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Summary 
In this work three distributed processing frameworks were evaluated, namely Hive, Pig and Spark. 

From these frameworks Spark offered the most flexibility for implementing a DDOS detection 

algorithm. By initially slicing the data by interval, port and protocol we were able to identify 

anomalies in the network traffic data. We discussed several algorithms which can be applied for 

detecting these network anomalies. From the detection algorithms two were implemented in a 

distributed processing framework. To make the algorithms suitable for distributed processing we 

initially created flow counts by interval. After, these flow counts were grouped by service. Finally we 

applied the selected detection algorithms on the resulting set of flow counts per service per interval 

for the whole dataset. We found that algorithms configured for one dataset do not necessarily perform 

well for another dataset. However, the application of distributed processing for network traffic 

anomaly analysis itself did allow us to process up to 100 GiB of network traffic data in under 10 

minutes. 
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1 Introduction 
1.1 Generic 
Attacks on online services have been occurring on a regular basis for a long time. However, with the 

increased digitization of financial and public services, attacks can have greater impact. Even though 

services offered online can be secured quite well from attacks targeted at vulnerabilities in (web) 

frameworks it is still a challenge to protect against distributed attacks. The nature of distributed 

attacks prevents easy mitigation. It is therefore useful to gain more insight in these attacks by network 

traffic analysis. Analysing the large amounts of network traffic data captured from routers however, 

can be a challenge using classical analysis methods. 

Several frameworks have been developed which are capable of effectively analysing large datasets. 

Examples are Storm [3], Hadoop [1] and DryadLINQ [4]. Frameworks such as these provide features 

to store large sets of data across multiple machines and process this data in parallel. This enables the 

analysis of large datasets in relatively short periods of time. 

Vancis is a Dutch company which provides advanced IT-infrastructure services for its customers. 

Amongst these services they provide connectivity and also computing clusters for universities and 

research institutions. As a provider of connectivity services Vancis has its own routers and the network 

traffic data from them. Vancis also has a Hadoop cluster which is used by its customers for analysing 

large datasets. 

1.2 Research Questions 
In this research we will make use of the Hadoop distributed processing framework, provided by 

Vancis, to analyse the historical network traffic (netflow) data from Vancis. 

 

Main research question: 

 How can a distributed processing framework be utilized to identify network anomalies in 

historical netflow data? 

 

Sub questions: 

 Which processing framework is best suited for identifying DDOS attacks? 

 How can we distinguish anomalies in netflow data? 

 Which algorithms for detecting network anomalies exist and how can they be applied in a 

distributed processing environment? 

 

1.3 Ethical considerations 
The network traffic data which is received from Vancis reveals traffic patterns and addresses of 

customers of the company. Therefore, for this research an agreement was signed that the network 

traffic data must not leave the companies premises. Besides, all IP-addresses in the resulting data have 

been anonymised by using a hash algorithm, to ensure privacy of Vancis' customers. 
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2 Background 
Originally Hadoop only supported the MapReduce algorithm. However, new frameworks have been 

developed which are capable of utilizing the distributed processing capabilities of the Hadoop 

framework in a wide variety of computer science disciplines. For example; machine learning, 

database systems, statistics and artificial intelligence. In this research we have assessed these 

frameworks in order to build a tool for analysis of historical netflow data in order to find network 

anomalies. Hereby we have focused on DDOS attacks in specific. 

2.1 What is Hadoop? 
Hadoop is a framework for distributed, parallel execution of computational tasks operating on large, 

distributed datasets. In order to achieve this, Hadoop consists of three base components, namely: 

HDFS, Yarn and MapReduce. 

2.1.1 MapReduce 
MapReduce [2] is the computation paradigm which underlies many distributed processing 

frameworks. 

 

MapReduce consists of the following components (see figure 1): 

 User program: Main component from which computational tasks are sent and received. 

 Master: The master assigns computational tasks to the worker nodes. 

 Worker: Nodes in the cluster which do the actual processing. 

 

 

Figure 1 Architectural overview of MapReduce [2] 

 

MapReduce identifies the following functions: 

 Map: A function is applied to each individual element in a dataset. Map functions are used to 

prepare data for further processing by other distributed functions. 
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 Reduce: Apply a function which joins together all (distributed) elements of a dataset. An 

example is a function which adds ups all the values of each element in the set, returning a 

single value, the sum. 

 Combine: Combination of map and reduce function which applies a transformation to a 

distributed dataset and applies a reduce function on local data (data residing on the node 

where the map function is applied). Combine functions are used to decrease the amount of 

data which has to be transmitted to, and processed by, the Reducers. 

 Filter: Apply a filter function on the data in order to reduce the size of the dataset and remove 

obsolete data. 

 Shuffle: The process which distributes the workload (data and computations) across the 

cluster. A shuffle is called to distribute workload to the mappers, when the map functions have 

been applied another shuffle is called to collect the intermediate results and send them to the 

reducers. 

The canonical example of MapReduce is the "wordcount" algorithm. In this algorithm a text is 

processed to count the occurrences of each word in a given text. The "map" step creates key value 

combination where each key is a word and the value is 1. After giving each word a value of one, all 

the (key, value) combinations are "reduced". For this example, the function which is applied is a 

summation of the values by key. Finally this will result in the counts (occurrences) of each word in the 

text. 

 

2.1.2 HDFS 
The Hadoop distributed filesystem (HDFS) [5] is a framework used for distributing large datasets 

across multiple hosts. HDFS identifies three main components, the namenode, datanodes and the 

client. The namenode stores metadata such as the location of blocks and names of the files. The 

datanodes store the actual data. The client component is used to access the filesystem. 

 

 

Figure 2 HDFS architectural overview [6] 
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2.1.3 YARN: cluster manager and resource divisor 
YARN [7] is the component of the Hadoop framework which manages resources and takes care of 

distribution of applications across the cluster. To be able to do this YARN exists of the following 

(figure 3): 

 Client: interface to resource manager, used to submit MapReduce jobs to the cluster 

 Resource manager: manages resources 

 Node manager: manages the resources on a single node 

 Application manager: manages tasks of a single application 

 Container: A collection of resources (e.g. processing-, memory-, disk- and network capacity )  

on a single node 

 

 
 

 

Figure 3 YARN architectural overview [7] 
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2.2 Extended components of Hadoop 
Besides the three base components which together make a "traditional" hadoop cluster, several new 

tools have been developed which can make use of (parts of) the base components, but add extra 

functionality. Although there are many, we will only discuss those which can be used for data 

analysis, namely Hive, Pig and Spark. 

 

Hive 

Hive is a tool which can be used for querying structured data. Hive runs on top of HDFS and the data 

on the distributed filesystem can be queried using an SQL-like syntax. 

 

Pig 

Pig can be used to convert data residing on HDFS into a "queryable" format by executing a set of 

predefined statements on the data. Pig can also be used to query this data, however this require some 

extra coding, while transformed data can readily be queried using hive. 

 

Spark 

Spark [12] is a framework which can be used to run custom algorithms on distributed datasets. Spark 

was not originally developed to run on top of the Hadoop framework. Spark can be run in three 

modes, namely standalone or on top of the Apache Mesos [10] or YARN cluster managers. Spark is 

also capable of utilizing the HDFS filesystem for location aware data processing.  

 

 

Figure 4 Spark job distribution [9] 

In figure 4 an architectural overview of Spark is given. A Spark application works by first loading the 

“SparkContext”. The SparkContext is a class which references the cluster and exposes distributed 

objects and functions. The SparkContext requests resources from the cluster manager. The application, 

or “Driver Program” in Spark, communicates with the workers directly and does not require the 

cluster manager after the resources have been assigned (figure 5). 
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The main concept of distributed processing in Spark is the Resilient Distributed Dataset (RDD). A 

Resilient Distributed Dataset (RDD) is a parallelized container holding objects distributed across 

multiple nodes. Spark can apply two types of operations on RDD objects, namely: 

 transformations: create new dataset from existing one (e.g. map or filter functions) 

 actions: convert objects to discrete data (e.g. reduce or collect functions) 

 

 

Spark uses RDD's to store the current transformation of the data and is capable of applying new 

transformations on top of existing ones. Spark applies new transformations to an existing dataset by 

making use of "lazy execution". This means that the transformations are only executed on the actual 

dataset at the moment a final output is requested. By making use of "lazy executions" spark is capable 

of optimizing the execution of multiple map/reduce operations before they are applied to the dataset. 

 

 

 

Figure 5 Resource utilization in Spark on top of HDFS [11] 
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2.3 Detecting DDOS attacks 
Several previous works have studied the analysis of DDOS attacks. 

2.3.1 LADS: Large-scale Automated DDoS Detection System 
In LADS: Large-scale Automated DDoS Detection System [13] a multi stage detection system is 

proposed, composing of SNMP logs and netflow data. In this work the SNMP data is used for a 

"lightweight" analysis for identifying anomalies (packets per second counters). When anomalies are 

found, netflow collectors are triggered and start collecting more detailed data. 

 

For the initial, lightweight detection, step SNMP packets per second counters are used for a temporal 

analysis. The following stages were implemented for the initial step: 

 Volume anomaly detection: Traffic anomalies on volume and link utilization measured in 

bytes/second or packets/second, router cpu utilization, packet drop counts. 

