

19-Aug-14

Detecting DDOS attacks
using distributed
processing frameworks

#59: RP2 REPORT

SUDESH JETHOE

SUDESH.JETHOE@OS3.NL

Supervisor:

Anthony Potappel, Vancis

University of Amsterdam

System and Network Engineering

1/45

Summary
In this work three distributed processing frameworks were evaluated, namely Hive, Pig and Spark.

From these frameworks Spark offered the most flexibility for implementing a DDOS detection

algorithm. By initially slicing the data by interval, port and protocol we were able to identify

anomalies in the network traffic data. We discussed several algorithms which can be applied for

detecting these network anomalies. From the detection algorithms two were implemented in a

distributed processing framework. To make the algorithms suitable for distributed processing we

initially created flow counts by interval. After, these flow counts were grouped by service. Finally we

applied the selected detection algorithms on the resulting set of flow counts per service per interval

for the whole dataset. We found that algorithms configured for one dataset do not necessarily perform

well for another dataset. However, the application of distributed processing for network traffic

anomaly analysis itself did allow us to process up to 100 GiB of network traffic data in under 10

minutes.

2/45

Index
Summary __ 1

Index ___ 2

1 Introduction __ 3

1.1 Generic __ 3

1.2 Research Questions ___ 3

1.3 Ethical considerations ___ 3

2 Background __ 4

2.1 What is Hadoop? ___ 4

2.2 Extended components of Hadoop ___ 7

2.3 Detecting DDOS attacks ___ 9

3 Methodology __ 11

3.1 Dataset and Cluster __ 11

3.2 Distributed processing algorithm ___ 12

3.3 DDOS algorithms methodology __ 15

4 Results ___ 16

4.1 Spark ___ 16

4.2 DDOS algorithms __ 21

5 Conclusion __ 26

5.1 Spark ___ 26

5.2 DDOS Algorithms __ 26

6 Future work ___ 27

7 References __ 28

Appendix ___ 29

I Write netflow data to HDFS ___ 29

II Sequential analysis of intervals __ 32

III Parallel analysis of intervals __ 33

IV Analysis of data in single map/reduce job ___ 34

V Analysis of network data using only Spark ___ 35

VI Code for detection algorithms __ 38

3/45

1 Introduction
1.1 Generic
Attacks on online services have been occurring on a regular basis for a long time. However, with the

increased digitization of financial and public services, attacks can have greater impact. Even though

services offered online can be secured quite well from attacks targeted at vulnerabilities in (web)

frameworks it is still a challenge to protect against distributed attacks. The nature of distributed

attacks prevents easy mitigation. It is therefore useful to gain more insight in these attacks by network

traffic analysis. Analysing the large amounts of network traffic data captured from routers however,

can be a challenge using classical analysis methods.

Several frameworks have been developed which are capable of effectively analysing large datasets.

Examples are Storm [3], Hadoop [1] and DryadLINQ [4]. Frameworks such as these provide features

to store large sets of data across multiple machines and process this data in parallel. This enables the

analysis of large datasets in relatively short periods of time.

Vancis is a Dutch company which provides advanced IT-infrastructure services for its customers.

Amongst these services they provide connectivity and also computing clusters for universities and

research institutions. As a provider of connectivity services Vancis has its own routers and the network

traffic data from them. Vancis also has a Hadoop cluster which is used by its customers for analysing

large datasets.

1.2 Research Questions
In this research we will make use of the Hadoop distributed processing framework, provided by

Vancis, to analyse the historical network traffic (netflow) data from Vancis.

Main research question:

 How can a distributed processing framework be utilized to identify network anomalies in

historical netflow data?

Sub questions:

 Which processing framework is best suited for identifying DDOS attacks?

 How can we distinguish anomalies in netflow data?

 Which algorithms for detecting network anomalies exist and how can they be applied in a

distributed processing environment?

1.3 Ethical considerations
The network traffic data which is received from Vancis reveals traffic patterns and addresses of

customers of the company. Therefore, for this research an agreement was signed that the network

traffic data must not leave the companies premises. Besides, all IP-addresses in the resulting data have

been anonymised by using a hash algorithm, to ensure privacy of Vancis' customers.

4/45

2 Background
Originally Hadoop only supported the MapReduce algorithm. However, new frameworks have been

developed which are capable of utilizing the distributed processing capabilities of the Hadoop

framework in a wide variety of computer science disciplines. For example; machine learning,

database systems, statistics and artificial intelligence. In this research we have assessed these

frameworks in order to build a tool for analysis of historical netflow data in order to find network

anomalies. Hereby we have focused on DDOS attacks in specific.

2.1 What is Hadoop?
Hadoop is a framework for distributed, parallel execution of computational tasks operating on large,

distributed datasets. In order to achieve this, Hadoop consists of three base components, namely:

HDFS, Yarn and MapReduce.

2.1.1 MapReduce
MapReduce [2] is the computation paradigm which underlies many distributed processing

frameworks.

MapReduce consists of the following components (see figure 1):

 User program: Main component from which computational tasks are sent and received.

 Master: The master assigns computational tasks to the worker nodes.

 Worker: Nodes in the cluster which do the actual processing.

Figure 1 Architectural overview of MapReduce [2]

MapReduce identifies the following functions:

 Map: A function is applied to each individual element in a dataset. Map functions are used to

prepare data for further processing by other distributed functions.

5/45

 Reduce: Apply a function which joins together all (distributed) elements of a dataset. An

example is a function which adds ups all the values of each element in the set, returning a

single value, the sum.

 Combine: Combination of map and reduce function which applies a transformation to a

distributed dataset and applies a reduce function on local data (data residing on the node

where the map function is applied). Combine functions are used to decrease the amount of

data which has to be transmitted to, and processed by, the Reducers.

 Filter: Apply a filter function on the data in order to reduce the size of the dataset and remove

obsolete data.

