1

*-disk

description: SCSI Disk

physical id: 0.0.0

bus info: scsi@6:0.0.0

logical name: /dev/sdb

size: 29GiB (31GB)

capabilities: partitioned partitioned:dos

configuration: sectorsize=512 signature=e2ed4f7e

Figure 10: Log file content

For the concept to work correctly with other services (provided by packages) these had to be started in
a specific order. It is very important to set the network interfaces correctly from the beginning, because
a lot of other services depend on the configuration. So the set_network_interfaces service has to be
started first and therefore should start as service 14 in /etc/rc2.d as shown in figure 11. The next ser-
vice limits the network connectivity (only allowing communication with the server) by loading the firewall
rules with the iptables-persistent service (number 15). Then it starts the openvpn service that highly
depends on the network configuration (number 16). For the iscsitarget service it is important to first
set the iSCSI targets and then loads the service that distributes the targets across the network. Therefore
the set_iscsi_target service is set to number 19 and the iscsitarget service is set to number 20.
The send_client_information service depends on all the mentioned services and should be started later
(number 30).

4.2 Authoring tool 16

enter

root@uburem:/# ls -l /etc/rc2.d

...

lrwxrwxrwx 1 root root 32 Jul 3 09:40 S14set_network_interfaces -> ../init.d/set_net

lrwxrwxrwx 1 root root 29 Jul 3 09:40 S15iptables-persistent -> ../init.d/iptables-p

lrwxrwxrwx 1 root root 17 Jul 3 09:40 S16openvpn -> ../init.d/openvpn

lrwxrwxrwx 1 root root 27 Jul 3 09:40 S19set_iscsi_targets -> ../init.d/set_iscsi_ta

lrwxrwxrwx 1 root root 21 Jul 3 09:40 S20iscsitarget -> ../init.d/iscsitarget

...

lrwxrwxrwx 1 root root 33 Jul 3 09:40 S30send_client_information -> ../init.d/send_c

...

lrwxrwxrwx 1 root root 18 Jul 3 09:40 S99rc.local -> ../init.d/rc.local

Figure 11: Auto-start order of services

4.2 Authoring tool

Remastering a live image can be a complicated process, because many things can be added and changed.
This is a manual process consisting a lot of steps with specific commands, but not all of them are required
for every situation. The necessary steps where discovered by research on the remastering of an Ubuntu live
image. [15] It led to the following steps for the concept.

1. mount the input image (line 39 of appendix C)
2. extract the image contents (line 43)
3. extract the squash file system (line 47)
4. copy the network settings for network connectivity within the chroot environment (lines 51-52)
5. mount the device files for the chroot environment (line 59)
6. enter the chroot environment (line 66)
7. regenerate the desktop manifest file (lines 77-80)
8. compress the squash file system (line 84)
9. update the file system size file (line 87)

10. recalculate and update the MD5 checksum of the files (line 91)
11. create the new live image (line 94)

These steps were scripted into an authoring tool with a default live image (with all necessary packages, services
and files) as the input image to automate and simplify the remastering process for the user. However, there
was an issue with executing commands within the chroot environment. Entering the chroot environment
paused the initial script and continued after manually exiting. For the remastering process to complete
successfully, some additional steps were needed within the chroot environment. The process, system and
pseudo-terminal file systems had to be mounted (lines 4-6 of figure 12), a couple of local variables had to be
exported (lines 9-10) and some installation settings had to be configured (lines 13-15). At the end, temporary
files had to be removed (lines 4, 7 10-12, 20-21 of figure 13) and the file systems had to be unmounted (lines
15-17). Researching the scripted execution in a chroot environment could resolve this issue, but was beyond
the scope of this research. As a workaround, a start and an end script were created which are copied into the
chroot environment (line 55-56) and need to be executed manually.

4.2 Authoring tool 17

enter

1 #!/ b i n / bash
2
3 # mount proc , s y s f s and d e v p t s i n c h r o o t
4 mount −t p r oc none / p ro c
5 mount −t s y s f s none / s y s
6 mount −t d e v p t s none / dev / p t s
7
8 # s e t l o c a l e v a r i a b l e s
9 e x p o r t HOME=/r o o t

10 e x p o r t LC ALL=C
11
12 # s e t i n s t a l l s e t t i n g s
13 dbus−uu idgen > / v a r / l i b / dbus / machine−i d
14 dpkg−d i v e r t −− l o c a l −−rename −−add / s b i n / i n i t c t l
15 l n −s / b i n / t r u e / s b i n / i n i t c t l
16
17 echo ””
18 echo Type . / end to end work ing i n th e c h r o o t e n v i r o n m e n t .
19 echo ””

Figure 12: Chroot start script (code)

1 #!/ b i n / bash
2
3 # remove no l o n g e r needed packages
4 apt−g e t autoremove
5
6 # remove l o c a l r e p o s i t o r y packages
7 apt−g e t c l e a n
8
9 # u n s e t i n s t a l l s e t t i n g s

10 rm / v a r / l i b / dbus / machine−i d
11 rm / s b i n / i n i t c t l
12 dpkg−d i v e r t −−rename −−remove / s b i n / i n i t c t l
13
14 # unmount proc , s y s f s and d e v p t s i n c h r o o t
15 umount / pr oc | | umount − l f / p ro c
16 umount / s y s | | umount − l f / s y s f s
17 umount / dev / p t s | | umount − l f / dev / p t s
18
19 # remove h i s t o r y
20 rm − r f /tmp/∗ ˜ / . b a s h h i s t o r y
21 h i s t o r y −c
22
23 echo ””
24 echo Type e x i t to e x i t t he c h r o o t e n v i r o n m e n t .
25 echo ””

Figure 13: Chroot end script (code)

4.3 Server 18

The first version of the authoring tool (0.1) only contains the basic steps. It was used for developing the
default live image. The full version 0.1 script is (because of its size) mentioned in appendix C. The latest
version of authoring tool (0.4) contains user input and specific configuration aspects of the live image and
these are described next. The full version 0.4 script is (because of its even greater size) mentioned in appendix
D.

Network settings The code related to network settings configures the static IP address, netmask and
gateway on the eth0 interface, according to the user input, to the etc/network/interfaces_new file
(lines 173-176 of appendix D). This file is used to replace the etc/network/interfaces file at boot by
the set_network_interfaces service. If the infrastructure doesn’t requires a static configuration it will
configure DHCP on the interface (line 179).

Firewall rules The code related to firewall rules configures rules, depending on to the user input. If the
infrastructure doesn’t require a static configuration, it will configure a firewall rule which allows DHCP traffic
(line 182). The server IP address from the user input is configured in a way can only communicate with the
server (line 186). The default VPN IP address of the server is configured in a way that it can communicate
with the server across the VPN tunnel (line 199). All other traffic is blocked (line 213). All rules are added
to /etc/iptables/rules.v4 which are loaded at boot by the iptables-persistent service.

OpenVPN The code related to OpenVPN requires the server CA certificate (ca.crt) and key (ca.key), the
index (index.txt) and serial to reside in the authoring tool’s openvpn/keys folder. This is required because
the authoring tool will create a client certificate and key for the VPN connection. It will copy the necessary
easy-rsa files to the openvpn folder (lines 90-94) and generates the client certificate and key (line 101).
Then the server CA certificate and the client certificate and key are copied into the chroot environment (lines
191-193). The server IP address from the user input replaces the SERVER space in the client configuration file
(/etc/openvpn/rabe_client.conf) within the chroot environment (line 196). Eventually, the openvpn

folder is cleaned by removing temporary files (lines 202-206, 209).