 Traffic distribution anomalies: Many attacks can be identified by substantial changes in traffic 

distributions. Therefore this analysis was used as an augmentation to volume anomaly 

detection. 

 

For the more detailed analysis, the following stages were implemented: 

 Rule based detection: Identify attacks on distinct characteristics such as many traffic to single 

IP address, traffic originating from botnet blacklists. 

 Unidimensional aggregation: Joining data from multiple source/destination addresses on 

subnet to reduce the size of the dataset. 

 Multidimensional clustering: Report high counts of any of the values stored in a flow (src / 

dest ip, port, protocol ...). 

 

2.3.2 Massively Parallel Anomaly Detection in Online Network Measurement 

In Massively Parallel Anomaly Detection in Online Network Measurement (MPAD) [14] a 

combination of several statistical analysis methods is proposed. By combining several methods a 

higher sensitivity and specificity were achieved. 

The following algorithms have been tested in MPAD: 

 Average over Window 

 Exponential Weighted Moving Average 

 Holt Winter Forecasting Model 

 Adaptive Threshold Algorithm 

 Cumulative Sum Algorithm 

 

Average over window 

In [15] the average over window model is discussed. This model applies rule based classification and 

divides traffic into classes according to a table lookup mechanism. The algorithm is optimized to be 

applied in devices which have little memory but can do low latency processing, for example routers. 

 

Exponential Weighted Moving Average 

The exponential weighted moving average (EWMA) [16] is a moving average in which weights are 

assigned to the current estimated average and the previous averages. By applying weights, the current 

or previous averages gain higher importance in calculating the new average. In the implementation 

mentioned in [16], anomalies are excluded from the EWMA calculation until the exclusion reaches a 

certain limit, after which the EWMA is reset to the current value. 
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Holt Winter forecasting 

Holt Winter forecasting is an extension of the exponential smoothing algorithm and takes into account 

[17]: 

 A trend over time (i.e., a gradual increase in application daemon requests over a two month 

period due to increased subscriber load). 

 A seasonal trend or cycle (i.e., every day bytes per second increases in the morning hours, 

peaks in the afternoon and declines late at night). 

 Seasonal variability (i.e., application requests fluctuate wildly minute by minute during the 

peak hours of 4-8 pm, but at 1 am application requests hardly vary at all). 

 Gradual evolution of regularities (1) through (3) over time (i.e., the daily cycle gradual shifts 

as the number of evening daylight hours increases from December to June). 

 

Adaptive threshold algorithm 

The adaptive threshold algorithm [18] works by calculating an expected value using, for example a 

weighted moving average, following the threshold is defined as a function depending on this average. 

When the actual value exceeds the calculated threshold for n consecutive intervals, an alarm is raised. 

 

Cumulative Sum Algorithm 

The cumulative sum algorithm [18], [19] is a change point detection algorithm which tries to identify 

cumulative deviations (increments or decrements) over longer periods of time. The algorithm does 

this by calculating for each following interval an average mean (like the EWMA) and the distance 

from this average compared to the actual measured value at this point in time. When the actual value 

is above the average for longer periods of time, the accumulated sum will cross a configured threshold 

and raise an alert. 
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3 Methodology 
3.1 Dataset and Cluster 
In this chapter we will discuss the methodology which we will apply in our final work. We will 

present the dataset and explain the specific tools and algorithms which we have selected and 

implemented. The following section is split up in three parts. First we present our dataset and cluster 

setup. In section 3.2 we will discuss our iterations on setting up an efficient algorithm for analyzing 

data using the distributed processing framework. After, in section 3.3 we go in further detail on the 

specific algorithms we have implemented for detecting DDOS-attacks. 

 

 Dataset 

The network traffic data which we acquired from Vancis was in netflow dump format, originated from 

ten different routers and was in the period between 27th of February up to the 1st of April, 2014. 

 

router dataset size 

1 84,3 MiB 

2 126,7 MiB 

3 1,1 GiB 

4 3,1 GiB 

5 10,0 GiB 

6 41,5 GiB 

7 88,2 GiB 

8 99,3 GiB 

9 296,4 GiB 

10 444,4 GiB 

Table 1 Size of network traffic datasets from different routers as plain text on HDFS 

 Cluster 

The Hadoop cluster utilized for this research consisted of 26 nodes. Each node is equipped with: 

 20 GB's of RAM 

 2 independently configured 2 TB disks 

 1 AMD Opteron processor with 3 vCPUs running at 2,2 GHz 

 Cloudera CDH 5.0 on CentOS as operating system and cloud framework distribution 

 1 GB/s ethernet 

 

One node was configured as HDFS namenode. Another node was configured as Spark cluster 

manager. The remaining 24 nodes were configured as worker nodes. 
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3.2 Distributed processing algorithm 
In section 2.2 several new distributed processing frameworks were discussed, namely Pig, Hive and 

Spark. To be able to process and analyze the network traffic data the selected framework has to have a 

few functionalities: 

 

 Support querying of data 

 Flexible parsing and processing 

 Capable of reading data from netflow dumps 

 

Hive supports querying of the data, however we would have to convert all data to a structured set. 

Besides, we do not exactly know which relationship should be analyzed. Therefore a more flexible 

tool is required. Pig supports more advanced queries and limited preprocessing of data, however to 

read data from netflow dumps external tools would be necessary. Spark however, seems to offer the 

flexibility which is required to build a tool which supports our requirements. Therefore, we decided to 

use Spark for implementing our analysis tool. 

 

Implementing Spark 

Although the Spark distributed processing framework is written in Scala, Spark also has a set of 

bindings for Python. Therefore, it is also possible to write applications in Python. Since this will allow 

us to develop our tool faster, we decided to use Python. 

 

Before we will apply a detection algorithm to analyze the netflow data, the following components 

need to be created in Spark we need to get the data on the platform. 

 

Read existing netflow data into Spark 

There are a few options to approach problem, either we read the data directly into Spark memory. We 

can also send it to the HDFS cluster first. In this way the data is already distributed across the worker 

nodes when the analysis needs to be done. At the time of conducting the research Spark was not 

capable of reading binary data from a HDFS cluster. Therefore the data was converted to plain text 

first and after saved onto the HDFS cluster (see appendix I for the code). 

 

Create optimized algorithm for distributing workload across cluster 

Initially we took the following approach: 

1. retrieve unique intervals 

2. partition the data by interval 

3. for each interval create counts of packets for each found socket 
 

To determine the impact of first getting a list of intervals, the execution time for this step was 

measured for several datasets (see table 2). The code can be found in appendix II (get_sorted_keys). 

 

router dataset size in GiB execution time in seconds rate in MiB/second 

2 0,128 10 12,8 

3 1,1 45 24,5 

8 99,3 316 314,2 

10 444,4 1300 341,8 

Table 2: Execution times of collecting all distinct intervals for given dataset and size 

Looking at table 2 we can see that the performance hit of collecting the intervals is negligible 

considering the size of the dataset. The algorithm is more efficient when operating on larger volumes 

of data. 
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In the second step the data is not only partitioned by interval, also the number of packets are counted. 

These steps are combined such that Spark is capable of optimizing the query. In Spark combining 

queries is known as “pipelining”. 

 

The code can be found in appendix II (get_high_hits_by_interval). Although the approach seemed to 

generate results, it was not very effective in utilizing the platform. It also did not perform well when 

analysing datasets larger than 4 GiB. Analysis of our method showed that there were over 700 one 

hour intervals and all intervals were processed sequentially. With an overhead of roughly 10 seconds 

for launching jobs on the cluster, the performance was severely impacted. 

 

When dividing the complete dataset for a given router (composed of one month of netflow data) in 

intervals of one hour, roughly 700 intervals have to be analysed. With an average of 10 seconds of 

analysis time per interval, this adds up to 7000 seconds or 116 minutes of analysis time for even the 

smallest dataset. 

 

To increase the utilization of the platform, the calculations for each separate interval can be executed 

in parallel. To achieve this, the program was modified to launch the computation tasks for each 

interval in separate threads (see appendix III). The Spark jobmanager subsequently processes the tasks 

in parallel, allocating resources according to a configured job scheduling mechanism (FIFO or fair 

share). 

 

By applying parallel execution, the analysis time for the 128 MiB dataset was reduced to 8 minutes.  

Although the execution time was decreased by a factor of 10, it still does not overcome the overhead 

incurred with launching multiple map/reduce tasks. It seems that an algorithm which avoids running 

multiple different reduce tasks for each of the 727 intervals will be more efficient. Therefore, we 

applied a map on the entire dataset dividing each record in the following (key, value) pairs: 

("interval:ip address:port:protocol", 1 ). 

 

Now a reduce action will get the full counts by time and socket in one run. This method also removes 

the need to parse all the existing intervals before being able to process the data. The code for this 

method can be found in appendix IV and the results when running this method against different 

datasets is shown in table 3. 

 

router dataset size in GiB execution time in seconds rate in MiB/second 

2 0,128 28 4,57 

3 1,1 45,6 4,07 

8 99,3 430,4 231 

10 444,4 / / 

Table 3: Execution times of collecting all hits for all sockets by hour for all traffic of given 

router 

It can be seen that applying map/reduce on the full dataset is very efficient and the efficiency 

increases when applied to larger datasets. However, we were unable to run the algorithm successfully 

against the biggest dataset. 