 Shuffle: The process which distributes the workload (data and computations) across the

cluster. A shuffle is called to distribute workload to the mappers, when the map functions have

been applied another shuffle is called to collect the intermediate results and send them to the

reducers.

The canonical example of MapReduce is the "wordcount" algorithm. In this algorithm a text is

processed to count the occurrences of each word in a given text. The "map" step creates key value

combination where each key is a word and the value is 1. After giving each word a value of one, all

the (key, value) combinations are "reduced". For this example, the function which is applied is a

summation of the values by key. Finally this will result in the counts (occurrences) of each word in the

text.

2.1.2 HDFS
The Hadoop distributed filesystem (HDFS) [5] is a framework used for distributing large datasets

across multiple hosts. HDFS identifies three main components, the namenode, datanodes and the

client. The namenode stores metadata such as the location of blocks and names of the files. The

datanodes store the actual data. The client component is used to access the filesystem.

Figure 2 HDFS architectural overview [6]

6/45

2.1.3 YARN: cluster manager and resource divisor
YARN [7] is the component of the Hadoop framework which manages resources and takes care of

distribution of applications across the cluster. To be able to do this YARN exists of the following

(figure 3):

 Client: interface to resource manager, used to submit MapReduce jobs to the cluster

 Resource manager: manages resources

 Node manager: manages the resources on a single node

 Application manager: manages tasks of a single application

 Container: A collection of resources (e.g. processing-, memory-, disk- and network capacity)

on a single node

Figure 3 YARN architectural overview [7]

7/45

2.2 Extended components of Hadoop
Besides the three base components which together make a "traditional" hadoop cluster, several new

tools have been developed which can make use of (parts of) the base components, but add extra

functionality. Although there are many, we will only discuss those which can be used for data

analysis, namely Hive, Pig and Spark.

Hive

Hive is a tool which can be used for querying structured data. Hive runs on top of HDFS and the data

on the distributed filesystem can be queried using an SQL-like syntax.

Pig

Pig can be used to convert data residing on HDFS into a "queryable" format by executing a set of

predefined statements on the data. Pig can also be used to query this data, however this require some

extra coding, while transformed data can readily be queried using hive.

Spark

Spark [12] is a framework which can be used to run custom algorithms on distributed datasets. Spark

was not originally developed to run on top of the Hadoop framework. Spark can be run in three

modes, namely standalone or on top of the Apache Mesos [10] or YARN cluster managers. Spark is

also capable of utilizing the HDFS filesystem for location aware data processing.

Figure 4 Spark job distribution [9]

In figure 4 an architectural overview of Spark is given. A Spark application works by first loading the

“SparkContext”. The SparkContext is a class which references the cluster and exposes distributed

objects and functions. The SparkContext requests resources from the cluster manager. The application,

or “Driver Program” in Spark, communicates with the workers directly and does not require the

cluster manager after the resources have been assigned (figure 5).

8/45

The main concept of distributed processing in Spark is the Resilient Distributed Dataset (RDD). A

Resilient Distributed Dataset (RDD) is a parallelized container holding objects distributed across

multiple nodes. Spark can apply two types of operations on RDD objects, namely:

 transformations: create new dataset from existing one (e.g. map or filter functions)

 actions: convert objects to discrete data (e.g. reduce or collect functions)

Spark uses RDD's to store the current transformation of the data and is capable of applying new

transformations on top of existing ones. Spark applies new transformations to an existing dataset by

making use of "lazy execution". This means that the transformations are only executed on the actual

dataset at the moment a final output is requested. By making use of "lazy executions" spark is capable

of optimizing the execution of multiple map/reduce operations before they are applied to the dataset.

Figure 5 Resource utilization in Spark on top of HDFS [11]

9/45

2.3 Detecting DDOS attacks
Several previous works have studied the analysis of DDOS attacks.

2.3.1 LADS: Large-scale Automated DDoS Detection System
In LADS: Large-scale Automated DDoS Detection System [13] a multi stage detection system is

proposed, composing of SNMP logs and netflow data. In this work the SNMP data is used for a

"lightweight" analysis for identifying anomalies (packets per second counters). When anomalies are

found, netflow collectors are triggered and start collecting more detailed data.

For the initial, lightweight detection, step SNMP packets per second counters are used for a temporal

analysis. The following stages were implemented for the initial step:

 Volume anomaly detection: Traffic anomalies on volume and link utilization measured in

bytes/second or packets/second, router cpu utilization, packet drop counts.

 Traffic distribution anomalies: Many attacks can be identified by substantial changes in traffic

distributions. Therefore this analysis was used as an augmentation to volume anomaly

detection.

For the more detailed analysis, the following stages were implemented:

 Rule based detection: Identify attacks on distinct characteristics such as many traffic to single

IP address, traffic originating from botnet blacklists.

 Unidimensional aggregation: Joining data from multiple source/destination addresses on

subnet to reduce the size of the dataset.

 Multidimensional clustering: Report high counts of any of the values stored in a flow (src /

dest ip, port, protocol ...).

2.3.2 Massively Parallel Anomaly Detection in Online Network Measurement

In Massively Parallel Anomaly Detection in Online Network Measurement (MPAD) [14] a

combination of several statistical analysis methods is proposed. By combining several methods a

higher sensitivity and specificity were achieved.

The following algorithms have been tested in MPAD:

 Average over Window

 Exponential Weighted Moving Average

 Holt Winter Forecasting Model

 Adaptive Threshold Algorithm

 Cumulative Sum Algorithm

Average over window

In [15] the average over window model is discussed. This model applies rule based classification and

divides traffic into classes according to a table lookup mechanism. The algorithm is optimized to be

applied in devices which have little memory but can do low latency processing, for example routers.