NFS The code related to NFS asks the user for an alternate NFS path (lines 115-116). The NFS path is
then escaped to prevent path errors (line 122) and otherwise set to a default path (line 124). Later on, the
NFS path in the send_client_information service file is replaced by the user input or default NFS path
(line 217).

4.2.1 Dependencies

The authoring tool needs specific programs within the script and has to following packages dependencies.

easy-rsa For generating and signing the OpenVPN client certificate and key.
genisoimage For creating the new live image ISO file.
squashfs-tools For extracting and compressing the squash file system of the live image.

4.3 Server

The server implementation was initially not in the scope of this research, but for the proof of concept a
minimum server side was needed. For the server implementation the Ubuntu Desktop 14.04 operating system
was chosen. The server had to contain the following aspects:

1. provide the VPN service for the secure communication with the client
2. connect and manage iSCSI targets
3. provide a NFS share for the log file of the client
4. provide a simple web service to overview the log files (connected clients)

4.3 Server 19

This resulted in a server environment as illustrated in figure 14.

Figure 14: Server side implementation

4.3.1 Packages

For the aspects to work, three packages had to be installed and are described next.

nfs-kernel-server The nfs-kernel-server package contains the NFS server program. This package is
used for providing the NFS share to the client. The NFS share is a folder on the server which is exported as
a NFS share. The folder is configured in /etc/exports, so it can only be accessed through the VPN tunnel
(secure connection).

open-iscsi The open-iscsi package is an open source iSCSI initiator program. It includes the iscsiadm

program for discovering and connecting iSCSI targets. [16] The iSCSI initiator service needs to be enabled by
uncommenting node.startup = automatic in /etc/iscsi/iscsid.conf to be loaded at boot. [?] For
the concept, the (simple) management of iSCSI targets is provided by the rabe_connect_iscsi_target

script as described in section 4.3.3.

openvpn The openvpn package is the OpenVPN program. It is an open source SSL VPN program for
creating a routed IP tunnel (TUN) or ethernet tunnel (TAP). The package contains the programs for client
and server implementations. [13]. This package is used for starting the server side of the routed VPN tunnel
(TUN) to communicate securely with the client. The automatic start of a specific VPN connection needs
to be enabled by setting IAUTOSTART="<name-of-vpn-connection>" in /etc/default/openvpn to be
loaded at boot. [14] The server configuration file for the concept is shown in figure 15. This figure contains
only enabled settings, except for the ;comp-lzo setting which is important.

4.3 Server 20

enter

1 p o r t 1194
2
3 p r o t o tc p
4
5 dev tun
6
7 ca ca . c r t
8 c e r t r a b e s e r v e r . c r t
9 key r a b e s e r v e r . key

10
11 dh dh2048 . pem
12
13 s e r v e r 1 0 . 8 . 0 . 0 2 5 5 . 2 5 5 . 2 5 5 . 0
14
15 i f c o n f i g −pool−p e r s i s t i p p . t x t
16
17 d u p l i c a t e−cn
18
19 k e e p a l i v e 10 120
20
21 c i p h e r AES−256−CBC
22 k e y s i z e 256
23 auth SHA256
24
25 ; comp−l z o
26
27 p e r s i s t −key
28 p e r s i s t −tun
29
30 s t a t u s openvpn−s t a t u s . l o g
31
32 log−append openvpn . l o g
33
34 v e r b 3

Figure 15: OpenVPN server configuration file

The settings in figure 15 are described next.

port The port to listen on (1194).
proto The protocol to use (tcp).
dev The type of tunnel to use (tun).
ca The root certificate (ca.crt).
cert The server certificate (rabe server.crt).
key The server private key (rabe server.key).
dh The Diffie Hellman parameters (dh2048.pem).
server The VPN IP range and subnet (10.8.0.0 255.255.255.0).
duplicate-cn Allow client certificates with the same ’common name’ for multiple clients using the live image.
keepalive The keep alive ping settings to check the connection, repetition and maximum timeout in seconds

(10 120).
cipher The cryptographic cipher to use (AES-256-CBC).
keysize The key-size to use, in bits (256).

4.3 Server 21

auth The algorithm to use (SHA256).
;comp-lzo Disable compression across the connection.
persist-key Disable re-reading of key files.
persist-tun Disable closing and reopening of TUN/TAP devices.
status Enable outputting the status of current connections to a log file (openvpn-status.log).
log-append Enable append logging to a separate log file (openvpn.log).
verb Log level, 0 nothing and 9 maximum (3).

4.3.2 Web service

A web server was used to have an overview of all connected clients with their IP address, VPN IP address, iSCSI
targets and disk (meta) information. The web server functionality was provided by the SimpleHTTPServer

class in python. It allows for a folder to serve as the root folder of a web server and is started by using
the python -m SimpleHTTPServer <port-to-server-on> command. The SimpleHTTPServer ran in the
NFS root folder of the server, where all clients create their log file. To get the overview, one simply have
to browse to the IP address and port with a web browser. The web browser shows all log files of connected
clients (figure 16) and within each log file the information of the client (figure 17). This information is needed
for connecting to and acquiring the storage device on that client.

Figure 16: Overview of connected clients (Firefox web browser)

4.3 Server 22

enter

Figure 17: Network, iSCSI and disk information of client (Firefox web browser)

4.3.3 Connect script

The rabe_connect_iscsi_target script asks the user for the VPN IP address of the client. The script uses
the iscsiadm program to discover the iSCSI targets on the client and shows the targets to the user, filtering
on the VPN IP address range (line 18). The filtering is applied because a discovery will return all IP addresses
to which the iSCSI target can be connected. For this concept it needs to use a secure connection and thus
needs to use the VPN IP address. The script asks the user to specify the iSCSI target by addressing name.
The iscsiadm program is then used to connect to the iSCSI target (line 28). After that, it needs to query
the message buffer of the kernel (dmesg) to determine the associated block device on the server and show it
to the user (line 33).

4.4 Limitations 23

enter

1 #!/ b i n / bash
2
3 # s e t r e g u l a r e x p r e s s i o n p a t t e r n f o r IP a d d r e s s
4 IPPATTERN=”ˆ10\ .8\ .0\ . [1−2]? [0−9]? [0−9]{1} $”
5
6 echo ””
7
8 # s e t IP a d d r e s s o f c l i e n t
9 u n t i l [[$IPADDRESS =˜ $IPPATTERN]]

10 do
11 echo E n t e r th e VPN IP a d d r e s s o f t he c l i e n t \ [10 .8 .0 .###\] :
12 r e a d TARGETIP
13 done
14
15 # d i s c o v e r i S C S I t a r g e t (s) on c l i e n t
16 echo ””
17 echo D i s c o v e r i n g i S C S I t a r g e t s on c l i e n t . . .
18 i s c s i a d m −m d i s c o v e r y −t s t −p $TARGETIP | gr ep ’ 1 0 . 8 . 0 ’
19
20 # s e t i S C S I t a r g e t
21 echo ””
22 echo E n t e r th e name o f t he i S C S I t a r g e t :
23 r e a d TARGET
24
25 # c o n n e c t to i S C S I t a r g e t :
26 echo ””
27 echo C o n n e c t i n g to t a r g e t $TARGET on $TARGETIP . . .
28 i s c s i a d m −m node −p $TARGETIP −T $TARGET − l
29
30 # show t a r g e t ’ s s t o r a g e d e v i c e name on s e r v e r
31 echo ””
32 echo Target $TARGET c o n n e c t e d to :
33 t a i l dmesg | gr ep ’ iSCSI ’

Figure 18: rabe connect iscsi target script (code)

4.4 Limitations

This proof of concept at this stage has three important limitations:

auto-mount not disabled The auto-mount function of storage devices is not disabled in the live image and
can’t guarantee the forensic soundness of the acquisition process. Therefore the concept can’t be used
in forensic cases yet!

listens only on interface eth0 The live image is configured to use the eth0 interface and does not use other
interfaces. It actually blocks traffic on all other interfaces and thus requires a connection on the eth0

interface for the concept to work.
management network not blocked The live image blocks traffic on all other interfaces by using iptables.