 

We found the following limitations when trying to make the algorithm run for the biggest dataset: 

1. Limited transport capabilities of underlying messaging framework. 

2. Limited memory available to driver program. 

 

The framework which Spark uses for transporting data between nodes has a maximum framesize of 

10 MiB. The effect of this limitation is that maximum size of a single reduce job cannot exceed 10 

MiB. Although this is sufficient for smaller datasets, datasets which have more data also have more 
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resulting data. For the bigger datasets this size was too limited, causing the application to crash when 

receiving the results of the reduce jobs. 

 The problem could be solved in two ways. Either the amount of data which is transmitted by 

the workers is reduced or the maximum framesize of the messaging framework is increased [20]. 

To reduce the amount of data transmitted in a reduce job, we applied a filter which increases the 

threshold of minimum number of hits a certain socket has to receive before it is measured. The 

maximum framesize of the messaging framework was also set to a higher limit of 64MiB. 

 When applying this fix, it was also necessary to increase the maximum amount of memory 

reserved for the driver application. By default the Spark application is configured to use up to 256 

MiB. However, due to large number of reduce tasks and residual data this did not fit in the memory of 

the driver program. Unfortunately, even after increasing the maximum memory usage to 4GiB the 

application was still not able to process the largest dataset. 

 

In section 4.1 our results are shown when only implementing the deduced algorithm for applying a 

Spark application against the raw dataset. No specific detection algorithms were implemented in this 

stage. However, still useful information can be gained from only sorting the data and generating the 

counts by interval and service on a global level. These results give us a general idea on what kind of 

specific DDOS algorithms would be applicable to our dataset. 

 

Final Implementation Spark 

In our final approach the application was implemented as follows (see appendix V): 

1. Initialize cluster with proper parameters for given dataset 

2. Read network traffic data from HDFS 

3. Apply a map/reduce to get the flow counts for a combination of “destination IP address, port 

and protocol, hour”. 

4. Filter out all combinations with a small number of hits, to reduce the size of the dataset 

5. Group all results by combination of “port and protocol”. 

6. Filter out all combinations of “port and protocol” which have a hits on only a small number of 

intervals. 

7. Normalize the results by dividing the hits/ip/hour by the total number of hits on this “port and 

protocol” combination. 

8. Plot the normalized hits/interval for all remaining “port and protocol” combinations without 

the IP address. 

 

Hereby we only look to destination IP addresses, since we assume that DDOS attacks are initiated by 

remote hosts. Besides, we only focus on attacks targeted at specific services (port and protocol), not at 

hosts. 
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3.3 DDOS algorithms methodology 
In this research two of the algorithms discussed in section 2.3. In this section we discuss which 

algorithms we selected and why. 

 

Average over window 

The average over window algorithm was designed for devices with low latency and small amounts of 

memory (routers). This proposition does not align with Spark, which is relatively high latency and is 

capable of addressing large amounts memory. We will therefore not consider this algorithm. 

 

Cumulative Sum Algorithm 

Due to the large amount of data we have to analyse, we group the data by intervals of one hour. 

However, the events we want to measure might fall exactly within one interval. Therefore, we suspect 

that algorithms which measure trends over longer periods of time, will not trigger on these short lived 

events. That is why we will not implement this algorithm. 

 

Holt-Winters 

Holt-Winters forecasting is an extension to the weighted moving average, but also takes into account 

recurring trends. Although trends can be expected when monitoring access to specific sockets (IP + 

port), in our research we only focus on the general data of a service and do not go into detail for 

specific IP addresses. Because of this and because we are also filtering out values which fall below a 

given threshold, we suspect that information of cycles and trends is lost. For our research therefore, 

we do not apply the Holt-Winters forecasting model. 

 

EWMA 

The formula used to calculate the exponential weighted moving average (EWMA) in [16] is given in 

formula (1). Hereby: 𝑥0 = 𝑥1. 

𝑥𝑖+1̂ = 𝛾𝑥𝑖 + (1 − 𝛾)𝑥�̂�     (1) 

 

In which 𝛾 is a smoothing factor which applies weight to the estimation 𝑥�̂� and the actual current 

value 𝑥𝑖. 

The threshold on which an alert is raised is given as a multiple of the current EWMA. Further, the 

outliers will be excluded from calculating the new estimation. To ensure that a shift in the graph does 

not classify all subsequent values as outliers, a maximum gap is introduced after which the EWMA is 

reset. See appendix VI for our implementation. The values for the gap, smoothing- and threshold 

multiplication factor are determined by using the dataset from router 2 as training data. 

 

Adaptive Threshold Algorithm 

In section 2.3 we also discussed the adaptive threshold algorithm. Although the algorithm itself is 

applicable in our case, some adjustments are required. Because we use full hours for intervals, 

interesting anomalies occurring only in a short period of time might be missed using the default 

method. Therefore we will apply this model without "wait time". To implement it we do need to take 

care of setting a proper threshold to ensure correct discrimination of anomalous and normal traffic. 

The adaptive threshold algorithm in [18] also uses the EWMA. The main difference with the EWMA 

algorithm itself is that the adaptive threshold algorithm does not exclude detected anomalies from 

updates to the average. The algorithm is implemented in python as shown in appendix VI. Also the 

values for this algorithm are determined by testing it first on the router 2 dataset. 

 

The complete program used to generate the final results is listed in appendix VII. 
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4 Results 
In this section we discuss our results. First the results of running only the Spark algorithm are shown. 

Then we will show the results when applying the DDOS algorithms to our “training” dataset from 

router 2. Finally we will show how the DDOS detection algorithms perform against data of other 

routers. 

 

4.1 Spark 
In the results for Spark we highlighted a few results. First we show the anomalies which were found, 

in the second part trends are shown. Note that all results show a gap between the 8th and 11th of 

March, we had to discard the netflow data of this part because it was corrupt. 

 

4.1.1 Anomalies 
In the first image (5), we see the normalized flow counts (or hits) for 5 ports from data from router 2. 

The ports are shown in no specific order since the graphs were generated by the program. We do not 

know any specific details about the anomalies we are looking for. Therefore, we had the program plot 

all flow counts where the number of hits is above a specified threshold and there were at least a 

certain number of datapoints to plot. 

 

Figure 6 normalized hits for 5 sockets on router 2 (126,7 MiB) with threshold of 10 hits 

In figure 6 we can see that the number of hits for on UDP port 53 (DNS) is generally quite stable. 

However, clearly there are two extreme outliers around the 20th of March. Further, there are also some 

outliers for traffic on TCP port 80 (HTTP) and TCP port 5667 (Nagios), however these are less 

extreme. Also, although no clear can be identified for most of the services it is interesting to see that 

there is a recurring weekly increase in traffic for traffic on TCP port 21 (FTP). 
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In figure 7 we show the second 5 normalized hits for router 2, here 2 anomalies can be distinguished. 

Both are for traffic on tcp port 22 (SSH). 

 

Figure 7 normalized hits for 5 sockets on router 2 with threshold of 10 hits 

In figure 8 we show the normalized hits for router 3, here 3 anomalies can be distinguished. One for 

HTTPS (TCP port 443) and two for TCP port 113, which seems related to different kinds of malware 

[21]. 

 

Figure 8 normalized hits for 5 sockets on router 3 (1,1 GiB) with threshold of 10 hits 
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In figure 9 we can see more data from router 3. Two clear anomalies can be distinguished, one on 

DNS traffic and one on TCP port 8000. Port 8000 seems mainly to be used by malware[22]. 

 

 

Figure 9 normalized hits for 5 sockets on router 3 (1,1 GiB) with threshold of 

10 hits 
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4.1.2 Trends 
In figure 10 and 11 a clear periodicity can be seen for certain types of traffic. In figure 10 columns can 

be identified corresponding with daytime periods of weekdays. 

In figure 11 also a recurring weekly activity is shown for traffic on port 25. 

 

Figure 10 Normalized hits for first 5 port protocols on router 7 with 

threshold on 500 hits/socket:ip/hour 

Figure 11 Normalized hits for first 5 ports on router 6 with threshold on 

500 hits/socket/hour 
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In figure 12 bands can be identified which show the hit rates for normal traffic for these services. 

Lower bands (like for port 80) represent larger volumes of traffic, while higher bands represent lower 

volumes of traffic (like port 1033 and 1035). Also note the surge in traffic on port 23 in the final 

week. The vertical density indicates that this traffic is not directed to only one IP address, but targets 

many different IP addresses. Although it does not seem to indicate a DDOS attack, it can definitely be 

classified as an anomaly and further investigation might be useful. 

  

Figure 12 Normalized hits for 5 ports on router 5 with threshold on 20 hits/socket/hour 
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4.2 DDOS algorithms 
The two DDOS detection algorithms we have implemented were first tested on the data from router 2 

to configure the parameters. In section 4.2.1 we show how it performs with these configured 

parameters against this dataset. In section 4.2.2 we show how it performs against other datasets. To 

have a clear view on the anomalies we only plot specific events, namely: 

 The top 1000 hits found on the complete interval 

 The hits where an alert is raised for the EWMA algorithm 

 The hits where an alert is raised for the ADAPT algorithm 

 

We assume that all the events where an alert is raised should be well within the top 1000 range. Since 

we do not have a precise list of DDOS attacks we assume that using the top 1000 range will give us at 

least an indication of the performance of the algorithms. 