Exponential Weighted Moving Average

The exponential weighted moving average (EWMA) [16] is a moving average in which weights are

assigned to the current estimated average and the previous averages. By applying weights, the current

or previous averages gain higher importance in calculating the new average. In the implementation

mentioned in [16], anomalies are excluded from the EWMA calculation until the exclusion reaches a

certain limit, after which the EWMA is reset to the current value.

10/45

Holt Winter forecasting

Holt Winter forecasting is an extension of the exponential smoothing algorithm and takes into account

[17]:

 A trend over time (i.e., a gradual increase in application daemon requests over a two month

period due to increased subscriber load).

 A seasonal trend or cycle (i.e., every day bytes per second increases in the morning hours,

peaks in the afternoon and declines late at night).

 Seasonal variability (i.e., application requests fluctuate wildly minute by minute during the

peak hours of 4-8 pm, but at 1 am application requests hardly vary at all).

 Gradual evolution of regularities (1) through (3) over time (i.e., the daily cycle gradual shifts

as the number of evening daylight hours increases from December to June).

Adaptive threshold algorithm

The adaptive threshold algorithm [18] works by calculating an expected value using, for example a

weighted moving average, following the threshold is defined as a function depending on this average.

When the actual value exceeds the calculated threshold for n consecutive intervals, an alarm is raised.

Cumulative Sum Algorithm

The cumulative sum algorithm [18], [19] is a change point detection algorithm which tries to identify

cumulative deviations (increments or decrements) over longer periods of time. The algorithm does

this by calculating for each following interval an average mean (like the EWMA) and the distance

from this average compared to the actual measured value at this point in time. When the actual value

is above the average for longer periods of time, the accumulated sum will cross a configured threshold

and raise an alert.

11/45

3 Methodology
3.1 Dataset and Cluster
In this chapter we will discuss the methodology which we will apply in our final work. We will

present the dataset and explain the specific tools and algorithms which we have selected and

implemented. The following section is split up in three parts. First we present our dataset and cluster

setup. In section 3.2 we will discuss our iterations on setting up an efficient algorithm for analyzing

data using the distributed processing framework. After, in section 3.3 we go in further detail on the

specific algorithms we have implemented for detecting DDOS-attacks.

 Dataset

The network traffic data which we acquired from Vancis was in netflow dump format, originated from

ten different routers and was in the period between 27th of February up to the 1st of April, 2014.

router dataset size

1 84,3 MiB

2 126,7 MiB

3 1,1 GiB

4 3,1 GiB

5 10,0 GiB

6 41,5 GiB

7 88,2 GiB

8 99,3 GiB

9 296,4 GiB

10 444,4 GiB

Table 1 Size of network traffic datasets from different routers as plain text on HDFS

 Cluster

The Hadoop cluster utilized for this research consisted of 26 nodes. Each node is equipped with:

 20 GB's of RAM

 2 independently configured 2 TB disks

 1 AMD Opteron processor with 3 vCPUs running at 2,2 GHz

 Cloudera CDH 5.0 on CentOS as operating system and cloud framework distribution

 1 GB/s ethernet

One node was configured as HDFS namenode. Another node was configured as Spark cluster

manager. The remaining 24 nodes were configured as worker nodes.

12/45

3.2 Distributed processing algorithm
In section 2.2 several new distributed processing frameworks were discussed, namely Pig, Hive and

Spark. To be able to process and analyze the network traffic data the selected framework has to have a

few functionalities:

 Support querying of data

 Flexible parsing and processing

 Capable of reading data from netflow dumps

Hive supports querying of the data, however we would have to convert all data to a structured set.

Besides, we do not exactly know which relationship should be analyzed. Therefore a more flexible

tool is required. Pig supports more advanced queries and limited preprocessing of data, however to

read data from netflow dumps external tools would be necessary. Spark however, seems to offer the

flexibility which is required to build a tool which supports our requirements. Therefore, we decided to

use Spark for implementing our analysis tool.

Implementing Spark

Although the Spark distributed processing framework is written in Scala, Spark also has a set of

bindings for Python. Therefore, it is also possible to write applications in Python. Since this will allow

us to develop our tool faster, we decided to use Python.

Before we will apply a detection algorithm to analyze the netflow data, the following components

need to be created in Spark we need to get the data on the platform.

Read existing netflow data into Spark

There are a few options to approach problem, either we read the data directly into Spark memory. We

can also send it to the HDFS cluster first. In this way the data is already distributed across the worker

nodes when the analysis needs to be done. At the time of conducting the research Spark was not

capable of reading binary data from a HDFS cluster. Therefore the data was converted to plain text

first and after saved onto the HDFS cluster (see appendix I for the code).

Create optimized algorithm for distributing workload across cluster

Initially we took the following approach:

1. retrieve unique intervals

2. partition the data by interval

3. for each interval create counts of packets for each found socket

To determine the impact of first getting a list of intervals, the execution time for this step was

measured for several datasets (see table 2). The code can be found in appendix II (get_sorted_keys).

router dataset size in GiB execution time in seconds rate in MiB/second

2 0,128 10 12,8

3 1,1 45 24,5

8 99,3 316 314,2

10 444,4 1300 341,8

Table 2: Execution times of collecting all distinct intervals for given dataset and size

Looking at table 2 we can see that the performance hit of collecting the intervals is negligible

considering the size of the dataset. The algorithm is more efficient when operating on larger volumes

of data.

13/45

In the second step the data is not only partitioned by interval, also the number of packets are counted.

These steps are combined such that Spark is capable of optimizing the query. In Spark combining

queries is known as “pipelining”.

The code can be found in appendix II (get_high_hits_by_interval). Although the approach seemed to

generate results, it was not very effective in utilizing the platform. It also did not perform well when

analysing datasets larger than 4 GiB. Analysis of our method showed that there were over 700 one

hour intervals and all intervals were processed sequentially. With an overhead of roughly 10 seconds

for launching jobs on the cluster, the performance was severely impacted.

