

ElectroMagnetic Fault Injection Characterization

George Thessalonikefs
george.thessalonikefs@os3.nl

University of Amsterdam
System & Network Engineering MSc

February 10, 2014

mailto:george.thessalonikefs@os3.nl

2

Abstract

This paper tries to characterize the effects of Electro Magnetic Fault
Injection in embedded devices. Transient electromagnetic pulses in the
surface of an ARM processor are used in order to induce faults in the
execution of software. Data-processing and Memory instructions are the
targets of the attack. Faults can be found during the fetch, decode, write-
back phases.

3

Contents

1 Introduction .. 4

1.1 Research question ... 5

1.2 Scope ... 5

2 Approach .. 6

2.1 Glitching parameters ... 6

2.2 Target .. 6

2.3 Code Instrumentation .. 7

2.4 Setup .. 9

2.5 Note on glitch timing ... 10

2.6 Glitch types .. 11

3 Scans of the chip ... 12

3.1 Full area scan ... 12

3.2 Scan of the die area ... 13

3.3 Conclusion ... 15

4 Examination of glitch cases ... 16

4.1 Prefetch/Data abort exceptions .. 16

4.2 Undefined instruction exception ... 16

4.3 Logical/Shift operations skipped ... 16

4.4 Comparison with Voltage glitching ... 17

5 Conclusion .. 18

6 Future work .. 19

4

1 Introduction

Fault injection attacks are proven to be practical and pose a risk against the secure operation of
embedded devices. Contrary to Side Channel Attacks where the side channels (power consumption,
electro magnetic radiation, etc) of an Integrated Circuit (IC) are observed in order to reveal
information, Fault Injection attacks try to have an active impact on the IC’s operation by
skipping/corrupting security operations, corrupting registers and in general perturbating the IC’s
core operations. They are often used to bypass protection measures such as PIN verification or even
to extract secret information (eg. private keys). Examples of such attacks can be found in [1], [2]
and [3]. Unfortunately, reasoning what the injected fault causes inside the chip is very difficult and
usually only the result is clearly describable (e.g. successful bypass of a security feature).
 Common methods of fault injection into an Integrated Circuit (IC) such as smart cards or
embedded devices are the following:

 Voltage/Clock fault injection, by introducing dips or spikes in the Vcc/Clock line of
the target

 Optical fault injection, by targeting certain areas of the IC with a laser
 Temperature fault injection, by heating/cooling the IC outside of its thermal

tolerance range
 Electromagnetic fault injection, by using a magnetic field close to the IC.

Voltage/Clock and Optical fault injection techniques are the most common and succesfull

attacks against ICs. They are also the most countered ones by using glitch sensors and light sensors
respectively for example. Glitch sensors may not allow the voltage in the supply/clock line to
exceed a certain range and light sensors may destroy the private data if optical fault injection is
detected. Both these fault injection techniques require preparation for the target, leaving evidence
of intrusion, in the form of isolating the power/clock lines in the case of voltage/clock fault
injection or decapsulating the chip in the case of optical fault injection.

Electro Magnetic Fault Injection (EMFI) can bypass the aforementioned countermeasures
and by its nature is harder to detect during run-time, leaving little or no evidence. At the time of
writing and to the author’s knowledge there are no specific countermeasures for EMFI. Generic
countermeasures during software implementation can be used (eg. always validating input, state of
registers, etc) in order to make fault injections in general harder to accomplish but not impossible.

Temperature fault injection is the hardest to achieve and control because of the exact timing
needed between the target operations and the temperature variations that are to take place.

As the title of the paper implies, the research will focus only on EMFI. Previous research [6],
discusses how EMFI works, confirms its feasibility on smart cards and embedded devices and
presents the correlation between different glitching parameters (type of coil, distance to the target,
etc) and the occurrence of faulty behavior.

5

1.1 Research question
Electro Magnetic Fault Injection (EMFI) is quite recent and although already successfully used to
attack software implementations of the Chinese Remainder Theorem(CRT)-based RSA algorithm as
shown on [1], or perturbate the output of a True Random Number Generator(TRNG) as shown on
[2], little can be said about the state of the chip during the injection phase. The aim of this research
is to try and give an answer to the following question:

What are the effects of Electro Magnetic Fault Injection (EMFI) on embedded chips?