It doesn’t take into account blocking a possible present management interface and thus leaves an
opportunity for the owner to remotely connect to the computer.

5 Testing 24

5 Testing

5.1 Environments

For the testing part of this research, two different environments were used:

1. LAN
2. Internet

5.1.1 LAN

A corporate LAN was used for testing the RABE live image and the performance of NFS and iSCSI across a
LAN. The RABE server was connected to the network and a random computer within the network was used
as the RABE client. A simplified view of the LAN environment is illustrated in figure 19.

Figure 19: LAN test environment (simplified)

5.1.2 Internet

For testing the RABE live image and the performance of NFS and iSCSI across the internet, the corporate
network and network of the University of Amsterdam (UvA) were used. The RABE server was connected to
the corporate network with port forwarding configured for SSH (22) and OpenVPN (1194). The RABE client
was my personal server at the UvA. It was configured with a private IP address which directly connects the
client to the internet. A simplified view of internet environment is illustrated in figure 20.

Figure 20: Internet test environment (simplified)

5.2 Tests 25

5.2 Tests

Both the NFS and iSCSI concept were tested. For each concept four grey box tests were defined which tested
the proof of concept for both code and outcome. The performance of NFS and iSCSI was tested for outcome
only.

5.2.1 NFS

NFS test 1 A full test of the live image within the LAN environment. The image is booted from an USB
stick. The eth0 interface is configured and firewall rules are loaded to restrict traffic to the client.
An OpenVPN connection is started between the client and server to communicate securely. The client
is connected to the NFS share on the server through the OpenVPN tunnel tun0. The clients sent
its network and disk information to the server. The acquisition of the storage device is started with
ewfacquire. The terminal output is logged with script.

NFS test 2 A full test of the live image within the LAN environment. The image is booted from an USB
stick. The eth0 interface is configured and firewall rules are loaded to restrict traffic to the client. The
OpenVPN service is stopped on the server, so no VPN tunnel is available. The client is connected to
the NFS share on the public IP address. The client sent its network and disk information to the server.
The acquisition of the storage device is started with ewfacquire. The terminal output is logged with
script.

NFS test 3 A full test of the live image within the LAN environment and the same as NFS test 1.

NFS test 4 A full test of the live image, but in this case within the internet environment.

5.2.2 iSCSI

iSCSI test 1 A full test of the live image within the LAN environment. The image is booted from an USB
stick. The eth0 interface is configured and firewall rules are loaded to restrict traffic to the client. An
OpenVPN connection is started between the client and server to communicate securely. The storage
devices are distributed across the secure connection as iSCSI targets. The client sent its network and
disk information to the server. The server is connected to the iSCSI target through the OpenVPN
tunnel tun0. The acquisition of the storage device is started with ewfacquire. The terminal output
is logged with script.

iSCSI test 2 A full test of the live image within the LAN environment. The image is booted from an USB
stick. The eth0 interface is configured and firewall rules are loaded to restrict traffic to the client.
The OpenVPN service is stopped on the server, so no VPN tunnel is available. The storage devices
are distributed across the secure connection as iSCSI targets. The clients sent its network and disk
information to the server. The server is connected to the iSCSI target on the public IP address. The
acquisition of the storage device is started with ewfacquire. The terminal output is logged with
script.

iSCSI test 3 A full test of the live image within the LAN environment and the same as iSCSI test 1.

iSCSI test 4 A full test of the live image, but in this case within the internet environment.

5.3 Results

In all of the tests the RABE live image worked correctly. The interface was configured and firewall rules were
loaded. The (secure) connections where made and the image provided the server with the network and disk
information of the client. The ewfacquire application provided the end results for the acquisition process.
An example as such is shown in figure 21.

5.3 Results 26

enter

Written: 9.3 GiB(10000000188 bytes) in 17 minute(s) and 0 second(s) with 9.3MiB/s

(9803921 bytes/second).

MD5 hash calculated over data:d1bac32b46721780b314f170058e6db5

ewfacquire: SUCCESS

Figure 21: ewfacquire end result

The results of two of the first three NFS tests show an average speed of 9,3 MiB/s when remotely acquiring
within a LAN environment (NFS test 1 and 3). NFS test 2 shows an average speed of 10 MiB/s which is
slightly faster (by 0,7 MiB/s). This is due the fact that the VPN connection is disabled. A VPN connection
requires more data in the network packet, leaving less space for actual (acquisition) data and resulting in a
slower copying speed. These results are shown in table 1.

test time speed MiB/s MD5 hash size GiB size in bytes
NFS 1 00:17:00 9,3 d1bac32b46721780b314f170058e6db5 9,3 10000000000
NFS 2 00:15:38 10 d1bac32b46721780b314f170058e6db5 9,3 10000000000
NFS 3 00:17:04 9,3 d1bac32b46721780b314f170058e6db5 9,3 10000000000

Table 1: NFS tests (LAN environment)

The results of two of the first three iSCSI tests show the same trend as the NFS tests, except with a slightly
better performance in speed. iSCSI test 1 and 3 show an average speed of 10 MiB/s. iSCSI test 2 shows an
average speed of 11 MiB/s which is also slightly higher (by 1 MiB/s). This is due the same cause as NFS
test 2. These results are shown in table 2.

test time speed MiB/s MD5 hash size GiB size in bytes
iSCSI 1 00:15:30 10 d1bac32b46721780b314f170058e6db5 9,3 10000000000
iSCSI 2 00:14:15 11 d1bac32b46721780b314f170058e6db5 9,3 10000000000
iSCSI 3 00:15:30 10 d1bac32b46721780b314f170058e6db5 9,3 10000000000

Table 2: iSCSI tests (LAN environment)

The overall maximum speed of 10-11 MiB/s is caused by the corporate network’s speed limitation.

The results of the tests within the internet environment show an average speed of 1.1 MiB/s. A test without
the OpenVPN connection was not conducted, due to the security aspect (sending data unencrypted across
the internet) and time issues (a completion time of more than 2 hours). The different MD5 hashes of the
data are the result of booting the original operating system of the client, making changes to the disk. The
MD5 hashes from the LAN and internet tests are different, due to the use of different client computers. These
results are shown in table 3.

test time speed MiB/s MD5 hash size GiB size in bytes
NFS 4 02:13:39 1,1 0c27b2131c240fa88ceeab132ca326d0 9,3 10000000000
iSCSI 4 02:22:06 1,1 d1b749285de3e6ec69537fb1212b4dd0 9,3 10000000000

Table 3: NFS and iSCSI tests (internet environment)

The overall maximum speed of 1.1 MiB/s is caused by the maximum download speed of corporate network’s
internet connection.