When dividing the complete dataset for a given router (composed of one month of netflow data) in

intervals of one hour, roughly 700 intervals have to be analysed. With an average of 10 seconds of

analysis time per interval, this adds up to 7000 seconds or 116 minutes of analysis time for even the

smallest dataset.

To increase the utilization of the platform, the calculations for each separate interval can be executed

in parallel. To achieve this, the program was modified to launch the computation tasks for each

interval in separate threads (see appendix III). The Spark jobmanager subsequently processes the tasks

in parallel, allocating resources according to a configured job scheduling mechanism (FIFO or fair

share).

By applying parallel execution, the analysis time for the 128 MiB dataset was reduced to 8 minutes.

Although the execution time was decreased by a factor of 10, it still does not overcome the overhead

incurred with launching multiple map/reduce tasks. It seems that an algorithm which avoids running

multiple different reduce tasks for each of the 727 intervals will be more efficient. Therefore, we

applied a map on the entire dataset dividing each record in the following (key, value) pairs:

("interval:ip address:port:protocol", 1).

Now a reduce action will get the full counts by time and socket in one run. This method also removes

the need to parse all the existing intervals before being able to process the data. The code for this

method can be found in appendix IV and the results when running this method against different

datasets is shown in table 3.

router dataset size in GiB execution time in seconds rate in MiB/second

2 0,128 28 4,57

3 1,1 45,6 4,07

8 99,3 430,4 231

10 444,4 / /

Table 3: Execution times of collecting all hits for all sockets by hour for all traffic of given

router

It can be seen that applying map/reduce on the full dataset is very efficient and the efficiency

increases when applied to larger datasets. However, we were unable to run the algorithm successfully

against the biggest dataset.

We found the following limitations when trying to make the algorithm run for the biggest dataset:

1. Limited transport capabilities of underlying messaging framework.

2. Limited memory available to driver program.

The framework which Spark uses for transporting data between nodes has a maximum framesize of

10 MiB. The effect of this limitation is that maximum size of a single reduce job cannot exceed 10

MiB. Although this is sufficient for smaller datasets, datasets which have more data also have more

14/45

resulting data. For the bigger datasets this size was too limited, causing the application to crash when

receiving the results of the reduce jobs.

 The problem could be solved in two ways. Either the amount of data which is transmitted by

the workers is reduced or the maximum framesize of the messaging framework is increased [20].

To reduce the amount of data transmitted in a reduce job, we applied a filter which increases the

threshold of minimum number of hits a certain socket has to receive before it is measured. The

maximum framesize of the messaging framework was also set to a higher limit of 64MiB.

 When applying this fix, it was also necessary to increase the maximum amount of memory

reserved for the driver application. By default the Spark application is configured to use up to 256

MiB. However, due to large number of reduce tasks and residual data this did not fit in the memory of

the driver program. Unfortunately, even after increasing the maximum memory usage to 4GiB the

application was still not able to process the largest dataset.

In section 4.1 our results are shown when only implementing the deduced algorithm for applying a

Spark application against the raw dataset. No specific detection algorithms were implemented in this

stage. However, still useful information can be gained from only sorting the data and generating the

counts by interval and service on a global level. These results give us a general idea on what kind of

specific DDOS algorithms would be applicable to our dataset.

Final Implementation Spark

In our final approach the application was implemented as follows (see appendix V):

1. Initialize cluster with proper parameters for given dataset

2. Read network traffic data from HDFS

3. Apply a map/reduce to get the flow counts for a combination of “destination IP address, port

and protocol, hour”.

4. Filter out all combinations with a small number of hits, to reduce the size of the dataset

5. Group all results by combination of “port and protocol”.

6. Filter out all combinations of “port and protocol” which have a hits on only a small number of

intervals.

7. Normalize the results by dividing the hits/ip/hour by the total number of hits on this “port and

protocol” combination.

8. Plot the normalized hits/interval for all remaining “port and protocol” combinations without

the IP address.

Hereby we only look to destination IP addresses, since we assume that DDOS attacks are initiated by

remote hosts. Besides, we only focus on attacks targeted at specific services (port and protocol), not at

hosts.

15/45

3.3 DDOS algorithms methodology
In this research two of the algorithms discussed in section 2.3. In this section we discuss which

algorithms we selected and why.

Average over window

The average over window algorithm was designed for devices with low latency and small amounts of

memory (routers). This proposition does not align with Spark, which is relatively high latency and is

capable of addressing large amounts memory. We will therefore not consider this algorithm.

Cumulative Sum Algorithm

Due to the large amount of data we have to analyse, we group the data by intervals of one hour.

However, the events we want to measure might fall exactly within one interval. Therefore, we suspect

that algorithms which measure trends over longer periods of time, will not trigger on these short lived

events. That is why we will not implement this algorithm.

Holt-Winters

Holt-Winters forecasting is an extension to the weighted moving average, but also takes into account

recurring trends. Although trends can be expected when monitoring access to specific sockets (IP +

port), in our research we only focus on the general data of a service and do not go into detail for

specific IP addresses. Because of this and because we are also filtering out values which fall below a

given threshold, we suspect that information of cycles and trends is lost. For our research therefore,

we do not apply the Holt-Winters forecasting model.

EWMA

The formula used to calculate the exponential weighted moving average (EWMA) in [16] is given in

formula (1). Hereby: 𝑥0 = 𝑥1.

𝑥𝑖+1̂ = 𝛾𝑥𝑖 + (1 − 𝛾)𝑥�̂� (1)

In which 𝛾 is a smoothing factor which applies weight to the estimation 𝑥�̂� and the actual current

value 𝑥𝑖.