 

4.2.1 Performance on training set 
The parameters which were tuned had been configured with the following settings: 
    ewma = { 

        'avg'      : array[0][4],  # Set initial ewma X0 = X1 

        'gamma'    : 0.3,          # gamma 

        'thresh'   : 4,            # threshold multiplication factor 

        'max_gap'  : 6,            # max interval gap 

        'gap'      : 0,            # gap counter 

        'alerts'   : []            # Store alerts 

    } 

 

    adapt = { 

        'avg'         : array[0][4],    # Set initial avg X0 = X1 

        'gamma'       : 0.3,            # gamma 

        'thresh'      : 1.2,            # threshold multiplication factor 

        'alerts' : [] 

    } 

 

 

In figure 13 we can see the 

performance of the detection 

algorithms for detecting 

anomalies on TCP port 21 (FTP). 

We can see that both algorithms 

are capable of detecting the 

outliers. The EWMA algorithm 

triggers also on a later interval. 

This can be explained by the fact 

that EWMA excludes outliers 

from updates to the average. The 

running average will therefore still 

have a lower value compared to 

ADAPT where the average is also 

increased by the anomaly. 

 

Figure 13 Performance of detection algorithms on 

FTP traffic for router 2 
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In figure 14 we see the results for TCP port 22 (SSH). Again both algorithms are capable of detecting 

the most extreme outliers. 

The same goes for traffic on UDP port 53 (DNS). Here we also start to see some potentially false 

positives (figure 15). This is probably caused by the relatively large amount of traffic. In ADAPT, a 

large number of low counts generates a low average, therefore even small deviations can trigger an 

alert. For EWMA we see the effect of excluding outliers from updating the average, causing the 

trigger to remain for several consecutive intervals. 

 

Figure 15 Performance of detection algorithms on DNS traffic for router 2 

  

Figure 14 Performance of detection algorithms on SSH traffic for router 2 
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In contrast on port 80 (figure 16) where there is a large amount of traffic with an irregular pattern, 

more alerts are raised. For these types of traffic it is generically harder to determine which activities 

are malicious. 

 

 

  

Figure 16 Performance of detection algorithms on HTTP traffic for 

router 2 
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4.2.2 Performance on non-training datasets 
After we tested the performance of the algorithm and tuned the parameters we applied it on data from 

the other routers. To be able to run the algorithms successfully on datasets of different sizes, we had to 

adjust some of the Spark processing parameters. First we show these parameters and the processing 

speeds. After, we show a subset of the results which were gained. 

 

router dataset size flowcount 

 threshold 

minimum # total 

flows/socket 

processing 

time 

processing 

rate 

router 1 84,3 MiB 10 10 20s 4 MiB/s 

router 2 126,7 MiB 10 10 33s 3,8 MiB/s 

router 3 1,1 GiB 10 10 66s 17 MiB/s 

router 4 3,1 GiB 20 20 43s 74 MiB/s 

router 5 10,0 GiB 100 100 83s 123 MiB/s 

router 6 41,5 GiB 100 100 247s 171 MiB/s 

router 7 88,2 GiB 100 100 524s 172 MiB/s 

router 8 99,3 GiB 100 100 577s 172 MiB/s 

router 9 296,4 GiB 500 500 / / 

router 10 444,4 GiB 500 500 / / 

Table 2 Processing speeds for final program 

 

In figure 17 we show the performance for traffic on UDP port 161 (SNMP) for the smallest dataset 

(router 1, 84 MiB). The regularity in the patterns seem to indicate all this traffic is directed to a single 

IP-address. Since it is SNMP traffic, this is most likely a monitoring server. Performance of both 

algorithms seems to be as expected. EWMA alerts on the number of intervals corresponding to its gap 

setting. ADAPT only raises an alert on extreme differences and not after because of the updated 

average. 

In figure 18 we can see the alerts for router 7 (88,2 GiB). Note that since only the top 1000 flow 

counts are plotted by default the graph has a slight offset and counts do not start at 0. Again the 

algorithms behave as expected. The port is used for Windows file sharing and directory services. 

Figure 17 Performance of detection algorithms on SNMP traffic for router 1 
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In the final plot (figure 19) HTTP traffic is shown for router 7. The large volume of traffic makes it 

impossible for the algorithms to make any distinction in traffic. This figure clearly shows the 

dependency of the algorithms on having a regular traffic pattern. For common services on high traffic 

networks, a very specific setting with high thresholds would be required to gain any sensible results. 

 

 

  

Figure 18 Performance of detection algorithms on 

Microsoft-DS traffic for router 7 

Figure 19 Performance of detection algorithms on HTTP traffic for router 7 
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5 Conclusion 
In this section we discuss our results, conclude our work and make suggestions for future work. First 

we discuss our implemented Spark algorithm. After we discuss the performance of the DDOS 

algorithms. Finally we suggest how these methods can be improved. 

 

5.1 Spark 
Three different approaches were taken for implementing a distributed processing algorithm in Spark. 

First we implemented a traditional method which merely sliced the data by interval and following 

processed this data by interval. This method turned out to be the most inefficient and not suitable for 

processing large amounts of data. We found that the inefficiency was mainly caused by two factors. 

The two factors were the overhead of launching jobs on the cluster and the fact that these jobs were 

processed sequentially. 

In our second approach the jobs were launched in parallel. By using this method we were able to 

increase the processing speed for our testing dataset of 128 MiB by a tenfold. 

However, by creating a method which processed the data in a single map/reduce job we managed 

to acquire an optimal processing speed which was yet another 17 times faster. This final solution was 

capable of processing up to 100 GiB of network traffic data in less than 10 minutes. 

To be able to successfully scale up to this volume we had to apply the following measures: 

 Limit the amount of data which is sent to the driver program to prevent the program from 

running out memory. In our case we decided to filter out low flow counts and services with a 

low number of datapoints. 

 Increase the memory size assigned to the worker nodes 

 Increase the memory size assigned to the driver program 

 Increase the maximum size of the messages which can be passed by the underlying 

framework (Akka). 

 Increase the number of data partitions (RDD’s) across the cluster 

 

5.2 DDOS Algorithms 
When looking at the initial results for our anomaly analysis, a clear distinction could be made between 

regular and malicious traffic for some services. 

Based on the analyses from data of one router we assumed that the application of DDOS 

attack algorithms would generate promising results when applied to the network traffic data of other 

routers. 

However, the different routers not only had differing sizes but also differing traffic patterns. 

This had as effect that the performance of the DDOS detection algorithms varied greatly, when 

applied against datasets of other routers. 

Also, it can be debated whether the implemented algorithms would actually be capable of 

performing well on the larger datasets. This can be seen clearly in figure 19, where there is a high 

volume of traffic with an irregular pattern. To report any extremities would require the implemented 

EWMA algorithm to use a very large threshold multiplication factor. However, this would bias the 

algorithms too much to a specific service and dataset size. In effect, such a modification would 

degrade the performance on services with a more regular pattern. A clear example is the traffic pattern 

in figure 19 for HTTP traffic. The range for this type of traffic is between 1 for barely used 

webservers and goes up to over 80.000 in the extreme case. When comparing this pattern with that 

shown in figure 14 for SSH traffic on a router with less traffic in general, it can clearly be seen that 

both types of traffic require a different approach for optimal anomaly detection performance. 
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6 Future work 
In this research we have only implemented two algorithms, however it would be interesting to see 

how other algorithms perform using a distributed processing framework for analysis.  

 

We also found irregular occurrences of traffic on unusual ports, this can be a clear indicator of 

malicious activities on a network. Further investigations on the usage pattern of non-common ports 

could aid in detection of malicious activity on a network. 

 

Another recommendation would be to see how algorithms tuned for historical data, perform on live 

network traffic data. 

 

Finally, the created method still needs further tuning to be capable of handling larger datasets. 
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Appendix 
I Write netflow data to HDFS 
#!/usr/bin/env python2.7 

# read netflow files and dump them as plain text 

# to hdfs distributed filesystem 

 

# pathos multiprocessing library 

# pip2.7 install six 

# wget http://danse.cacr.caltech.edu/packages/dev_danse_us/pyre-0.8.2.0-pathos.zip 

# unzip pyre--- 

# cd pythia; python2.7 setup.py build; python2.7 setup.py install 

# wget http://danse.cacr.caltech.edu/packages/dev_danse_us/processing-0.52-

pathos.zip 

# unzip processing--- 

# pip2.7 install git+https://github.com/uqfoundation/pathos 

import os, sys, subprocess, itertools 

import pathos 

import IPython 

 

########### FUNCTIONS ######## 

def get_size(start_path): 

    '''for given path return filesize in MB''' 

    total_size = 0.0 

    for dirpath, dirnames, filenames in os.walk(start_path): 

        for f in filenames: 

            fp = os.path.join(dirpath, f) 

            total_size += os.path.getsize(fp) 

    return total_size/1024**2 

def read_nfdump(files): 

    '''read nfdumps from binary files on local storage 

    files: array of files to be read with nfdump 

     %ts       Start Time - first seen 

      %td       Duration 

      %sa       Source Address 

      %sp       Source Port 

      %da       Destination Address 

      %dp       Destination Port 

      %pr       Protocol 

      %flg      TCP Flags 

      %ipkt     Input Packets 

      %opkt     Output Packets 

      %ibyt     Input Bytes 

      %bpp      bps - Bytes per package 

      %fl       Flows 

    write output to hdfs''' 