Previous research [4], focused on understanding the effects of voltage fault injection on a specific
target. This research will compare the effects of EMFI with voltage fault injection where possible.

1.2 Scope
Due to the research’s limited time of 4 weeks the scope of the research has to be carefully defined.
The target chip of the research will be Freescale’s i.MX6S, a single core applications processor built
around the ARM Cortex-A9 IP core. Riscure’s own Electro Magnetic Fault Injection Transient Probe
will be used to conduct the experiments.

Inducing glitches into the target is expected to yield a multitude of results indicating the
faulty operation of the target. Only the ones that we can reason about based on the experiment’s
parameters are to be discussed.

EMFI may follow various principles: magnetic transient pulses or harmonic electromagnetic
injection. Magnetic transient pulses induce a voltage glitch in any circuit loop under the coil, which
may change a transistor status instantaneously from ‘OFF’ to ‘ON’, or vice versa depending of the
polarity of the voltage glitch and type of transistor, and thus can target specific sensitive
operations[5].

Harmonic electromagnetic injection, on the other hand, with constant injection of EM waves
in a set frequency, targets the entire operation of parts of the chip such as ring oscillators used for
True Random Number Generators [2].

Harmonic electromagnetic injection is out of the scope of this research.

6

2 Approach

In order to study the effects of EMFI several research parameters have to be defined. Namely, the
EMFI hardware setup required, the glitching parameters used with the EMFI setup, the target chip
that the tests will be run on, the executable code that we will try to glitch and lastly the timing
parameters to be able to target specific areas in that code.

2.1 Glitching parameters
A number of glitching parameters will be used in order to define the glitch we are trying to produce.
Namely:

Type of coil
The option of using 1.5mm or 4mm diameter coil was present. The 4mm diameter coil was used. As
shown in previous research [6], “the 1.5mm diameter coil did not produce any glitches. This is due
to the thicker encapsulation of the chip, which influences the distance between the coil and the
target”.

Two-dimensional coordinates
The whole area of the chip was the input for the initial scans. Based on the results, more precise
coordinates were given to investigate specific areas of the chip. The orientation of the chip was such
that the corner where pin 1 resides (marked by a dot on top of this chip) is presented with
coordinates of (0, Ymax) in the following diagrams.

Glitch source power (hardware dependent)
The power supplied to the coil. It influences the power and range of the produced magnetic field.
Varying values will be set during the tests in order to gather as much diverse data as possible.

Glitch duration (hardware dependent)
The duration, in nanoseconds, where power is provided to the coil. Varying values will be set during
the tests in order to gather as much diverse data as possible. The minimum value that could be used
and result in current running through the coil, measured with oscilloscope, was 12 nanoseconds.

Glitch offset
The time offset, in nanoseconds, after a trigger that a glitch is to take place. Varying values will be
set during the tests in order to gather as much diverse data as possible.

2.2 Target
The target of the research is the 32-bit ARM Cortex-A9 processor which implements the ARMv7-A
architecture based on the RISC architecture. The Cortex-A9, being one of the state of the art
processors used in smartphones, tablets, home media players, etc, has many advanced features
(such as floating point processing engine) that will not be used during this research. Thus, features
of the Cortex-A9 processor relative to the research include:

Clock speed
The Cortex-A9 was used with a clock speed of 792 MHz. This results in approximately 1,26
nanoseconds per clock cycle.

7

Pipeline
The ARM Cortex-A9 has a double-issue superscalar, out-of-order, speculating 8-stage pipeline.

Double-issue superscalar refers to the fact that in every cycle two instructions can be
inserted in the pipeline simultaneously.

Out-of-order refers to the fact that during execution the processor can choose to execute
non-sequential but data-independant instructions in order to improve its efficiency.

Speculating refers to the fact that the pipeline implements a branch prediction mechanism
in order to improve its efficiency. When a branch instruction is encountered, the processor decides
if the branch is likely to be taken or not, based on the branch prediction mechanism, and inserts the
respective instructions into the pipeline. If the condition of the branch was mispredicted, the now
invalid instructions already in the pipeline are dropped, replaced by No Operation(NOP)
instructions, introducing a delay until the correct instructions enter the pipeline.

Registers
The following 16 x 32-bit registers available in the Cortex-A9 were used.
Registers R0-R12 are general purpose registers.
Register R13, also referred as SP, is the Stack Pointer.
Register R14, also referred as LR, is the Link Register.
Register R15, also referred as PC, is the Program Counter.