The threshold on which an alert is raised is given as a multiple of the current EWMA. Further, the

outliers will be excluded from calculating the new estimation. To ensure that a shift in the graph does

not classify all subsequent values as outliers, a maximum gap is introduced after which the EWMA is

reset. See appendix VI for our implementation. The values for the gap, smoothing- and threshold

multiplication factor are determined by using the dataset from router 2 as training data.

Adaptive Threshold Algorithm

In section 2.3 we also discussed the adaptive threshold algorithm. Although the algorithm itself is

applicable in our case, some adjustments are required. Because we use full hours for intervals,

interesting anomalies occurring only in a short period of time might be missed using the default

method. Therefore we will apply this model without "wait time". To implement it we do need to take

care of setting a proper threshold to ensure correct discrimination of anomalous and normal traffic.

The adaptive threshold algorithm in [18] also uses the EWMA. The main difference with the EWMA

algorithm itself is that the adaptive threshold algorithm does not exclude detected anomalies from

updates to the average. The algorithm is implemented in python as shown in appendix VI. Also the

values for this algorithm are determined by testing it first on the router 2 dataset.

The complete program used to generate the final results is listed in appendix VII.

16/45

4 Results
In this section we discuss our results. First the results of running only the Spark algorithm are shown.

Then we will show the results when applying the DDOS algorithms to our “training” dataset from

router 2. Finally we will show how the DDOS detection algorithms perform against data of other

routers.

4.1 Spark
In the results for Spark we highlighted a few results. First we show the anomalies which were found,

in the second part trends are shown. Note that all results show a gap between the 8th and 11th of

March, we had to discard the netflow data of this part because it was corrupt.

4.1.1 Anomalies
In the first image (5), we see the normalized flow counts (or hits) for 5 ports from data from router 2.

The ports are shown in no specific order since the graphs were generated by the program. We do not

know any specific details about the anomalies we are looking for. Therefore, we had the program plot

all flow counts where the number of hits is above a specified threshold and there were at least a

certain number of datapoints to plot.

Figure 6 normalized hits for 5 sockets on router 2 (126,7 MiB) with threshold of 10 hits

In figure 6 we can see that the number of hits for on UDP port 53 (DNS) is generally quite stable.

However, clearly there are two extreme outliers around the 20th of March. Further, there are also some

outliers for traffic on TCP port 80 (HTTP) and TCP port 5667 (Nagios), however these are less

extreme. Also, although no clear can be identified for most of the services it is interesting to see that

there is a recurring weekly increase in traffic for traffic on TCP port 21 (FTP).

17/45

In figure 7 we show the second 5 normalized hits for router 2, here 2 anomalies can be distinguished.

Both are for traffic on tcp port 22 (SSH).

Figure 7 normalized hits for 5 sockets on router 2 with threshold of 10 hits

In figure 8 we show the normalized hits for router 3, here 3 anomalies can be distinguished. One for

HTTPS (TCP port 443) and two for TCP port 113, which seems related to different kinds of malware

[21].

Figure 8 normalized hits for 5 sockets on router 3 (1,1 GiB) with threshold of 10 hits

18/45

In figure 9 we can see more data from router 3. Two clear anomalies can be distinguished, one on

DNS traffic and one on TCP port 8000. Port 8000 seems mainly to be used by malware[22].

Figure 9 normalized hits for 5 sockets on router 3 (1,1 GiB) with threshold of

10 hits

19/45

4.1.2 Trends
In figure 10 and 11 a clear periodicity can be seen for certain types of traffic. In figure 10 columns can

be identified corresponding with daytime periods of weekdays.

In figure 11 also a recurring weekly activity is shown for traffic on port 25.

Figure 10 Normalized hits for first 5 port protocols on router 7 with

threshold on 500 hits/socket:ip/hour

Figure 11 Normalized hits for first 5 ports on router 6 with threshold on

500 hits/socket/hour

20/45

In figure 12 bands can be identified which show the hit rates for normal traffic for these services.

Lower bands (like for port 80) represent larger volumes of traffic, while higher bands represent lower

volumes of traffic (like port 1033 and 1035). Also note the surge in traffic on port 23 in the final

week. The vertical density indicates that this traffic is not directed to only one IP address, but targets

many different IP addresses. Although it does not seem to indicate a DDOS attack, it can definitely be

classified as an anomaly and further investigation might be useful.

Figure 12 Normalized hits for 5 ports on router 5 with threshold on 20 hits/socket/hour

21/45

4.2 DDOS algorithms
The two DDOS detection algorithms we have implemented were first tested on the data from router 2

to configure the parameters. In section 4.2.1 we show how it performs with these configured

parameters against this dataset. In section 4.2.2 we show how it performs against other datasets. To

have a clear view on the anomalies we only plot specific events, namely:

 The top 1000 hits found on the complete interval

 The hits where an alert is raised for the EWMA algorithm

 The hits where an alert is raised for the ADAPT algorithm

We assume that all the events where an alert is raised should be well within the top 1000 range. Since

we do not have a precise list of DDOS attacks we assume that using the top 1000 range will give us at

least an indication of the performance of the algorithms.

4.2.1 Performance on training set
The parameters which were tuned had been configured with the following settings:
 ewma = {

 'avg' : array[0][4], # Set initial ewma X0 = X1

 'gamma' : 0.3, # gamma

 'thresh' : 4, # threshold multiplication factor

 'max_gap' : 6, # max interval gap

 'gap' : 0, # gap counter

 'alerts' : [] # Store alerts

 }

 adapt = {

 'avg' : array[0][4], # Set initial avg X0 = X1

 'gamma' : 0.3, # gamma

 'thresh' : 1.2, # threshold multiplication factor

 'alerts' : []

 }

In figure 13 we can see the

performance of the detection

algorithms for detecting

anomalies on TCP port 21 (FTP).

We can see that both algorithms

are capable of detecting the

outliers. The EWMA algorithm

triggers also on a later interval.