6 Conclusion 27

6 Conclusion

6.1 General

The main research question was:

Can a bootable Linux CD / PXE be build for the remote acquisition of multiple computers and how does it
perform compared to the traditional method?

The assumption/hypothesis for this research was:
The remote acquisition of multiple computers (in general) is slower then the traditional method and across
the internet it is slower then across a LAN. However, if the acquisition is performed remotely without being
on location, it can be done parallel to other activities. This could make it a time efficient solution for partial
and sparse acquisition in the future.

This research proved the hypothesis to be correct, only with some side notes. The remote acquisition of
multiple computers can be performed across a LAN or the internet. An optical disk, USB stick or PXE can
be used to boot the a Linux environment. A set of firewall rules and a VPN connection provide the necessary
secure connection, especially when performing the acquisition across the internet. All these aspects are as-
sembled in the Remote Acquisition Boot Environment (RABE) based on the iSCSI concept. The competitive
concept is NFS which is already used as a triage tool. Testing and comparing both concepts, showed a slightly
faster performance for the iSCSI concept (by 0,7 MiB/s). With that in mind continuing the development of
RABE on the iSCSI concept is the best choice.

As assumed in the hypothesis, the acquisition within a LAN showed a faster performance (by 8,2 MiB/s).
However, there are some side notes. The tests within a LAN and across the internet had their limitations. The
10 MiB/s for the LAN and 1.1 MiB/s for the internet, where technical limitations. The LAN limitation was
caused by the corporate network’s maximum speed and the internet limitation was caused by the corporate
network’s maximum download speed of the internet connection. Consumer internet connections can reach
200 Mbps. Data centre and university connections can reach 10 Gbps and beyond. So in theory it can perform
faster. Eventually it is the weakest link that determines the connection speed. Not every law enforcement
agency has a high speed internet connection and therefore these theoretical speeds won’t be matched, still
needing the faster traditional method.

In general, the remote acquisition of a computer is slower than the traditional acquisition method of dis-
assembling the storage devices. Instead of going to the scene, one can just provide the live image to the client
side and start the remote acquisition from ones central location and return to other activities. Although it
will not (yet) succeed the completion time of the traditional method, this concept can be a time efficient
solution for the partial acquisition of a computer. The partial acquisition is a time efficient solution when one
only needs a specific partition or folder on a storage device. It can also be a solution for triage with sparse
acquisition. In large IT infrastructures there is often a need to determine which computer has to be seized.
Acquiring all computers simply can’t be an option. Sparse acquisition with copy-on-read will support the
triage process to justify the seized or not seized computers. The previewed data is red and acquired, therefore
one can always justify the decision for taking or leaving a computer. In this case the acquisition time is much
shorter and highly efficient.

6.2 Achievements

created a proof of concept This research created a proof of concept for the remote acquisition of multiple
computers based on iSCSI, called the Remote Acquisition Boot Environment (RABE). The concept consists
of a default RABE live image for the client, an authoring tool for configuring RABE live images and a basic
configuration for the server.

created a default live image This research created the default RABE live image. The image consists of all
necessary packages and three newly created services for an automated process of remotely acquiring multiple
computers. Some unnecessary packages have been purged to reduce the image size. It can be booted from

6.3 Future research 28

an optical disc, USB stick or a PXE. After booting the client with the live image, it loads the needed firewall
rules and starts a VPN connection to communicate securely with the server. It then distributes the client’s
storage devices across the network using iSCSI.

created an authoring tool This research created an authoring tool to configure RABE live images. This
tool provided a simple user interface for configuring the live image with specific settings for the network,
VPN connection and NFS share. Besides this specific purpose for RABE, it also includes the code for the
automated remastering of an Ubuntu live image which can be used by others.

provided a partial conclusion on NFS vs. iSCSI This research provided test results for the use of NFS
and iSCSI in a concept for the remote acquisition of multiple computers. The tests showed a slightly faster
performance in favour of iSCSI.

created an open framework for future research This research created an open platform for future re-
search. The proof of concept provides the key aspects to perform a real acquisition and a starting point for
future research. It will be published on GitHub as the ’rabe-framework’ project.

6.3 Future research

This report offers an open framework for future research as mentioned in section 6.2. During this research a
couple of aspects were discovered that could help to improve the concept on various subjects.

6.3.1 Live image

The RABE live image in this research is a concept and far from final. It can be improved by the following
subjects:

auto-mounting devices The used Ubuntu Desktop 14.04 image has an aggressive manner of automatically
mounting storage devices. Despite all known methods of disabling the auto-mount function, the live
image doesn’t have auto-mount disabled. A lot of the known methods have been tried, but none with
success. Additional research could solve this matter.

other network interfaces The live image is configured to only use the eth0 interface and blocks traffic
on all other interfaces. On computers with multiple network interfaces one doesn’t no which network
interface is used and in such situations the live images should still work. Additional research could solve
this matter and improve the live image.

remove GUI / reduce size The live image still contains a GUI, because it uses a standard Ubuntu Desktop
14.04 image. Most of the GUI applications have been purged after basic research. The GUI isn’t needed
for the concept and can be removed, but removing the wrong packages can leave the image inoperable.
Additional research could give new insides in fully removing the Ubuntu Desktop GUI and this would
also decrease the image size considerably.

6.3.2 Authoring tool

The RABE authoring tool in this research is a straight forward bash script, but for the remastering process
the chroot environment is needed. The bash script can’t hop into the chroot environment to execute code
and therefore pauses the initial script until manually exiting the environment. Additional research could solve
this matter and improve the authoring tool.

6.3.3 Performance testing

The RABE concept has been tested on NFS and iSCSI for performance, but also on speed for LAN and
internet connections. As mentioned in section 6.1 these tests had some side notes, because they were limited
by the network or internet connection speed. More testing on different networks and internet connections
(cable, xDSL and fibreglass) could give new insides in the feasibility of using remote acquisition as a successor
of the traditional acquisition method.

6.3 Future research 29

6.3.4 Forensics

From a forensic perspective the RABE concept can also be improved.

auto-mounting devices As mentioned in section 6.3.1, this could increase the forensic soundness of the live
image considerably and could make it usable in forensic cases.

block management network The live image blocks traffic by using iptables, but doesn’t take into account
blocking a possible present management interface which leaves the opportunity for the owner to remotely
connect to the computer. Additional research into methods to block such interfaces could increase the
forensic soundness of the live image.

reduce memory footprint / include memory acquisition The live image resides fully in memory and over-
writes memory space, depending on the available amount. In digital forensics the acquisition of the
memory has become a very useful and important subject. A subject that has to be taken into ac-
count before acquiring the storage devices in a computer. Additional research into the feasibility of
reducing the memory footprint of the live image, could provide the image with a lesser footprint and
the acquisition of the memory. This would make RABE a complete acquisition environment for digital
forensics.

other tools The image has been stripped to contain only the necessary packages for the concept. As a live
environment for digital forensics other tools could be added. This would make RABE a more complete
acquisition environment for digital forensics.

preview/triage mode The image was tested for the full acquisition of storage devices. However, it can also
be a solution for partial and sparse acquisition or triage. Additional research could give better inside
in these subjects and integrate those in RABE. This includes integrating the research of Eric van den
Haak about sparse acquisition with copy-on-read.