Barrel Shifter
It provides a mechanism to carry out shift operations. It can be used in conjunction with other
instructions to provide shift operations on the second operant (immediate value or register) at the
cost of execution time.

Instruction execution times
All instructions used during the various tests of the research are data-processing instructions and
specifically: MOV (move), MVN (move negative), LSL (Left Shift Logical), EOR (Exclusive OR), BIC (Bit
Clear). The barrel shifter was not used in conjunction with any instruction resulting in 1
cycle/instruction execution time for the aforementioned instructions.

2.3 Code Instrumentation
In order to be able to observe and reason about glitches happening during the tests, a comparison
between the correct and the faulty output is required. For this purpose a test program was written
in ARM assembly. Assembly was used a) in order to escape the optimization offered by the C’s
compiler that may change the execution order of the code, the registers used, etc, and b) in order to
have an as close as possible view of the actual instructions executed in the processor.
 The instrumentation is the following:

1. Register initialization
2. Trigger ON
3. Critical Code
4. Trigger OFF
5. Send the data

Register initialization
R4-R11 will not be used and will be set to known values.

8

R0 and R1 will be used during the critical code phase and will be assigned 0xFFFFFFFF and 0x01
respectively.
R2 and R3 will be used for the Trigger ON/OFF phases and will be assigned specific values
according to the GPIO specifications of the board. R3 will contain the address in memory where a
specific bank of pins is mapped and R2 will contain the value to assign to the target pin.
R12-R15 are crucial to the processor’s state and execution and will be set by the processor. They are
set in a deterministic way and they are expected to have the same values in each execution of the
code.

Trigger ON/OFF
During this phase a certain GPIO pin will be altered to inform about the entrance/exit to the critical
code phase.

Send the data
As a last step, data will be sent through serial communication from the target. The data will contain
the aforementioned registers and their respective values.

Critical Code
This is the part of the code that we are trying to glitch and observe the results. It uses the R0 and R1
registers that were initialized earlier. An unrolled loop of roughly 32 pairs of instructions resides in
this area. Each instruction pair consists of a logical operation followed by a shift operation.
 The logical operation is a BIC instruction between R0 and R1. BIC (Bit Clear) is a synonym
for an AND NOT logical operation. The result of the BIC instruction between two operands is to clear
the bits (flip to ‘0’) of the first operand that in the second operand are represented by ‘1’. As an
example if the values of the first and second operand are 0b01101 and 0b11000 respectively, the
result would be 0b00101.
 The shift operation is a LSL (Left Shift Logical) instruction between R1 and the immediate
value 1. This will result in R1 to be shifted 1-bit to the left, filling the rightmost bit with ‘0’.

As an example, an illustration follows of the first three executions of these instruction pairs.
The values are represented in binary for simplicity and only the 4-least significant bits are
presented:

1. R0: 1111 R1: 0001
2. R0: 1110 R1: 0010
3. R0: 1100 R1: 0100

 At the end of the execution we expect the following correct output (registers contain whole
words now and are represented in hexadecimal notation):

R0: 00000000 R1: 80000000

 If a BIC instruction is not executed correctly we expect to see a non-‘0’ bit somewhere in
the value of R0. Based on that bit we can deduce the time the glitch happened, meaning which
specific instruction was hit.

If a glitch happens during an LSL instruction it is impossible to reason about the specific
LSL instruction that was glitched. But given the glitch offset known from a nearby glitched BIC
instruction we can reason that the previous or the next LSL instruction relative to that BIC
instruction was glitched.

9

A second version of the same code was used. The only difference between the two versions is that
the BIC instruction was replaced by an EOR (Exclusive OR) instruction. The expected final result
remains the same. This second version was used for verification purposes. From now on we will
refer to the two versions as BIC version and EOR version respectively.

2.4 Setup
To perform the tests during the research, an EMFI setup was composed and used. This setup is
illustrated in a schematic in Figure 2.1. A picture of the setup can be seen in Figure 2.2. Components
of the setup include:

Figure 2.1: Schematic overview of the test setup

PC
Riscure’s proprietary software, Inspector, is used to orchestrate all the other devices of the setup
and record the results. It communicates through serial with the EM Probe Station in order to
pass/receive coordinates, and with the target in order to issue the command to execute the test
code and receive the result. It communicates through USB with the VC Glitcher in order to pass the
glitching parameters.