This can be explained by the fact

that EWMA excludes outliers

from updates to the average. The

running average will therefore still

have a lower value compared to

ADAPT where the average is also

increased by the anomaly.

Figure 13 Performance of detection algorithms on

FTP traffic for router 2

22/45

In figure 14 we see the results for TCP port 22 (SSH). Again both algorithms are capable of detecting

the most extreme outliers.

The same goes for traffic on UDP port 53 (DNS). Here we also start to see some potentially false

positives (figure 15). This is probably caused by the relatively large amount of traffic. In ADAPT, a

large number of low counts generates a low average, therefore even small deviations can trigger an

alert. For EWMA we see the effect of excluding outliers from updating the average, causing the

trigger to remain for several consecutive intervals.

Figure 15 Performance of detection algorithms on DNS traffic for router 2

Figure 14 Performance of detection algorithms on SSH traffic for router 2

23/45

In contrast on port 80 (figure 16) where there is a large amount of traffic with an irregular pattern,

more alerts are raised. For these types of traffic it is generically harder to determine which activities

are malicious.

Figure 16 Performance of detection algorithms on HTTP traffic for

router 2

24/45

4.2.2 Performance on non-training datasets
After we tested the performance of the algorithm and tuned the parameters we applied it on data from

the other routers. To be able to run the algorithms successfully on datasets of different sizes, we had to

adjust some of the Spark processing parameters. First we show these parameters and the processing

speeds. After, we show a subset of the results which were gained.

router dataset size flowcount

 threshold

minimum # total

flows/socket

processing

time

processing

rate

router 1 84,3 MiB 10 10 20s 4 MiB/s

router 2 126,7 MiB 10 10 33s 3,8 MiB/s

router 3 1,1 GiB 10 10 66s 17 MiB/s

router 4 3,1 GiB 20 20 43s 74 MiB/s

router 5 10,0 GiB 100 100 83s 123 MiB/s

router 6 41,5 GiB 100 100 247s 171 MiB/s

router 7 88,2 GiB 100 100 524s 172 MiB/s

router 8 99,3 GiB 100 100 577s 172 MiB/s

router 9 296,4 GiB 500 500 / /

router 10 444,4 GiB 500 500 / /

Table 2 Processing speeds for final program

In figure 17 we show the performance for traffic on UDP port 161 (SNMP) for the smallest dataset

(router 1, 84 MiB). The regularity in the patterns seem to indicate all this traffic is directed to a single

IP-address. Since it is SNMP traffic, this is most likely a monitoring server. Performance of both

algorithms seems to be as expected. EWMA alerts on the number of intervals corresponding to its gap

setting. ADAPT only raises an alert on extreme differences and not after because of the updated

average.

In figure 18 we can see the alerts for router 7 (88,2 GiB). Note that since only the top 1000 flow

counts are plotted by default the graph has a slight offset and counts do not start at 0. Again the

algorithms behave as expected. The port is used for Windows file sharing and directory services.

Figure 17 Performance of detection algorithms on SNMP traffic for router 1

25/45

In the final plot (figure 19) HTTP traffic is shown for router 7. The large volume of traffic makes it

impossible for the algorithms to make any distinction in traffic. This figure clearly shows the

dependency of the algorithms on having a regular traffic pattern. For common services on high traffic

networks, a very specific setting with high thresholds would be required to gain any sensible results.

Figure 18 Performance of detection algorithms on

Microsoft-DS traffic for router 7

Figure 19 Performance of detection algorithms on HTTP traffic for router 7

26/45

5 Conclusion
In this section we discuss our results, conclude our work and make suggestions for future work. First

we discuss our implemented Spark algorithm. After we discuss the performance of the DDOS

algorithms. Finally we suggest how these methods can be improved.

5.1 Spark
Three different approaches were taken for implementing a distributed processing algorithm in Spark.

First we implemented a traditional method which merely sliced the data by interval and following

processed this data by interval. This method turned out to be the most inefficient and not suitable for

processing large amounts of data. We found that the inefficiency was mainly caused by two factors.

The two factors were the overhead of launching jobs on the cluster and the fact that these jobs were

processed sequentially.

In our second approach the jobs were launched in parallel. By using this method we were able to

increase the processing speed for our testing dataset of 128 MiB by a tenfold.

However, by creating a method which processed the data in a single map/reduce job we managed

to acquire an optimal processing speed which was yet another 17 times faster. This final solution was

capable of processing up to 100 GiB of network traffic data in less than 10 minutes.

To be able to successfully scale up to this volume we had to apply the following measures:

 Limit the amount of data which is sent to the driver program to prevent the program from

running out memory. In our case we decided to filter out low flow counts and services with a

low number of datapoints.

 Increase the memory size assigned to the worker nodes

 Increase the memory size assigned to the driver program

 Increase the maximum size of the messages which can be passed by the underlying

framework (Akka).

 Increase the number of data partitions (RDD’s) across the cluster

5.2 DDOS Algorithms
When looking at the initial results for our anomaly analysis, a clear distinction could be made between

regular and malicious traffic for some services.

Based on the analyses from data of one router we assumed that the application of DDOS

attack algorithms would generate promising results when applied to the network traffic data of other

routers.

However, the different routers not only had differing sizes but also differing traffic patterns.

This had as effect that the performance of the DDOS detection algorithms varied greatly, when

applied against datasets of other routers.

Also, it can be debated whether the implemented algorithms would actually be capable of

performing well on the larger datasets. This can be seen clearly in figure 19, where there is a high

volume of traffic with an irregular pattern. To report any extremities would require the implemented

EWMA algorithm to use a very large threshold multiplication factor. However, this would bias the

algorithms too much to a specific service and dataset size. In effect, such a modification would

degrade the performance on services with a more regular pattern. A clear example is the traffic pattern

in figure 19 for HTTP traffic. The range for this type of traffic is between 1 for barely used

webservers and goes up to over 80.000 in the extreme case. When comparing this pattern with that

shown in figure 14 for SSH traffic on a router with less traffic in general, it can clearly be seen that

both types of traffic require a different approach for optimal anomaly detection performance.