REFERENCES 30

References

[1] Owen OConnor,
Deploying forensic tools via PXE,
http://www.sciencedirect.com/science/article/pii/S1742287604000581,
2004,
article.

[2] Martin B. Koopmans and Joshua I. James,
Automated network triage,
http://www.sciencedirect.com/science/article/pii/S1742287613000273,
2013,
paper.

[3] Wikipedia (community),
List CD,
http://en.wikipedia.org/wiki/Live_CD,
2014,
website.

[4] Wikipedia (community),
List of live CDs,
http://en.wikipedia.org/wiki/List_of_live_CDs,
2014,
website.

[5] Christopher Negus,
Live Linux CDs: Building and Customizing Bootables,
Pearson Education Inc.,
ISBN 0132432749,
2007,
book.

[6] Wikipedia (community),
Preboot Execution Environment,
http://en.wikipedia.org/wiki/Preboot_Execution_Environment,
2014,
website.

[7] Wikipedia (community),
Network File System,
http://en.wikipedia.org/wiki/Network_File_System,
2014,
website.

[8] Ubuntu Official Documentation,
Network File System (NFS),
https://help.ubuntu.com/14.04/serverguide/network-file-system.html,
2014,
website.

[9] Wikipedia (community),
Network File System,
http://en.wikipedia.org/wiki/Network_File_System,
2014,
website.

LIST OF FIGURES 31

[10] Ubuntu Official Documentation,
iSCSI Initiator,
https://help.ubuntu.com/14.04/serverguide/iscsi-initiator.html,
2014,
website.

[11] SourceForge,
iSCSI Enterprise Target,
http://iscsitarget.sourceforge.net/,
2010,
website.

[12] Linhost.info,
Configure Ubuntu to serve as an iSCSI target,
http://linhost.info/2012/05/configure-ubuntu-to-serve-as-an-iscsi-target/,
2012,
website.

[13] OpenVPN Technlogies,
OpenVPN Community Software,
https://openvpn.net/index.php/open-source/overview.html,
2014,
website.

[14] Ubuntu Community Help Wiki,
VPN Server,
https://help.ubuntu.com/community/VPNServer/,
2014,
website.

[15] Ubuntu Community Help Wiki,
Live CD Customization,
https://help.ubuntu.com/community/LiveCDCustomization,
2014,
website.

[16] Open-iSCSI,
Open-iSCSI Project,
http://www.open-iscsi.org/,
2005,
website.

List of Figures

1 PXE process . 5
2 NFS concept . 7
3 iSCSI concept . 8
4 Base test environment . 9
5 Client side implementation . 10
6 OpenVPN client configuration file . 11
7 set network interfaces service (code) . 13
8 set iscsi targets service (code) . 14
9 iSCSI target block device configuration . 14
10 Log file content . 15
11 Auto-start order of services . 16
12 Chroot start script (code) . 17

LIST OF TABLES 32

13 Chroot end script (code) . 17
14 Server side implementation . 19
15 OpenVPN server configuration file . 20
16 Overview of connected clients (Firefox web browser) . 21
17 Network, iSCSI and disk information of client (Firefox web browser) 22
18 rabe connect iscsi target script (code) . 23
19 LAN test environment (simplified) . 24
20 Internet test environment (simplified) . 24
21 ewfacquire end result . 26

List of Tables

1 NFS tests (LAN environment) . 26
2 iSCSI tests (LAN environment) . 26
3 NFS and iSCSI tests (internet environment) . 26

33

Appendices

A Purged packages (list)

account-plugin-aim*
account-plugin-jabber*
account-plugin-salut*
account-plugin-yahoo*
activity-log-manager*
aisleriot
brasero*
checkbox-gui
cheese*
cheese-common*
deja-dup*
empathy*
eog
evince*
evolution-data-server-online-accounts
example-content
firefox*
gcr
gnome-bluetooth*
gnome-contacts
gnome-font-viewer
gnome-mahjongg
gnome-mines
gnome-orca
gnome-power-manager
gnome-sudoku
gucharmap*
ibus
im-config
indicator-bluetooth*v landscape-client-ui-install
language-selector-gnome
libcheese-gtk23*
libreoffice*
mcp-account-manager-uoa*
nautilus-sendto-empathy
network-manager
network-manager*
printer-driver-foo2zjs-common*
remmina*
seahorse*
shotwell*
simple-scan*
software-properties-gtk*
system-config-printer-gnome
thunderbird*
totem*
transmission-gtk
ubiquity
unity-control-center-signon*
unity-lens-photos*

A Purged packages (list) 34

unity-scope-gdrive
unity-webapps*
update-manager*
vino
webaccounts-extension-common*
webbrowser-app*
xdiagnose
xterm
xul-ext-ubufox
xul-ext-webaccounts*
yelp*

B send client information (code) 35

B send client information (code)

1 #!/ b i n / bash
2
3 # SERVICE : s e n d c l i e n t i n f o r m a t i o n
4 # USAGE : s t a r t
5
6 c a s e ”$1” i n
7 s t a r t)
8 echo \ [s e n d c l i e n t i n f o r m a t i o n \] s t a r t i n g s e r v i c e
9

10 echo \ [s e n d c l i e n t i n f o r m a t i o n \] mounting NFS s h a r e
11
12 # mount t he NFS s h a r e
13 mkdir /mnt/ n f s
14 mount 1 0 . 8 . 0 . 1 : <NFSPATH> /mnt/ n f s
15
16 echo \ [s e n d c l i e n t i n f o r m a t i o n \] append ing network i n f o r m a t i o n \(

i f c o n f i g \)
17
18 # e x t r a c t IP a d d r e s s (eth0) from i f c o n f i g
19 IP=$ (i f c o n f i g eth0 | gr ep − i ’ i n e t addr ’ | awk ’{ p r i n t $2 } ’ | sed ’

s / addr : / / g ’)
20
21 # e x t r a c t IP a d d r e s s (tun0) from i f c o n f i g
22 VPNIP=$ (i f c o n f i g tun0 | gr ep − i ’ i n e t addr ’ | awk ’{ p r i n t $2 } ’ |

sed ’ s / addr : / / g ’)
23
24 # d ate and t ime (o f s t a r t / c r e a t i o n)
25 DATE=$ (d ate +%Y%m%d%H%M)
26
27 # f i l e name o f l o g f i l e
28 LOGNAME=$ (echo ”$DATE”−”$IP”−”$VPNIP” | sed ’ s /\ . / /g ’)
29 LOGFILE=/mnt/ n f s /”$LOGNAME” . t x t
30
31 # add / append network i n f o r m a t i o n to l o g f i l e
32 echo IP ADDRESS : $IP > $LOGFILE
33 echo VPN IP ADDRESS : $VPNIP >> $LOGFILE
34
35 echo \ [s e n d c l i e n t i n f o r m a t i o n \] append ing i S C S I t a r g e t s \(\/ e t c \/

i e t \/ i e t d . c o n f \)
36
37 # append i S C S I t a r g e t s to l o g f i l e
38 echo ”” >> $LOGFILE
39 echo ” i S C S I TARGETS: ” >> $LOGFILE
40 echo ”==============” >> $LOGFILE
41 c a t / e t c / i e t / i e t d . c o n f | gr ep ’ˆ Target ’ | sed ’ s / Target //g ’ >>

$LOGFILE
42
43 echo \ [s e n d c l i e n t i n f o r m a t i o n \] append ing d i s k i n f o r m a t i o n \(l shw