Riscure’s EM Probe Station
It offers XY movement to the attached device. The attached device in this setup is Riscure’s EM
Probe. The target is securely placed at the base of the EM Probe Station. The EM Probe Station
offers a step size of 2.5μm and repetition error smaller than 50 μm to allow test repeatability [9].

10

Riscure’s VC Glitcher
It is the main control unit during the tests. After the glitch parameters has been passed from
Inspector it is responsible to generate the configurable glitch by passing the glitch duration and
glitch source power parameters to the EM Probe when receiving a trigger signal from the target. In
case the target becomes unresponsive, it sends a signal to the reset line of the target.

Riscure’s EM Probe
It generates the electromagnetic field by passing current to the coil attached to its end. The
maximum voltage over coil is 450V (+/- 10%) and the maximum current through coil of probe tip
(4mm tip) is 48A (+/- 10%). The EM pulse power can be controlled for 5-100% of total power. For
reaching full power, a pulse width of at least 50ns is required [5].

Figure 2.2: The EMFI setup

2.5 Note on glitch timing
As seen on Figure 2.3, there was a delay between the time of the Trigger ON event and the time the
glitch was instructed to take place (glitch offset set at 0ns) measured at around 90ns. To
compensate for this, several NOP commands were inserted between the Trigger ON code and the
Critical Code in order to delay the Critical Code’s execution by at least 90ns.

11

Figure 2.3: Trigger signal(blue), Coil current(red)

2.6 Glitch types
At this point we will distinguish the types of glitches we are going to get in 3 major categories:

Preferred glitches. The result follows the correct format (all the registers showing their values)
but with different values than the ones expected in the registers. This type of glitches make it
possible to reason what may have happened during the fault injection.

General glitches. The result is something unexpected. In this category, among other results, we
expect to see exceptions thrown by the processor.

Mutes. They indicate that the target is not responding after the fault injection. This type of glitches
offer no insight on what may have happened and the only action left is to reset the target and
continue with the test.

12

3 Scans of the chip

The first step is to scan the chip for areas susceptible to EMFI. Not the whole area is expected to
react to the magnetic field and of course not the whole area is expected to contain the
semiconducting material(die). Every response, or lack of, that was different from the expected
correct response is regarded as a glitch and is represented in the following heat maps except where
otherwise stated. At the end of the scanning procedure we identify an interesting area of the chip
where Preferred glitches are more likely to take place. Further tests will be focused on that area.

3.1 Full area scan
The first scan is a scan of the whole area of the chip. The result is shown on Figure 3.1.

Figure 3.1: Full area scan heat map

Each colored square on the heat map represents a distinct region that was checked 12 times with
different glitching parameters as mentioned in section 2.1. The color of the square represents how
many glitches were encountered in total out of 12 tries. Three distinct areas are clearly standing out
from the map. What caught our attention in this heat map is that the center of the chip, where we
expect the die to reside, seems unresponsive. Further scaning of that area will be discussed in the
next section.
 If we filter the results and keep only the Preferred Glitches the heat map in Figure 3.2
reflects the results.

13

Figure 3.2: Filtered full area scan heat map

3.2 Scan of the die area
Our next approach is to scan the area directly above the die with more power to the coil in order to
see if we can get any glitches. In order to roughly aim this area and be certain that is indeed located
in the center, an ARM Cortex-A9 decapsulated chip was used as reference. The decapsulated chip is
shown in Figure 3.3.

Figure 3.3: Decapsulated ARM Cortex -A9

The scan results can be seen in Figure 3.4.

14

Figure 3.4: Scan of the die area heat map

It should be noted that the distinct deep red areas, though they seem interesting on the heat
map they are mostly producing Mutes. An attempt to scan them with lower power produced Mutes
or no glitches at all.

If we again filter the glitches for the Preferred glitches we get the following result shown on
Figure 3.5. A different diagram other than heat map was used to better distinguish the location on
the die.

15

Figure 3.5: Area of Preferred glitches inside the die

In Figure 3.5 we see the area where Preferred glitches are present with red dots.
The green dots represent areas where no glitch was encountered. They are present in the

diagram in order to give an outline of the scanned area and provide a distinction between the red
and white dots.

The white dots (remaining white space) represent mostly Mutes and some General glitches.