27/45

6 Future work
In this research we have only implemented two algorithms, however it would be interesting to see

how other algorithms perform using a distributed processing framework for analysis.

We also found irregular occurrences of traffic on unusual ports, this can be a clear indicator of

malicious activities on a network. Further investigations on the usage pattern of non-common ports

could aid in detection of malicious activity on a network.

Another recommendation would be to see how algorithms tuned for historical data, perform on live

network traffic data.

Finally, the created method still needs further tuning to be capable of handling larger datasets.

28/45

7 References
[1] http://hadoop.apache.org/, 2014-07-01

[2] Dean, J., Ghemawat S. (2004) MapReduce: Simplified Data Processing on Large Clusters, OSDI

’04: 6th Symposium on Operating Systems Design and Implementation

[3] https://storm.incubator.apache.org/, 2014-07-01

[4] Yu, Y., Isard, M., Fetterly, D., Mihai, B., Erlingsson, U., Gunda, P.K., Currey, J. (2008)

DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-

Level Language, OSDI ’08: 8th Symposium on Operating Systems Design and Implementation

[5] Shvachko, K., Kuang, H., Radia, S., Chansler, R. (2010) The Hadoop Distributed File System,

IEEE 26th Symposium on Mass Storage Systems and Technologies

[6] http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html, 2014-07-01

[7] http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html, 2014-07-01

[8] https://hive.apache.org/, 2014-07-01

[9] https://spark.apache.org/docs/latest/cluster-overview.html, 2014-07-01

[10] http://mesos.apache.org/, 2014-07-01

[11] http://bighadoop.wordpress.com/2014/04/03/apache-spark-a-fast-big-data-analytics-engine/,

2014-07-10

[12] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I. (2010) Spark: Cluster

Computing with Working Sets, Proceedings of the 2nd USENIX conference on Hot topics in cloud

computing

[13] Vyas, S., Duffield, N.K., Spatscheck, O., van der Merwe, J.E., Zhang, H. (2006) LADS: Large-

scale Automated DDoS Detection System, USENIX Annual Technical Conference

[14] Shanbhag, S., Wolf, T. (2008), Massively parallel anomaly detection in online network

measurement, Proceedings of 17th International Conference on Computer Communications and

Networks

[15] Schwarzer, C. (2006), Prediction and adaptation in a traffic-aware packet filtering method,

Master’s thesis, Ecole Polytechnique Federale de Lausanne

[16] Roughan, M., Griffin, T., Mao, M., Greenberg, A., Freeman, B. (2004), Combining Routing and

Traffic Data for Detection of IP Forwarding Anomalies, ACM SIGMETRICS Performance Evaluation

Review

[17] Brutlag, J.D. (2000), Aberrant Behavior Detection in Time Series for Network Monitoring, LISA

14

[18] Siris, V.A., Papagalou, F. (2006), Application of anomaly detection algorithms for detecting SYN

flooding attacks, Computer Communications 29

[19] NIST/SEMATECH (2013), e-Handbook of Statistical Methods,

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc323.htm

[20] http://spark.apache.org/docs/0.9.0/configuration.html#spark-properties, 2014-07-10

[21] http://www.speedguide.net/port.php?port=113, 2014-07-10

[22] http://www.speedguide.net/port.php?port=8000, 2014-07-10

http://hadoop.apache.org/
https://storm.incubator.apache.org/
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hive.apache.org/
https://spark.apache.org/docs/latest/cluster-overview.html
http://mesos.apache.org/
http://bighadoop.wordpress.com/2014/04/03/apache-spark-a-fast-big-data-analytics-engine/
http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc323.htm
http://spark.apache.org/docs/0.9.0/configuration.html#spark-properties
http://www.speedguide.net/port.php?port=113
http://www.speedguide.net/port.php?port=8000

29/45

Appendix
I Write netflow data to HDFS
#!/usr/bin/env python2.7

read netflow files and dump them as plain text

to hdfs distributed filesystem

pathos multiprocessing library

pip2.7 install six

wget http://danse.cacr.caltech.edu/packages/dev_danse_us/pyre-0.8.2.0-pathos.zip

unzip pyre---

cd pythia; python2.7 setup.py build; python2.7 setup.py install

wget http://danse.cacr.caltech.edu/packages/dev_danse_us/processing-0.52-

pathos.zip

unzip processing---

pip2.7 install git+https://github.com/uqfoundation/pathos

import os, sys, subprocess, itertools

import pathos

import IPython

########### FUNCTIONS ########

def get_size(start_path):

 '''for given path return filesize in MB'''

 total_size = 0.0

 for dirpath, dirnames, filenames in os.walk(start_path):

 for f in filenames:

 fp = os.path.join(dirpath, f)

 total_size += os.path.getsize(fp)

 return total_size/1024**2

def read_nfdump(files):

 '''read nfdumps from binary files on local storage

 files: array of files to be read with nfdump

 %ts Start Time - first seen

 %td Duration

 %sa Source Address

 %sp Source Port

 %da Destination Address

 %dp Destination Port

 %pr Protocol

 %flg TCP Flags

 %ipkt Input Packets

 %opkt Output Packets

 %ibyt Input Bytes

 %bpp bps - Bytes per package

 %fl Flows

 write output to hdfs'''

 # check for collisions

 router = files[0].split('/')[6]

 start = files[0].split('.')[-1]

 end = files[-1].split('.')[-1]

 try:

 existing_files = subprocess.check_output(

 ['hadoop', 'fs', '-ls', '/tmp/live/%s' % router])

 except:

 print "failed reading from hadoop cluster, please restart hdfs"

 sys.exit(1)