\)
44
45 # append d i s k i n f o r m a t i o n to l o g f i l e
46 echo ”” >> $LOGFILE

B send client information (code) 36

47 echo ”DISK INFORMATION: ” >> $LOGFILE
48 echo ”=================” >> $LOGFILE
49 l shw −c d i s k >> $LOGFILE
50
51 echo \ [s e n d c l i e n t i n f o r m a t i o n \] unmounting NFS s h a r e
52
53 # unmount th e NFS s h a r e
54 umount /mnt/ n f s
55 ; ;
56
57 ∗)
58 echo SERVICE : s e n d c l i e n t i n f o r m a t i o n
59 echo $”USAGE : $0 { s t a r t }”
60 e x i t 1
61
62 e s a c
63 e x i t 0

C Authoring tool 0.1 (code) 37

C Authoring tool 0.1 (code)

1 #!/ b i n / bash
2
3 # check arguments
4 i f [[$1 == ”−−h e l p ”]] ;
5 then
6 echo ””
7 echo Remote A c q u i s i t i o n Boot Env i ronment \(RABE\) a u t h o r i n g t o o l
8 echo ===
9 echo ””

10 echo This t o o l p r o v i d e s an i n t e r f a c e f o r r e m a s t e r i n g the RABE i s o
f i l e w i t h network , i p t a b l e s and OpenVPN s e t t i n g s .

11 echo ””
12 echo Syntax : . / r a b e a u t h o r i n g t o o l \ [i s o− f i l e \] \ [i s o−d e s t i n a t i o n \]

\ [pxe−d e s t i n a t i o n \]
13 echo ””
14 echo ” [i s o− f i l e] t he s o u r c e RABE i s o f i l e ”
15 echo ” [i s o−d e s t i n a t i o n] t he d e s t i n a t i o n path i n c l u d i n g f i l e name

f o r th e i s o f i l e ”
16 echo ” [pxe−d e s t i n a t i o n] t he d e s t i n a t i o n path f o r t he pxe

e x t r a c t i o n o f th e i s o f i l e ”
17 echo ””
18 e x i t
19 e l s e
20 i f [[−z $1]] ;
21 then
22 echo ””
23 echo RABE a u t h o r i n g t o o l r e q u i r e s a RABE i s o f i l e as an

argument ! E x i t i n g !
24 echo ””
25 e x i t
26 e l s e
27 ISOSRC=$1
28 f i
29 i f [[−z $2]] ;
30 then
31 ISODST =”. ./ r a b e $ (d at e +%Y%m%d%H%M) . i s o ”
32 e l s e
33 ISODST =”. ./ $2”
34 f i
35 f i
36
37 # mount i s o
38 mkdir mnt i so
39 mount −o l o o p $ISOSRC mnt i so
40
41 # e x t r a c t i s o c o n t e n t s
42 mkdir l i v e c d
43 r s y n c −−e x c l u d e=/c a s p e r / f i l e s y s t e m . s q u a h s h f s −a mnt i so / l i v e c d
44
45 # e x t r a c t s q u a s h f s
46 mkdir e d i t
47 u n s q u a s h f s mnt i so / c a s p e r / f i l e s y s t e m . s q u a s h f s

C Authoring tool 0.1 (code) 38

48 mv s q u a s h f s−r o o t /∗ e d i t
49
50 # copy network s e t t i n g s f o r c h r o o t
51 cp / e t c / r e s o l v . c o n f e d i t / e t c /
52 cp / e t c / h o s t s e d i t / e t c /
53
54 # copy c h r o o t s c r i p t s
55 cp s c r i p t s / s t a r t e d i t /
56 cp s c r i p t s / end e d i t /
57
58 # mount dev f o r c h r o o t
59 mount −−b i n d / dev / e d i t / dev
60
61 echo ””
62 echo Type . / s t a r t to s t a r t work ing i n th e c h r o o t e n v i r o n m e n t .
63 echo ””
64
65 # e n t e r c h r o o t
66 c h r o o t e d i t
67
68 # umount dev f o r c h r o o t
69 umount e d i t / dev | | umount − l f e d i t / dev
70
71 # remove c h r o o t s c r i p t s
72 rm e d i t / s t a r t
73 rm e d i t / end
74
75 # r e g e n e r a t e m a n i f e s t
76 chmod +w l i v e c d / c a s p e r / f i l e s y s t e m . m a n i f e s t
77 c h r o o t e d i t dpkg−q u e r y −W −−showformat =’${Package} ${V e r s i o n }\n ’ > l i v e c d /

c a s p e r / f i l e s y s t e m . m a n i f e s t
78 cp l i v e c d / c a s p e r / f i l e s y s t e m . m a n i f e s t l i v e c d / c a s p e r / f i l e s y s t e m . m a n i f e s t−

d e s k t o p
79 sed − i ’/ u b i q u i t y /d ’ l i v e c d / c a s p e r / f i l e s y s t e m . m a n i f e s t−d e s k t o p
80 sed − i ’/ c a s p e r /d ’ l i v e c d / c a s p e r / f i l e s y s t e m . m a n i f e s t−d e s k t o p
81
82 # compress f i l e s y s t e m
83 rm l i v e c d / c a s p e r / f i l e s y s t e m . s q u a s h f s
84 mksquashfs e d i t l i v e c d / c a s p e r / f i l e s y s t e m . s q u a s h f s
85
86 # update f i l e s y s t e m . s i z e f i l e
87 p r i n t f $ (du −sx −−b lock−s i z e =1 e d i t | c ut −f 1) > l i v e c d / c a s p e r / f i l e s y s t e m .

s i z e
88
89 # update md5sum . t x t f i l e
90 cd l i v e c d /
91 f i n d −t y p e f −p r i n t 0 | sudo x a r g s −0 md5sum | gr ep −v i s o l i n u x / boot . c a t |

t e e md5sum . t x t
92
93 # c r e a t e new i s o
94 m k i s o f s −D −r −V ”$IMAGE NAME” −cache−i n o d e s −J − l −b i s o l i n u x / i s o l i n u x . b i n

−c i s o l i n u x / boot . c a t −no−emul−boot −boot−l oad−s i z e 4 −boot−i n f o−t a b l e −
o $ISODST .

95

C Authoring tool 0.1 (code) 39

96 # go to p a r e n t d i r e c t o r y
97 cd . .
98
99 # unmount i s o

100 umount mnt i so
101
102 # remove d i r e c t o r i e s
103 rm −R mnt i so
104 rm −R l i v e c d
105 rm −R e d i t
106 rm −R s q u a s h f s−r o o t
107
108 # e x t r a c t new i s o f o r PXE
109 echo ””
110 echo E x t r a c t f i l e s f o r PXE \ [y/n \] :
111 r e a d PXE
112
113 i f [[$PXE == y∗]] ;
114 then
115 i f [[−z $3]] ;
116 then
117 PXEDST=”pxe /”
118 mkdir $PXEDST
119 e l s e
120 PXEDST=$3
121 f i
122
123 # mount new i s o
124 mkdir mntnewiso
125 mount −o l o o p $ (echo $ISODST | sed ’ s / . .\/ / / g ’) mntnewiso
126
127 # copy f i l e s f o r pxe
128 cp −R mntnewiso /∗ $PXEDST
129
130 # unmount i s o
131 umount mntnewiso
132
133 # remove d i r e c t o r y
134 rm −R mntnewiso
135 e l s e
136 e x i t
137 f i

D Authoring tool 0.4 (code) 40

D Authoring tool 0.4 (code)

1 #!/ b i n / bash
2
3 # check arguments
4 i f [[$1 == ”−−h e l p ”]] ;
5 then
6 echo ””
7 echo Remote A c q u i s i t i o n Boot Env i ronment \(RABE\) a u t h o r i n g t o o l
8 echo ===
9 echo ””

10 echo This t o o l p r o v i d e s an i n t e r f a c e f o r r e m a s t e r i n g the RABE i s o
f i l e w i t h network , i p t a b l e s and OpenVPN s e t t i n g s .