3.3 Conclusion
From the consecutive scans of the chip we can come to the following conclusions:

 The outer edges of the die are more sensitive than the center of the die. More voltage was
required in the coil in order to get glitches from the die area (Figure 3.4).

 Preferred glitches can be found in multiple areas of the chip and not exclusively in the
center of the die as shown on Figure 3.2. This could prove useful in case the die cannot be
targeted directly or the magnetic field cannot reach the semiconducting material due to
extra layers of package atop the die.

 The red area depicted in Figure 3.5 is the area inside the die that Preferred glitches are
likely to take place. This will be the main target area for further tests. Results will be
gathered and examined mainly from this area.

16

4 Examination of glitch cases

In this chapter we will examine several glitch cases we encountered and try to reason what may
have happened during the fault injection. The glitches mainly result in instuction skipping, reset
issued by the processor and corruption of a related register.

4.1 Prefetch/Data abort exceptions
Prefetch abort exception is thrown by the Memory Management Unit when an instruction is going
to be loaded from non-existing memory regions, meaning the memory address we are trying to
fetch a command from is outside of the legal memory regions.
 Data abort exception is thrown by the Memory Management Unit when an instruction is
going to access the memory through an unaligned address.
 These types of exceptions can be due to glitching the PC register directly, or by corrupting
the stack, so that it points out of memory. In case of stack corruption, the PC register is also
corrupted if the corrupted value is loaded back to the PC register.
 This type of glitch resulted in a reset issued by the processor.

4.2 Undefined instruction exception
Undefined instruction exception is encountered when the result of decoding an instruction fetched
from memory does not match any legal instruction.
 Cases where the glitch might have taken place are during the fetch stage, the value retrieved
from memory got corrupted, or the decode stage, where the result of decoding an instruction was
corrupted.
 With the presence and encounter of this type of exception we can reason that instructions
that have reached the execution stage are likely to not be undefined instructions prior to the
execution stage.
 This type of glitch resulted in a reset issued by the processor.

4.3 Logical/Shift operations skipped
In this case we see that logical and/or shift instructions were skipped. Selected subcases follow.
Only R0 and R1 are shown as the other registers all have the expected values. In these examples a
BIC/EOR instruction was skipped. According to the undefined instruction exception above, this can
be due to a glitch in the execution/write-back stage where the instruction was either not executed
or the result of the instruction was not written back. The expected correct output will be presented
first for comparison. The values are in hexadecimal notation.

17

 Correct Output

R0: 00000000 R1: 80000000

 Corrupted Output - The first BIC/EOR instruction was skipped
R0: 00000001 R1: 80000000

 Corrupted Output - An LSL instruction was skipped

R0: 80000000 R1: 40000000

It should be noted that, as mentioned in section 2.3, we cannot know which specific LSL
instruction was skipped from this result alone. We have to verify it by comparing the glitch
offset used for this glitch with glitch offsets used for the previous subcase glitches. If the
glitch offsets match we can reason that these two instructions are neighbors.

 Corrupted Output – BIC/EOR and LSL skipped

R0: 80000001 R1: 40000000

 Corrupted Output – EOR skipped – glitched write-back
R0: FFFFFFFE R1: 80000000

This is a special subcase that we can detect only with the use of the EOR version of the code.
By looking at the value of R0, we can see that something probably went wrong in the first
EOR instruction as 0xE = 0b1110. We can reason that in the case of a write-back fault all the
bits of R0 flipped to ‘0’. In this case consecutive EOR instructions between ‘0’ and ‘1’ (from
R1) will yield ‘1’ as the result, thus the aforementioned R0 value.
In the case of the BIC version of the code, the result of R0 under the same circumstances
would remain R0:00000000 thus making it impossible to detect such fault.

4.4 Comparison with Voltage glitching
Comparing our results with the ones from the research in voltage fault injection [4] several
similarities and differences can be found.
 Instruction skipping was feasible in both cases. However, in voltage glitching the instruction
fetch stage was likely to be glitched whereas in EMFI the execution/write-back stages were the
main suspects. The XMEGA used in [4] was handling illegal/undefined instructions as NOP
instructions, essentially skipping the targeted instruction. In such case, the ARM processor was
throwing exceptions and a reset was taking place.
 Unrelated register corruption, meaning changes in the values of registers not related to the
instructions under test, was observed during voltage fault injection. No such cases were observed in
the Preferred glitches during EMFI.
 During various tests with voltage glitching a tendency for bits to transition from ‘1’ to ‘0’
was observed. The same was observed with EMFI in the write-back phase as discussed in section
4.3.