    # check for collisions 

    router = files[0].split('/')[6] 

    start  = files[0].split('.')[-1] 

    end    = files[-1].split('.')[-1] 

    try: 

        existing_files = subprocess.check_output( 

            ['hadoop', 'fs', '-ls', '/tmp/live/%s' % router]) 

    except: 

        print "failed reading from hadoop cluster, please restart hdfs" 

        sys.exit(1) 
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    print """ 

        start\tend\tfiles\tstarting new nfdump thread 

        %s\t%s\t%s\tfiles """ % ( files[0], files[-1], len(files) ) 

    # nfdump only needs to know first and last file in interval 

    common_prefix = os.path.commonprefix([files[0],files[-1]]) 

    prefix_dir    = os.path.dirname( common_prefix ) 

    # slice last_file (+ remove trailing '/') to get relative path 

    last_file_rel = files[-1][len( prefix_dir )+1:] 

 

    # read file with nfdump and store process in handle 

    nfdump        = '/usr/bin/nfdump' 

    format        = 'fmt:%ts,%td,%sa,%sp,%da,%dp,%pr,%flg,%ipkt,%bpp,%fl' 

    process = subprocess.Popen( \ 

        [ nfdump, '-O', 'tstart', '-b', '-o', format, '-q', '-R',  "%s:%s" % 

(files[0],last_file_rel) ], 

        stdout=subprocess.PIPE ) 

 

    hdfs_file = "/tmp/live/%s/%s_%s.txt" % ( router, start, end ) 

    print "trying to write to hdfs:\n\t%s" % hdfs_file 

    try: 

        subprocess.check_call( 

        [ 'hadoop', 'fs', '-put', '-', hdfs_file ], stdin=process.stdout ) 

    except: 

        print "ERROR: failed writing to hdfs, file:\n\t%s" % hdfs_file 

 

def read_files( files, part_size, number_of_files=None): 

    '''read array of files and number of files to process 

    per round, process all files if None''' 

    files = files[:number_of_files] if number_of_files else files 

    pool = pathos.multiprocessing.ProcessingPool() 

 

    # slice files array to distribute files evenly over nfdump processes 

    files_partitioned = map ( lambda i: files[i:i+part_size], range(0, len(files), 

part_size )) 

    # parallel execute read_nfdump, autoscales to #cores on local machine 

    pool.map( lambda subset: read_nfdump(subset), files_partitioned) 

 

 

 

 

############ MAIN ############# 

path_to_dumps = '/data/2/tsmrestore/profiles/live' 

routers = os.listdir( path_to_dumps ) 

for router in routers: 

    dirs = os.path.join(path_to_dumps, router) 

    # get all dumpfiles for this router 

    walk_arrays = filter( lambda walk: walk[2], os.walk(dirs)) 

    files = [] 

    # generate list of files with path 

    for walk_array in walk_arrays: 

        files.extend( map( lambda walk: os.path.join(walk_array[0], walk), 

walk_array[2] )) 

    files.sort() 

 

    # calculate maximum number of files to process per iteration 

    part_size = len(files)/pathos.multiprocessing.cpu_count() 

    total_size = get_size(dirs) 

    avg_size = float(total_size)/len(files) 

    avg_part_size = part_size*avg_size 

    # the average amount of data processed per iteration 

    # cannot be more than $threshold MiB 

    # otherwise failures will occur 

    threshold_mb = 300 

    limit_size = int(threshold_mb/avg_size) 

    part_size = part_size if avg_part_size < threshold_mb else limit_size 
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    print "INFO: start analysis for new router" 

    print "%s\trouter"  % router 

    print "%s\tfiles"   % len(files) 

    print "%.3f GB\tdirectory size"  % (total_size/1024) 

    print "%.3f MB\taverage file size"  % avg_size 

    print "%s\tfiles per nfdump process" % part_size 

    # make directory 

    try: 

        subprocess.check_call( 

            ['hadoop', 'fs', '-mkdir', '/tmp/live/%s' % router]) 

    except: 

        # we don't care if dir already exists 

        pass 

    # read files and store text in hdfs 

    read_files( files, part_size ) 

    print "INFO: finished writing data to hdfs for router:\t%s\n" % router 
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II Sequential analysis of intervals 
 

def get_sorted_keys(rdd_object): 

    '''return sorted array of unique keys for given rdd object 

    (must be in (k, v) format))''' 

    # 1. sort by key 

    # 2. remap rdd to store keys only instead of (k, v) 

    # 3. get unique items for rdd 

    # 4. collect output 

    keys = rdd_object.map( lambda (k, v): k) \ 

                    .distinct() \ 

                    .collect() 

    return sorted( keys ) 

 

def get_high_hits_by_interval_old(rdd, intervals, threshold=0): 

    '''# hits per socket is pipelined as: 

    # 1. filter dist_records by current interval 

    # 2. remove old key from record using map 

    # 3. add new key from socket using: "ip_address:port:protocol" 

    # 4. reduce by counting #values for this key using countByKey() 

    # 5. collect ( create dictonary with key == interval 

    #         and value == [array of records within interval] 

    # 

    # map flow_record to  'timestamp:ip:port:protocol' -> '1' 

     

    new_key = lambda rec: "%s:%s:%s:%s" % (rec[0],rec[4],rec[5],rec[6]) 

    total_hits_per_socket_interval = [] 

    for interval in intervals: 

        hits_per_socket = rdd.filter( lambda (k, v): k == interval) \ 

                             .map( lambda (k, v): (new_key(v),1)) \ 

                             .reduceByKey(operator.add) \ 

                             .filter( lambda (k, v): v > threshold ) \ 

                             .collectAsMap() 

     

        total_hits_per_socket_interval.append( hits_per_socket ) 

 
### main ### 

intervals = get_sorted_keys(netflow_records) 

hits = get_high_hits_by_interval_old(netflow_records, intervals) 
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III Parallel analysis of intervals 
 

### multi threading functs ### 

def collect_rdd(worker_q, result_q): 

    '''implement queue for processing tasks 

    applies .collectAsMap() function on each rdd_obj''' 

    while True: 

        rdd_obj = worker_q.get() 

        result = rdd_obj.collectAsMap() 

        result_q.put(result) 

        worker_q.task_done() 

 
def spawn_collect_threads( rdd_array, num_threads = 22): 

    '''call collect() function on multiple rdd_objects 

    by using queues and threading 

    returns nested array of result values''' 

    worker_q = Queue.Queue() 

    result_q = Queue.Queue() 

    threads = [] 

    # start # threads pointing to collect_rdd function 

    for i in range( num_threads ): 

        t = threading.Thread(target=collect_rdd,args=(worker_q, result_q)) 

        t.daemon = True 

        t.start() 

    # fill queue with objects 

    for rdd_obj in rdd_array: 

        worker_q.put(rdd_obj) 

    # wait for workers to finish 

    worker_q.join() 

    # collect resulting values from result_q 

    array_of_discrete_values = [ result_q.get() for _ in xrange(result_q.qsize()) ] 

    return array_of_discrete_values 

 

### ddos analysis specific functions ### 

def get_high_hits_by_interval_old(rdd, intervals, threshold=0): 

    '''hits per socket is pipelined as: 

    # 1. filter dist_records by current interval 

    # 2. remove old key from record using map 

    # 3. add new key from socket using: "ip_address:port:protocol" 

    # 4. reduce by counting #values for this key using countByKey() 

    # returns dict ''' 

    # map flow_record to  'timestamp:ip:port:protocol' -> '1' 

    new_key = lambda rec: "%s:%s:%s:%s" % (rec[0],rec[4],rec[5],rec[6]) 

    total_hits_per_socket_interval = [] 

    for interval in intervals: 

        hits_per_socket = rdd.filter( lambda (k, v): k == interval) \ 

                             .map( lambda (k, v): (new_key(v),1))   \ 

                             .reduceByKey(operator.add)             \ 

                             .filter( lambda (k, v): v > threshold ) 

        total_hits_per_socket_interval.append( hits_per_socket ) 

    all_hits = spawn_collect_threads(total_hits_per_socket_interval, num_threads = 

30) 

    return all_hits 

 
### main ### 

intervals = get_sorted_keys(netflow_records) 

hits = get_high_hits_by_interval_old(netflow_records, intervals) 

print "high hits by interval:" 

for k, v in hits.iteritems(): 

    print "%s\t%s" % ( k, len(v)) 
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IV Analysis of data in single map/reduce job 
 

### ddos analysis specific functions ### 

def get_high_hits_by_interval(rdd, threshold=0): 
    # input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1) 
    def map_by_time(entry): 
        '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1) 
        output : (u'2014-03-25 17', ('123.123.123.123', '42321', 'TCP', 1)  )''' 
        record, value = entry 
        interval, ip, port, proto = record.split(':') 
        port = int(port) 
        # anonymize ip 
        ip = str(hash(ip))[1:10] 
        return (interval, ip, port, proto, value) 
         
   result = rdd.filter(lambda (k, v): v > threshold) \ 
            .map( map_by_time ) \ 
            .collect() 
 
    result.insert(0, ('interval', 'ip', 'port', 'proto', 'hits') ) 
    return result 
 