11 echo ””
12 echo Syntax : . / r a b e a u t h o r i n g t o o l \ [i s o− f i l e \] \ [i s o−d e s t i n a t i o n \]

\ [pxe−d e s t i n a t i o n \]
13 echo ””
14 echo ” [i s o− f i l e] t he s o u r c e RABE i s o f i l e ”
15 echo ” [i s o−d e s t i n a t i o n] t he d e s t i n a t i o n path i n c l u d i n g f i l e name

f o r th e i s o f i l e ”
16 echo ” [pxe−d e s t i n a t i o n] t he d e s t i n a t i o n path f o r t he pxe

e x t r a c t i o n o f th e i s o f i l e ”
17 echo ””
18 e x i t
19 e l s e
20 i f [[−z $1]] ;
21 then
22 echo ””
23 echo RABE a u t h o r i n g t o o l r e q u i r e s a RABE i s o f i l e as an

argument ! E x i t i n g !
24 echo ””
25 e x i t
26 e l s e
27 ISOSRC=$1
28 f i
29 i f [[−z $2]] ;
30 then
31 ISODST =”. ./ r a b e $ (d at e +%Y%m%d%H%M) . i s o ”
32 e l s e
33 ISODST =”. ./ $2”
34 f i
35 f i
36
37 # s e t r e g u l a r e x p r e s s i o n p a t t e r n f o r IP a d d r e s s
38 IPPATTERN

=”ˆ[1−2]? [0−9]? [0−9]{1}\ . [1−2]? [0−9]? [0−9]{1}\ . [1−2]? [0−9]? [0−9]{1}\ . [1−2]? [0−9]? [0−9]{1}
$”

39
40 echo ””
41 echo \ [START USER INPUT\]
42
43 # s e t network c o n f i g u r a t i o n
44 echo ””
45 echo Set s t a t i c network c o n f i g u r a t i o n \ [y/n \] :

D Authoring tool 0.4 (code) 41

46 r e a d NETWORK
47
48 i f [[$NETWORK == y∗]] ;
49 then
50 # s e t s t a t i c IP a d d r e s s
51 echo ””
52 u n t i l [[$IPADDRESS =˜ $IPPATTERN]]
53 do
54 echo E n t e r th e IP a d d r e s s o f th e c l i e n t

\[###.###.###.###\]:
55 r e a d IPADDRESS
56 done
57
58 # s e t netmask
59 echo ””
60 u n t i l [[$NETMASK =˜ $IPPATTERN]]
61 do
62 echo E n t e r th e netmask o f th e network \[###.###.###.###\]:
63 r e a d NETMASK
64 done
65
66 # s e t gateway
67 echo ””
68 u n t i l [[$GATEWAY =˜ $IPPATTERN]]
69 do
70 echo E n t e r th e gateway o f t he network \[###.###.###.###\]:
71 r e a d GATEWAY
72 done
73 f i
74
75 # s e t IP a d d r e s s o f remote s e r v e r
76 echo ””
77 u n t i l [[$SERVER =˜ $IPPATTERN]]
78 do
79 echo E n t e r th e IP a d d r e s s o f th e remote s e r v e r \[###.###.###.###\]:
80 r e a d SERVER
81 done
82
83 echo ””
84 echo Are t he OpenVPN s e r v e r c e r t i f i c a t e \(ca . c r t \) , key \(ca . key \) , i n d e x

\(i n d e x . t x t \) and s e r i a l i n th e openvpn / k e y s f o l d e r \ [y /n \] :
85 r e a d OPENVPN
86
87 i f [[$OPENVPN == y∗]] ;
88 then
89 # copy temporary easy−r s a f i l e s
90 cp / u s r / s h a r e / easy−r s a / b u i l d−key openvpn /
91 cp / u s r / s h a r e / easy−r s a / o p e n s s l −1 . 0 . 0 . c n f openvpn /
92 cp / u s r / s h a r e / easy−r s a / p k i t o o l openvpn /
93 cp / u s r / s h a r e / easy−r s a / v a r s openvpn /
94 cp / u s r / s h a r e / easy−r s a / w h i c h o p e n s s l c n f openvpn /
95
96 # s e t s o u r c e f i l e
97 cd openvpn

D Authoring tool 0.4 (code) 42

98 s o u r c e v a r s
99

100 # g e n e r a t e c l i e n t c e r t i f i c a t e and key
101 . / b u i l d−key r a b e c l i e n t
102
103 # go to p a r e n t d i r e c t o r y
104 cd . .
105 e l s e
106 echo ””
107 echo RABE a u t h o r i n g t o o l r e q u i r e s OpenVPN s e r v e r ca . c r t , ca . key ,

i n d e x . t x t and s e r i a l f i l e s i n openvpn / k e y s f o l d e r ! E x i t i n g !
108 echo ””
109 e x i t
110 f i
111
112 # s e t NFS s h a r e path
113 echo ””
114 echo Set NFS s h a r e path \ [y/n \] :
115 r e a d NFS
116
117 i f [[$NFS == y∗]] ;
118 then
119 echo ””
120 echo E n t e r t he NFS s h a r e path \[\/\< path \/ to \/ n f s \/ s h a r e \>\/\] :
121 r e a d NFSPATH
122 NFSPATH=$ ($NFSPATH | sed ’ s /\//\\\// g ’)
123 e l s e
124 NFSPATH=”\/mnt\/ n f s r o o t \/”
125 f i
126
127 echo ””
128 echo \ [END USER INPUT\]
129 echo ””
130
131 # mount i s o
132 mkdir mnt i so
133 mount −o l o o p $ISOSRC mnt i so
134
135 # e x t r a c t i s o c o n t e n t s
136 mkdir l i v e c d
137 r s y n c −−e x c l u d e=/c a s p e r / f i l e s y s t e m . s q u a h s h f s −a mnt i so / l i v e c d
138
139 # e x t r a c t s q u a s h f s
140 mkdir e d i t
141 u n s q u a s h f s mnt i so / c a s p e r / f i l e s y s t e m . s q u a s h f s
142 mv s q u a s h f s−r o o t /∗ e d i t
143
144 # copy network s e t t i n g s f o r c h r o o t
145 cp / e t c / r e s o l v . c o n f e d i t / e t c /
146 cp / e t c / h o s t s e d i t / e t c /
147
148 # copy c h r o o t s c r i p t s
149 cp s c r i p t s / s t a r t e d i t /
150 cp s c r i p t s / end e d i t /