18

5 Conclusion

During this research the effects of Electro Magnetic Fault Injection on embedded devices were
observed. The target of the research was the 32-bit ARM Cortex-A9 processor. A test code was
written in ARM assembly and run on the processor in order to provide the needed instructions for
glitching. The instruction types that were examined were limited to logical and shift instructions.
The result of the code’s execution (values of the registers) was sent throught the serial interface
and was compared to the expected correct result in order to understand what were the effects of
EMFI.
 Through consecutive scans of the chip with a variety of glitching parameters, areas on the
chip that were susceptible to EMFI were identified. These areas produced 3 main types of glitches.
Preferred glitches, where the result was similar to the expected result but with slight differences,
General glitches, where the result was unexpected and had little resemblance to the correct result,
and Mutes, where the target chip was becoming unresponsive due to the EMFI and a reset was
needed. The focus was on Preferred glitches because they could provide insight on the effects of
EMFI. An exception to this were the exceptions thrown by the processor that were part of the
General glitches.
 Glitches were found to take place in the fetch, decode, execute and write-back phases of the
pipeline. The results of those glitches were instruction skipping, MMU exceptions followed by a
reset issued by the processor, and wrong value on the output register. The latter presented a
tendency to transition bits from ‘1’ to ‘0’.
 Contrary to results for voltage glitching [4], no corruption in unrelated registers was found
present in the Preferred glitches.

19

6 Future work

One could extend the work done in this research in order to observe the behavior of the target
while trying to glitch arithmetic, memory and/or flow instructions. The latter could provide an
interesting comparison between EMFI and voltage glitching because glitched jump instructions
were yielding smaller, mostly forward jumps when voltage glitching was used [4].

Another interesting comparison would be between the whole area heat map presented in Figure
3.1, generated when trying to glitch logical and shift instructions, and a heat map that would be
generated when trying to glitch memory instructions. The comparison may show that different
regions could be targeted in case a memory instruction glitch is required.

20

Acknowledgments

The author would like to thank Riscure for providing the tools and the space to make this project a
reality. Special thanks go to my supervisors Niek Timmers and Albert Spruyt for their advice and
support during this research project.

21

References

[1] SCHMIDT, Jörn-Marc; HUTTER, Michael. Optical and em fault-attacks on crt-based rsa:
 Concrete results. In: Proceedings of the Austrochip. 2007. p. 61-67.

[2] BAYON, Pierre, et al. Contactless electromagnetic active attack on ring oscillator based true

random number generator. In: Constructive Side-Channel Analysis and Secure Design.
Springer Berlin Heidelberg, 2012. p. 151-166.

[3] SCHLÖSSER, Alexander, et al. Simple photonic emission analysis of AES. In: Cryptographic
 Hardware and Embedded Systems–CHES 2012. Springer Berlin Heidelberg, 2012. p. 41-57.

[4] SPRUYT, Albert. Building fault models for microcontrollers. 2012.

URL: http://delaat.net/rp/2011-2012/p61/report.pdf.

[5] Riscure. EM-FI Transient Probe datasheet.

URL: https://www.riscure.com/documents/datasheet_em-fi_transient_probe.pdf.
[Accessed 30 January 2014]

[6] CARLIER, Sebastian. Electro Magnetic Fault Injection. 2012.
 URL: http://delaat.net/rp/2011-2012/p19/report.pdf.

[7] ARM. Cortex-A9 Processor.
 URL: http://www.arm.com/products/processors/cortex-a/cortex-a9.php.
 [Accessed 6 January 2014]

[8] ARM. The ARM Cotrex-A9 Processors.
 URL: http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf.
 [Accessed 6 January 2014]

[9] Riscure. EM Probe Station datasheet.
 URL: https://www.riscure.com/documents/datasheet_emprobestation.pdf
 [Accessed 30 January 2014]

http://delaat.net/rp/2011-2012/p61/report.pdf
https://www.riscure.com/documents/datasheet_em-fi_transient_probe.pdf?1376577624
http://delaat.net/rp/2011-2012/p19/report.pdf
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
https://www.riscure.com/documents/datasheet_emprobestation.pdf