### main ### 

# map flow_record to  'timestamp:ip:port:protocol' -> '1' 

new_key = lambda rec: "%s:%s:%s:%s" % (rec[0],rec[4],rec[5],rec[6]) 

# count hits by interval 

temp_rdd = netflow_records.map( lambda (k, v): (new_key(v), 1) ) \ 

                          .reduceByKey(operator.add) 

 

hits = get_high_hits_by_interval(netflow_records, threshold) 

 

print "high hits by interval:" 

for k, v in hits.iteritems(): 

    print "%s\t%s" % ( k, len(v)) 
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V Analysis of network data using only Spark 
import pyspark 

import cPickle as pickle 

import re, operator, collections, csv, time 

import os, sys, subprocess, itertools 

import IPython 

import xlwt 

import datetime 

import socket 

from matplotlib import pyplot 

 

########### FUNCTIONS ######## 

def create_spark_context( partitions=72): 

    '''create spark context with given default partition size''' 

    conf = pyspark.SparkConf() 

    conf.setMaster('spark://node11.echo.hadoop.vancis.nl:7077') 

    conf.setAppName('spark-test') 

    # reserve #G RAM for spark thread per node 

    conf.set('spark.executor.memory', '16g') 

    # increase Akka framesize 

    conf.set('spark.akka.frameSize', '64') 

    conf.set('spark.local.dir', '/data/2/spark_tmp,/data/1/spark_tmp') 

    conf.set('spark.default.parallelism', partitions) 

    # enable compression on in memory objects (requires extra processing) 

    # conf.set('spark.rdd.compress', 'true') 

    # allow concurrent execution of multiple calculations 

    # (default == FIFO) 

    SCHEDULER = 'FIFO' 

    conf.set('spark.scheduler.mode', SCHEDULER) 

    conf.set('spark.scheduler.allocation.file','/root/bin/fairscheduler.xml') 

    return pyspark.SparkContext(conf = conf) 

 

def read_hdfs_files(file, sc): 

    '''read file from hdfs 

    file can be one file, wildcard, or directory! 

    return RDD object''' 

    dataset = sc.textFile("%s" % file ) 

    # store as array first, map after as in read_nfdump 

    def parse_flow_record(line): 

        '''internal function, for each split and 

        distribute records as k: 'Y-M-d H', v: flow_record[]''' 

        flow_array  = map( lambda word: word.strip(), line.split(',')) 

        # store date part without MM:SS 

        flow_array[0] = flow_array[0].split(':')[0] 

        # store array as (k, v): k = date, v = flow_record ) 

        flow_record = (flow_array[0], flow_array) 

        return flow_record 

 

    RDD = dataset.map(lambda line: parse_flow_record(line)) 

    return RDD 

 

 

def get_high_hits_by_pport(rdd, threshold=0, min_pport=0): 

    '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1) 

    # 1. filter all values below threshold 

    # 2. create (k, v) mapping by pport 

    # 3. group all records by pport 

    # 4. filter all (pport, [] ) where len([]) < min_pport 

    # 5. sort values by hits and date (affects ewma!)''' 

    def map_by_pport(entry): 

        '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1) 

        output : (u'42321:TCP', ('123.123.123.123', '42321', 'TCP', 1) )''' 

        record, value = entry 

        interval, ip, port, proto = record.split(':') 

        interval = datetime.datetime.strptime( interval, '%Y-%m-%d %H') 



 

36/45 

        port = int(float(port)) 

        pport = "%s:%s" % (port, proto) 

        # anonymize ip 

        ip = str(hash(ip))[-9:] 

        return (pport,  (interval, ip, port, proto, value) ) 

    def sort_values(records): 

        '''sort by hits(4), interval(0)''' 

        for i in (4,0): 

            result = sorted( records, key=operator.itemgetter(i)) 

        return result 

         

    result = rdd.filter(lambda (k, v): v > threshold) \ 

        .map( map_by_pport ) \ 

        .groupByKey() \ 

        .filter( lambda (pport, records): len(records) > min_pport) \ 

        .reduceByKey( operator.add ) \ 

        .mapValues( sort_values ) \ 

        .collectAsMap() 

    return result 

 

def save_plot(file_name): 

    pyplot.ylim(ymin=0) 

    pyplot.gcf().autofmt_xdate() 

    pyplot.legend() 

    pyplot.savefig(file_name) 

    pyplot.clf() 

 

def draw_plots(records_by_pport, threshold, router): 

    '''make scatterplots of data by pport''' 

    colors  = itertools.cycle(['b','r','g','c','m']) 

    markers = itertools.cycle(['o','x','+','v','s']) 

    lines = 0 

    for pport, records in records_by_pport.iteritems(): 

        pyplot.xlabel('date') 

        pyplot.ylabel('hits by hour (normalized)') 

        dates = map( lambda x: x[0], records) 

        # normalize hits 

        hits  = map( lambda y: y[4], records) 

        sum = reduce (operator.add, hits) 

        hits_norm = map ( lambda x: float(x)/sum, hits) 

        port, proto = pport.split(':') 

        label = "%s:%s" % (port, proto) 

        service = get_service(port, proto) 

        pyplot.scatter(dates, hits_norm, label=label, color=next(colors), 

marker=next(markers), facecolors='none') 

        lines+=1 

        if lines%5 == 0 : 

            # draw 5 lines on each graph 

            save_plot( "/root/bin/data/plots/%s_%s_%s_norm.png" % 

(router,threshold,lines) ) 

    # capture remaining lines 

    if lines%5 != 0: 

        save_plot( "/root/bin/data/plots/%s_%s_%s_norm.png" % 

(router,threshold,lines) ) 

      

 

########### GLOBAL ########### 

partitions = 1500 

threshold = 100 

min_pport = 1500 

sc = create_spark_context(partitions) 

############ MAIN    ######### 

routers = [ 'router 1', 'router 2', 'router 3', 'router 4', 'router 5', 'router 6', 

'router 7', 'router 8', 'router 9', 'router 10' ] 
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for router in routers: 

    t_start = time.time() 

    hdfs_dir = "hdfs:///tmp/live/%s" % router 

    netflow_records = read_hdfs_files(hdfs_dir, sc) 

    # create temp rdd which will be used to 

    # - calculate hits/hour ratios 

    # - retrieve IP's with highest hitrates (overall) 

    # map flow_record to  'timestamp:ip:port:protocol' -> '1' 

    new_key = lambda rec: "%s:%s:%s:%s" % (rec[0],rec[4],rec[5],rec[6]) 

    temp_rdd = netflow_records.map( lambda (k, v): (new_key(v), 1) ) \ 

           .reduceByKey(operator.add) 

    

    temp_rdd.persist(pyspark.StorageLevel.MEMORY_AND_DISK_SER) 

 

    # GET HITS BY PPORT 

    hits_by_pport = get_high_hits_by_pport(temp_rdd, threshold, min_pport) 

    draw_plots(hits_by_pport, threshold, router) 
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VI Code for detection algorithms 
 

 

EWMA Algorithm 
    ewma = { 

        'avg'      : array[0][4],  # Set initial ewma X0 = X1 

        'gamma'    : 0.3,          # gamma 

        'thresh'   : 4,            # threshold multiplication factor 

        'max_gap'  : 6,            # max interval gap 

        'gap'      : 0,            # gap counter 

        'alerts'   : []            # Store alerts 

    } 

 

 

    if value < ewma['avg']*(1+ewma['thresh']) and value > ewma['avg']*(1-

ewma['thresh']): 

    # value is between upper and lower ewma threshold, no alert 

        ewma['gap'] = 0 

        ewma['avg'] = ewma['gamma']*value + (1-ewma['gamma'])*ewma['avg'] 

    elif value > ewma['avg']*(1+ewma['thresh']): 

        # value exceeds upper bound threshold, alert 

        # no alerts for values below lower bound threshold 

        ewma['alerts'].append(record) 

        ewma['gap'] += 1 

        if ewma['gap'] >= ewma['max_gap']: 

            # if gap exceeds max gap size: 

            #   1. reset gap 

            #   2. force update of ewma 

            ewma['gap'] = 0 

            ewma['avg'] = ewma['gamma']*value + (1-ewma['gamma'])*ewma['avg'] 

 

 

Adaptive Threshold Algorithm 
        adapt = { 

            'avg'         : array[0][4],    # X0 = X1 

            'gamma'       : 0.3,            # gamma 

            'thresh'      : 1.2,            # threshold multiplication factor 

            'alerts' : [] 

        } 

 

 

        adapt['avg'] = adapt['gamma']*value + (1-adapt['gamma'])*adapt['avg'] 

        if value > adapt['avg']*(1+adapt['thresh']): 

            # value exceeds upper bound threshold, alert 

            adapt['alerts'].append(record) 
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VII Final implementation 
#!/usr/bin/env pyspark  

# spark test 

 

import pyspark 

import cPickle as pickle 

import re, operator, collections, csv, time 

import os, sys, subprocess, itertools 

import Queue, threading 

import IPython 

import xlwt 

import datetime 

import socket 

from matplotlib import pyplot 

 

 

########### FUNCTIONS ######## 

def create_spark_context( partitions=72): 