D Authoring tool 0.4 (code) 43

151
152 # mount dev f o r c h r o o t
153 mount −−b i n d / dev / e d i t / dev
154
155 echo ””
156 echo Type . / s t a r t to s t a r t work ing i n th e c h r o o t e n v i r o n m e n t .
157 echo ””
158
159 # e n t e r c h r o o t
160 c h r o o t e d i t
161
162 # umount dev f o r c h r o o t
163 umount e d i t / dev | | umount − l f e d i t / dev
164
165 # remove c h r o o t s c r i p t s
166 rm e d i t / s t a r t
167 rm e d i t / end
168
169 # append network s e t t i n g s and r e l a t e d f i r e w a l l r u l e
170 i f [[$NETWORK == y∗]] ;
171 then
172 # append network s e t t i n g s to c o n f i g u r a t i o n f i l e (s t a t i c IP)
173 echo i f a c e eth0 i n e t s t a t i c >> e d i t / e t c / network / i n t e r f a c e s n e w
174 echo a d d r e s s $IPADDRESS >> e d i t / e t c / network / i n t e r f a c e s n e w
175 echo netmask $NETMASK >> e d i t / e t c / network / i n t e r f a c e s n e w
176 echo gateway $GATEWAY >> e d i t / e t c / network / i n t e r f a c e s n e w
177 e l s e
178 # append network s e t t i n g s to c o n f i g u r a t i o n f i l e (DHCP)
179 echo i f a c e eth0 i n e t dhcp >> e d i t / e t c / network / i n t e r f a c e s n e w
180
181 # append f i r e w a l l r u l e to c o n f i g u r a t i o n f i l e (a l l o w DHCP)
182 echo −A INPUT − i e th0 −p udp −−d p o r t 6 7 : 6 8 −−s p o r t 6 7 : 6 8 −m s t a t e

−−s t a t e NEW, ESTABLISHED − j ACCEPT >> e d i t / e t c / i p t a b l e s / r u l e s . v4
183 f i
184
185 # append f i r e w a l l r u l e s to c o n f i g u r a t i o n f i l e (a l l o w a l l remote s e r v e r)
186 echo −A INPUT − i e th0 −s $SERVER −m s t a t e −−s t a t e NEW, RELATED, ESTABLISHED −

j ACCEPT >> e d i t / e t c / i p t a b l e s / r u l e s . v4
187
188 i f [[$OPENVPN == y∗]] ;
189 then
190 # copy /move OpenVPN c l i e n t c e r t i f i c a t e and key f i l e s
191 cp openvpn / k e y s / ca . c r t e d i t / e t c / openvpn
192 mv openvpn / k e y s / r a b e c l i e n t . c r t e d i t / e t c / openvpn
193 mv openvpn / k e y s / r a b e c l i e n t . key e d i t / e t c / openvpn
194
195 # r e p l a c e i n OpenVPN c l i e n t c o n f i g u r a t i o n f i l e
196 sed − i ” s/<SERVER>/$SERVER/g” e d i t / e t c / openvpn / r a b e c l i e n t . c o n f
197
198 # append f i r e w a l l r u l e s to c o n f i g u r a t i o n f i l e (a l l o w a l l OpenVPN

s e r v e r)
199 echo −A INPUT − i tun0 −s 1 0 . 8 . 0 . 1 −m s t a t e −−s t a t e NEW, RELATED,

ESTABLISHED − j ACCEPT >> e d i t / e t c / i p t a b l e s / r u l e s . v4
200

D Authoring tool 0.4 (code) 44

201 # remove temporary easy−r s a f i l e s
202 rm openvpn / b u i l d−key
203 rm openvpn / o p e n s s l −1 . 0 . 0 . c n f
204 rm openvpn / p k i t o o l
205 rm openvpn / v a r s
206 rm openvpn / w h i c h o p e n s s l c n f
207
208 # remove temporary s i g n i n g r e q u e s t f i l e
209 rm openvpn / k e y s / r a b e c l i e n t . c s r
210 f i
211
212 # append f i r e w a l l r u l e s to c o n f i g u r a t i o n f i l e (b l o c k a l l o t h e r)
213 echo −A INPUT − j DROP >> e d i t / e t c / i p t a b l e s / r u l e s . v4
214 echo COMMIT >> e d i t / e t c / i p t a b l e s / r u l e s . v4
215
216 # r e p l a c e i n s e n d c l i e n t i n f o r m a t i o n s e r v i c e
217 sed − i ” s/<NFSPATH>/$NFSPATH/g” e d i t / e t c / i n i t . d/ s e n d c l i e n t i n f o r m a t i o n
218
219 # r e g e n e r a t e m a n i f e s t
220 chmod +w l i v e c d / c a s p e r / f i l e s y s t e m . m a n i f e s t
221 c h r o o t e d i t dpkg−q u e r y −W −−showformat =’${Package} ${V e r s i o n }\n ’ > l i v e c d /

c a s p e r / f i l e s y s t e m . m a n i f e s t
222 cp l i v e c d / c a s p e r / f i l e s y s t e m . m a n i f e s t l i v e c d / c a s p e r / f i l e s y s t e m . m a n i f e s t−

d e s k t o p
223 sed − i ’/ u b i q u i t y /d ’ l i v e c d / c a s p e r / f i l e s y s t e m . m a n i f e s t−d e s k t o p
224 sed − i ’/ c a s p e r /d ’ l i v e c d / c a s p e r / f i l e s y s t e m . m a n i f e s t−d e s k t o p
225
226 # compress f i l e s y s t e m
227 rm l i v e c d / c a s p e r / f i l e s y s t e m . s q u a s h f s
228 mksquashfs e d i t l i v e c d / c a s p e r / f i l e s y s t e m . s q u a s h f s
229
230 # update f i l e s y s t e m . s i z e f i l e
231 p r i n t f $ (du −sx −−b lock−s i z e =1 e d i t | c ut −f 1) > l i v e c d / c a s p e r / f i l e s y s t e m .

s i z e
232
233 # update md5sum . t x t f i l e
234 cd l i v e c d /
235 f i n d −t y p e f −p r i n t 0 | sudo x a r g s −0 md5sum | gr ep −v i s o l i n u x / boot . c a t |

t e e md5sum . t x t
236
237 # c r e a t e new i s o
238 m k i s o f s −D −r −V ”$IMAGE NAME” −cache−i n o d e s −J − l −b i s o l i n u x / i s o l i n u x . b i n

−c i s o l i n u x / boot . c a t −no−emul−boot −boot−l oad−s i z e 4 −boot−i n f o−t a b l e −
o $ISODST .

239
240 # go to p a r e n t d i r e c t o r y
241 cd . .
242
243 # unmount i s o
244 umount mnt i so
245
246 # remove d i r e c t o r i e s
247 rm −R mnt i so
248 rm −R l i v e c d

D Authoring tool 0.4 (code) 45

249 rm −R e d i t
250 rm −R s q u a s h f s−r o o t
251
252 # e x t r a c t new i s o f o r PXE
253 echo ””
254 echo E x t r a c t f i l e s f o r PXE \ [y/n \] :
255 r e a d PXE
256
257 i f [[$PXE == y∗]] ;
258 then
259 i f [[−z $3]] ;
260 then
261 PXEDST=”pxe /”
262 mkdir $PXEDST
263 e l s e
264 PXEDST=$3
265 f i
266
267 # mount new i s o
268 mkdir mntnewiso
269 mount −o l o o p $ (echo $ISODST | sed ’ s / . .\/ / / g ’) mntnewiso
270
271 # copy f i l e s f o r pxe
272 cp −R mntnewiso /∗ $PXEDST
273
274 # unmount i s o
275 umount mntnewiso
276
277 # remove d i r e c t o r y
278 rm −R mntnewiso
279 e l s e
280 e x i t
281 f i