    '''create spark context with given default partition size''' 

    conf = pyspark.SparkConf() 

    conf.setMaster('spark://node11.echo.hadoop.vancis.nl:7077') 

    conf.setAppName('spark-test') 

    # reserve #G RAM for spark thread per node 

    conf.set('spark.executor.memory', '16g') 

    # increase Akka framesize 

    conf.set('spark.akka.frameSize', '64') 

    conf.set('spark.local.dir', '/data/2/spark_tmp,/data/1/spark_tmp') 

    conf.set('spark.default.parallelism', partitions) 

    # enable compression on in memory objects (requires extra processing) 

    # conf.set('spark.rdd.compress', 'true') 

    # allow concurrent execution of multiple calculations 

    # (default == FIFO) 

    SCHEDULER = 'FIFO' 

    conf.set('spark.scheduler.mode', SCHEDULER) 

    conf.set('spark.scheduler.allocation.file','/root/bin/fairscheduler.xml') 

    return pyspark.SparkContext(conf = conf) 

 

def read_hdfs_files(file, sc): 

    '''read file from hdfs 

    file can be one file, wildcard, or directory! 

    return RDD object''' 

    dataset = sc.textFile("%s" % file ) 

    # store as array first, map after as in read_nfdump 

    def parse_flow_record(line): 

        '''internal function, for each split and  

        distribute records as k: 'Y-M-d H', v: flow_record[]''' 

        flow_array  = map( lambda word: word.strip(), line.split(',')) 

        # store date part without MM:SS 

        flow_array[0] = flow_array[0].split(':')[0] 

        # store array as (k, v): k = date, v = flow_record ) 

        flow_record = (flow_array[0], flow_array) 

        return flow_record 

 

    RDD = dataset.map(lambda line: parse_flow_record(line)) 

    return RDD  

 

def read_object_from_disk(file): 

    '''read pickled object from file and return it''' 

    try: 

        fh = open(file, 'rb') 

        object = pickle.load(fh) 

        fh.close() 

        return object 

    except: 

        print "ERROR: can't read from file" 



 

40/45 

        return False 

def write_object_to_disk(file, object): 

    '''write object to file''' 

    try: 

        fh = open( file, 'wb') 

        pickle.dump(object, fh) 

        fh.close() 

    except: 

        print "ERROR: can't access file" 

        return False 

    print "INFO: write succeeded" 

    return True 

 

def get_data_size(router): 

    '''retrieve size of data on hdfs in MB''' 

    du_output = subprocess.Popen(  

        ['/usr/bin/hadoop', 'fs', '-du', '-h', '/tmp/live' ], 

        stdout=subprocess.PIPE).communicate()[0] 

    for line in du_output.splitlines(): 

        # '126.7 M  /tmp/live/sarar9' 

        if re.search( router, line ): 

            size, unit, path = line.split() 

            if unit == 'G':  

                size = float(size) 

                size *=1024 

            return size 

    print "ERROR: router not found" 

    return False 

 

def get_high_hits_by_pport(rdd, threshold=0, min_pport=0): 

    '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1) 

    # 1. filter all values below threshold 

    # 2. create (k, v) mapping by pport 

    # 3. group all records by pport 

    # 4. filter all (pport, [] ) where len([]) < min_pport 

    # 5. sort values by hits and date (affects ewma!)''' 

    def map_by_pport(entry): 

        '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1) 

        output : (u'42321:TCP', ('123.123.123.123', '42321', 'TCP', 1) )''' 

        record, value = entry 

        interval, ip, port, proto = record.split(':') 

        interval = datetime.datetime.strptime( interval, '%Y-%m-%d %H') 

        port = int(float(port)) 

        pport = "%s:%s" % (port, proto) 

        # anonymize ip 

        ip = str(hash(ip))[-9:] 

        return (pport,  (interval, ip, port, proto, value) ) 

    def sort_values(records): 

        '''sort by hits(4), interval(0)''' 

        for i in (4,0): 

            result = sorted( records, key=operator.itemgetter(i)) 

        return result 

         

    result = rdd.filter(lambda (k, v): v > threshold) \ 

        .map( map_by_pport ) \ 

        .groupByKey() \ 

        .filter( lambda (pport, records): len(records) > min_pport) \ 

        .reduceByKey( operator.add ) \ 

        .mapValues( sort_values ) \ 

        .collectAsMap() 

    return result 

 

def get_high_stats_by_interval(rdd, threshold, min_pport): 

    '''input: rdd with: 

    [(u'2014-03-25 17:123.123.123.123:42321:TCP', 1)] 
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    output: 

        stats {} 

    ''' 

    def map_by_pport(entry): 

        '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1) 

        output : (u'42321:TCP', ('123.123.123.123', '42321', 'TCP', 1) )''' 

        record, value = entry 

        interval, ip, port, proto = record.split(':') 

        interval = datetime.datetime.strptime( interval, '%Y-%m-%d %H') 

        port = int(float(port)) 

        pport = "%s:%s" % (port, proto) 

        # anonymize ip 

        ip = str(hash(ip))[-9:] 

        return (pport,  (interval, ip, port, proto, value) ) 

         

    def apply_algorithms(array): 

        '''algorithms to be applied on "values" which are grouped by  

            "port:protocol" combination" e.g. array of: 

            [  

            (datetime.datetime(2014, 3, 24, 23, 0), '555170168', 123, u'UDP', 13), 

            (datetime.datetime(2014, 3, 29, 19, 0), '829666315', 123, u'UDP', 13), 

            (datetime.datetime(2014, 3, 3, 20, 0), '829666315', 123, u'UDP', 15), 

        ]''' 

        # loop through array by date 

        array = sorted ( array, key=operator.itemgetter(0) ) 

        # parameters for ewma calculations 

        # avg initialized as first value in array 

        # orig gamma: 0.05 thresh 0.2 

        ewma = { 

            'avg'         : array[0][4], 

            'gamma'       : 0.3, 

            'thresh'      : 4, 

            'max_gap'     : 6, 

            'gap'         : 0, 

            'alerts' : [] 

        } 

        adapt = { 

            'avg'         : array[0][4], 

            'gamma'       : 0.3, 

            'thresh'      : 1.2, 

            'alerts' : [] 

        } 

        n = len(array) 

        total = 0 

        top_1000        = [] 

        #adaptive_alerts = [] 

        for record in array: 

            value = record[4] 

            total +=value 

            # calculate top 1000  

            if len(top_1000) < 1000: 

                top_1000.append(record) 

            else: 

                pass 

                # update top1000 if current hits_count is higher than that of  

                # the entry with the current lowest hitcount in top_1000 list 

                index, min_record = min(enumerate(top_1000), key=lambda x: x[1][4]) 

                lowest = min_record[4] 

                if value > min: 

                    top_1000[index] = record  

            # apply ewma algorithm 

            if value < ewma['avg']*(1+ewma['thresh']) and value > ewma['avg']*(1-

ewma['thresh']): 

                # value is between upper and lower ewma threshold, no alert 

                ewma['gap'] = 0 
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                ewma['avg'] = ewma['gamma']*value + (1-ewma['gamma'])*ewma['avg'] 

            elif value > ewma['avg']*(1+ewma['thresh']): 

                # value exceeds upper bound threshold, alert 

                # no alerts for values below lower bound threshold 

                ewma['alerts'].append(record) 

                ewma['gap'] += 1 

                if ewma['gap'] >= ewma['max_gap']: 

                    # if gap exceeds max gap size: 

                    #   1. reset gap 

                    #   2. force update of ewma 

                    ewma['gap'] = 0 

                    ewma['avg'] = ewma['gamma']*value + (1-ewma['gam-

ma'])*ewma['avg'] 

            # apply adaptive threshold algorithm 

            adapt['avg'] = adapt['gamma']*value + (1-adapt['gamma'])*adapt['avg'] 

            if value > adapt['avg']*(1+adapt['thresh']): 

                # value exceeds upper bound threshold, alert 

                adapt['alerts'].append(record) 

        result = { 

            'n': n, 

            'top_1000': top_1000, 

            'ewma_alerts': ewma['alerts'], 

            'ewma_gamma' : ewma['gamma'], 

            'ewma_thresh': ewma['thresh'], 

            'ewma_max_gap': ewma['max_gap'], 

            'adapt_alerts': adapt['alerts'], 

            'adapt_gamma' : adapt['gamma'], 

            'adapt_thresh': adapt['thresh'], 

            'total':total } 

        return result  

 

    # filter out values below threshold 

    # group records by "port:proto" combination 

    # filter out arrays with data on less then min_pport intervals  

    # apply algorithms to each array of results for certain "pport" combination 

    # [ ( key, [values] ), ( key, [values]) ] 

    stats_by_pport = rdd.filter(lambda (k, v): v > threshold) \ 

        .map( map_by_pport ) \ 

        .groupByKey() \ 

        .filter( lambda (pport, records): len(records) > min_pport) \ 

        .mapValues( apply_algorithms ) \ 

        .collectAsMap() 

    return stats_by_pport 

def get_hhi_stats(rdd): 

    '''calculate the mean,median,max for given interval 

    in rdd and return array with given stats by hour''' 

    hits_hour = rdd.collectAsMap() 

    hhi_arr = [] 

    header = ['interval','mean','max' ] 

    hhi_arr.append(header) 

    for (hour, value) in sorted(hits_hour.items()): 

        interval = hour+':00' 

        mean = value[0] 

        max  = value[1] 

        hhi_arr.append([interval,mean,max]) 

    return hhi_arr 

 

### output functions ### 

def write_array_to(array, file, mode='wb'): 

    '''write array to file as csv''' 

    with open(file, mode) as fh: 

        writer = csv.writer(fh) 

        writer.writerows(array) 

def get_service(port, proto): 

    try: 
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        return socket.getservbyport(int(port), proto.lower() ) 

    except: 

        return "" 

def save_plot(file_name): 

    pyplot.ylim(ymin=0) 

    pyplot.gcf().autofmt_xdate() 

    pyplot.legend() 

    pyplot.savefig(file_name) 

    pyplot.clf() 

 

def draw_plots(records_by_pport, threshold, router): 

    '''make scatterplots of data by pport''' 

    colors  = itertools.cycle(['b','r','g','c','m']) 

    markers = itertools.cycle(['o','x','+','v','s']) 

    lines = 0 

    for pport, records in records_by_pport.iteritems(): 

        pyplot.xlabel('date') 

        pyplot.ylabel('hits by hour (normalized)') 

        dates = map( lambda x: x[0], records) 

        # normalize hits 

        hits  = map( lambda y: y[4], records) 

        sum = reduce (operator.add, hits) 

        hits_norm = map ( lambda x: float(x)/sum, hits) 

        port, proto = pport.split(':') 

        label = "%s:%s" % (port, proto) 

        service = get_service(port, proto) 

        pyplot.scatter(dates, hits_norm, label=label, color=next(colors), 

marker=next(markers), facecolors='none') 

        lines+=1 

        if lines%5 == 0 : 

            # draw 5 lines on each graph 

            save_plot( "/root/bin/data/plots/%s_%s_%s_norm.png" % (router,thresh-

old,lines) ) 

    # capture remaining lines 

    if lines%5 != 0: 

        save_plot( "/root/bin/data/plots/%s_%s_%s_norm.png" % (router,thresh-

old,lines) ) 

          

def draw_stat_plots(results, threshold, router): 

    '''make scatterplots of data by pport''' 

    colors  = itertools.cycle(['b','r','g']) 

    markers = itertools.cycle(['.','>','<']) 

    for pport, records in results.iteritems(): 

        pyplot.xlabel('date') 

        pyplot.ylabel('hits by hour') 

        port, proto = pport.split(':') 

        i = 0 

        for arr in [ records['top_1000'], records['ewma_alerts'], rec-

ords['adapt_alerts'] ]: 

            dates = map( lambda x: x[0], arr) 

            hits  = map( lambda y: y[4], arr) 

            port, proto = pport.split(':') 

            i+=1 

            if i%3 == 1: 

                label = "%s:%s" % (port, proto) 

            if i%3 == 2: 

                label = 'ewma alert' 

            if i%3 == 0: 

                label = 'adapt alert' 

            pyplot.scatter(dates, hits, label=label, color=next(colors), 

marker=next(markers), facecolors='none') 

        save_plot( "/root/bin/data/plots/%s_stats_%s_%s_%s.png" % (router,thresh-

old, port, proto) ) 

def write_array_to_excel(array, file): 

    wb = xlwt.Workbook() 
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    xf =xlwt.easyxf(num_format_str='DD-MM-YY HH') 

    for pport, records in array.iteritems(): 

        port, proto = pport.split(':') 

        label = "%s_%s" % (port, proto) 

        sheet = wb.add_sheet(label) 

        # insert table header 

        records.insert(0, ('interval', 'ip', 'port', 'proto', pport) ) 

        for row, array in enumerate(records): 

            for col, value in enumerate(array): 

                if col == 0 and row != 0: 

                    sheet.write(row,col,value, xf) 

                else: 

                    sheet.write(row,col,value) 

    wb.save(file) 

 

def write_stats_to_excel(results, file): 

    wb = xlwt.Workbook() 

    xf =xlwt.easyxf(num_format_str='DD-MM-YY HH') 

    for pport, records in results.iteritems(): 

        port, proto = pport.split(':') 

        label = "%s_%s" % (port, proto) 

        sheet = wb.add_sheet(label) 

        # insert table header in first printed dataset 

        records['top_1000'].insert(0, ('interval', 'ip', 'port', 'proto', pport ) ) 

        for row, array in enumerate(records['top_1000']): 

            for col, value in enumerate(array): 

                if col == 0 and row != 0: 

                    sheet.write(row,col,value, xf) 

                else: 

                    sheet.write(row,col,value) 

        records['ewma_alerts'].insert(0, ('interval', 'ip', 'port', 'proto', 'ewma' 

) ) 

        for row, array in enumerate(records['ewma_alerts']): 

            for col, value in enumerate(array): 

                col += 5 

                if col == 5 and row != 0: 

                    sheet.write(row,col,value, xf) 

                else: 

                    sheet.write(row,col,value) 

        records['adapt_alerts'].insert(0, ('interval', 'ip', 'port', 'proto', 

'adapt' ) ) 

        for row, array in enumerate(records['adapt_alerts']): 

            for col, value in enumerate(array): 

                col += 10 

                if col == 10 and row != 0: 

                    sheet.write(row,col,value, xf) 

                else: 

                    sheet.write(row,col,value) 

 

        arr = [( 'n',      records['n']), 

               ('ewma_gamma' , records['ewma_gamma']), 

               ('ewma_thresh', records['ewma_thresh']), 

               ('ewma_max_gap', records['ewma_max_gap']), 

               ('adapt_gamma' , records['adapt_gamma']), 

               ('adapt_thresh', records['adapt_thresh']), 

               ('total', records['total']) 

            ] 

        for row, array in enumerate(arr): 

            for col, value in enumerate(array): 

                col += 15 

                sheet.write(row,col,value) 

    wb.save(file) 

 

########### GLOBAL ########### 

# set cores to use per process 24 servers * 3 cores = 72 
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# higher for larger datasets 

partitions = 1500 

threshold = 100 

min_pport = 1500 

sc = create_spark_context(partitions) 

 

############ MAIN    ######### 

routers = [ 'sarar4', 'sarar9', 'klantr2-alm', 'alm01-r05', 'saraxs1', 'klantr1-

alm', 'klantr2-asd', 'klantr1-asd', 'sarar1', 'sarar6' ] 

# sarar4 = p:any, thr:10, min_pport:10 

# alm01-r05    =p:600, thr:20, min_pport:20 

# saraxs1      =p:1000, thr:100, min_pport:1000 

# klantr1-alm  =p:1000, thr:500, min_pport:1000 

# klantr2-asd  =p:1500, thr:100, min_pport:1500 

# sarar1       =p:3000, thr:2000, min_pport:1000 

execution_times = [] 

#for router in ['sarar9']: 

#for router in [ 'sarar4', 'klantr2-alm', 'alm01-r05'  ]: 

#for router in [ 'saraxs1', 'klantr1-alm' ]: 

#for router in ['klantr2-asd']: 

for router in [ 'klantr1-asd', 'sarar1', 'sarar6' ]: 

    t_start = time.time() 

    hdfs_dir = "hdfs:///tmp/live/%s" % router 

    netflow_records = read_hdfs_files(hdfs_dir, sc) 

    # ! parallel 

    #intervals = get_sorted_keys(netflow_records) 

    #hits = get_high_hits_by_interval_old(netflow_records, intervals) 

    # create temp rdd which will be used to  

    # - calculate hits/hour ratios 

    # - retrieve IP's with highest hitrates (overall) 

    # map flow_record to  'timestamp:ip:port:protocol' -> '1' 

    new_key = lambda rec: "%s:%s:%s:%s" % (rec[0],rec[4],rec[5],rec[6]) 

    temp_rdd = netflow_records.map( lambda (k, v): (new_key(v), 1) ) \ 

           .reduceByKey(operator.add) 

    temp_rdd.persist(pyspark.StorageLevel.MEMORY_AND_DISK_SER) 

    # GET HITS BY PPORT 

    hits_by_pport = get_high_hits_by_pport(temp_rdd, threshold, min_pport) 

    draw_plots(hits_by_pport, threshold, router) 

    if router in [ 'sarar4', 'sarar9', 'klantr2-alm', 'alm01-r05', 'saraxs1', 

'klantr1-alm']: 

    #    # only write if it fits into excel sheet 

        hhp_xls = "/root/bin/data/%s_hhp.xls" % ( router )  

        write_array_to_excel(hits_by_pport, hhp_xls) 

 

    # GET HIGH STATS 

    hits_by_stats = get_high_stats_by_interval(temp_rdd, threshold, min_pport) 

    draw_stat_plots(hits_by_stats, threshold, router) 

    stats_file = "/root/bin/data/%s_stats_%s_%s.xls" % (router, threshold, 

min_pport) 

    write_stats_to_excel( hits_by_stats, stats_file ) 

 

    d_size = float(get_data_size(router)) 

    t_finish = time.time() 

    t_total = t_finish - t_start  

    rate = d_size/t_total 

    execution_times.append([router, d_size, t_total, rate,threshold, partitions, 

threshold ]) 

 

write_array_to(execution_times, '/root/bin/data/execution_times.csv', 'a') 
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