30/45

 print """

 start\tend\tfiles\tstarting new nfdump thread

 %s\t%s\t%s\tfiles """ % (files[0], files[-1], len(files))

 # nfdump only needs to know first and last file in interval

 common_prefix = os.path.commonprefix([files[0],files[-1]])

 prefix_dir = os.path.dirname(common_prefix)

 # slice last_file (+ remove trailing '/') to get relative path

 last_file_rel = files[-1][len(prefix_dir)+1:]

 # read file with nfdump and store process in handle

 nfdump = '/usr/bin/nfdump'

 format = 'fmt:%ts,%td,%sa,%sp,%da,%dp,%pr,%flg,%ipkt,%bpp,%fl'

 process = subprocess.Popen(\

 [nfdump, '-O', 'tstart', '-b', '-o', format, '-q', '-R', "%s:%s" %

(files[0],last_file_rel)],

 stdout=subprocess.PIPE)

 hdfs_file = "/tmp/live/%s/%s_%s.txt" % (router, start, end)

 print "trying to write to hdfs:\n\t%s" % hdfs_file

 try:

 subprocess.check_call(

 ['hadoop', 'fs', '-put', '-', hdfs_file], stdin=process.stdout)

 except:

 print "ERROR: failed writing to hdfs, file:\n\t%s" % hdfs_file

def read_files(files, part_size, number_of_files=None):

 '''read array of files and number of files to process

 per round, process all files if None'''

 files = files[:number_of_files] if number_of_files else files

 pool = pathos.multiprocessing.ProcessingPool()

 # slice files array to distribute files evenly over nfdump processes

 files_partitioned = map (lambda i: files[i:i+part_size], range(0, len(files),

part_size))

 # parallel execute read_nfdump, autoscales to #cores on local machine

 pool.map(lambda subset: read_nfdump(subset), files_partitioned)

############ MAIN #############

path_to_dumps = '/data/2/tsmrestore/profiles/live'

routers = os.listdir(path_to_dumps)

for router in routers:

 dirs = os.path.join(path_to_dumps, router)

 # get all dumpfiles for this router

 walk_arrays = filter(lambda walk: walk[2], os.walk(dirs))

 files = []

 # generate list of files with path

 for walk_array in walk_arrays:

 files.extend(map(lambda walk: os.path.join(walk_array[0], walk),

walk_array[2]))

 files.sort()

 # calculate maximum number of files to process per iteration

 part_size = len(files)/pathos.multiprocessing.cpu_count()

 total_size = get_size(dirs)

 avg_size = float(total_size)/len(files)

 avg_part_size = part_size*avg_size

 # the average amount of data processed per iteration

 # cannot be more than $threshold MiB

 # otherwise failures will occur

 threshold_mb = 300

 limit_size = int(threshold_mb/avg_size)

 part_size = part_size if avg_part_size < threshold_mb else limit_size

31/45

 print "INFO: start analysis for new router"

 print "%s\trouter" % router

 print "%s\tfiles" % len(files)

 print "%.3f GB\tdirectory size" % (total_size/1024)

 print "%.3f MB\taverage file size" % avg_size

 print "%s\tfiles per nfdump process" % part_size

 # make directory

 try:

 subprocess.check_call(

 ['hadoop', 'fs', '-mkdir', '/tmp/live/%s' % router])

 except:

 # we don't care if dir already exists

 pass

 # read files and store text in hdfs

 read_files(files, part_size)

 print "INFO: finished writing data to hdfs for router:\t%s\n" % router

32/45

II Sequential analysis of intervals

def get_sorted_keys(rdd_object):

 '''return sorted array of unique keys for given rdd object

 (must be in (k, v) format))'''

 # 1. sort by key

 # 2. remap rdd to store keys only instead of (k, v)

 # 3. get unique items for rdd

 # 4. collect output

 keys = rdd_object.map(lambda (k, v): k) \

 .distinct() \

 .collect()

 return sorted(keys)

def get_high_hits_by_interval_old(rdd, intervals, threshold=0):

 '''# hits per socket is pipelined as:

 # 1. filter dist_records by current interval

 # 2. remove old key from record using map

 # 3. add new key from socket using: "ip_address:port:protocol"

 # 4. reduce by counting #values for this key using countByKey()

 # 5. collect (create dictonary with key == interval

 # and value == [array of records within interval]

 #

 # map flow_record to 'timestamp:ip:port:protocol' -> '1'

 new_key = lambda rec: "%s:%s:%s:%s" % (rec[0],rec[4],rec[5],rec[6])

 total_hits_per_socket_interval = []

 for interval in intervals:

 hits_per_socket = rdd.filter(lambda (k, v): k == interval) \

 .map(lambda (k, v): (new_key(v),1)) \

 .reduceByKey(operator.add) \

 .filter(lambda (k, v): v > threshold) \

 .collectAsMap()

 total_hits_per_socket_interval.append(hits_per_socket)

main ###

intervals = get_sorted_keys(netflow_records)

hits = get_high_hits_by_interval_old(netflow_records, intervals)

33/45

III Parallel analysis of intervals

multi threading functs ###

def collect_rdd(worker_q, result_q):

 '''implement queue for processing tasks

 applies .collectAsMap() function on each rdd_obj'''

 while True:

 rdd_obj = worker_q.get()

 result = rdd_obj.collectAsMap()

 result_q.put(result)

 worker_q.task_done()

def spawn_collect_threads(rdd_array, num_threads = 22):

 '''call collect() function on multiple rdd_objects

 by using queues and threading

 returns nested array of result values'''

 worker_q = Queue.Queue()

 result_q = Queue.Queue()

 threads = []

 # start # threads pointing to collect_rdd function

 for i in range(num_threads):

 t = threading.Thread(target=collect_rdd,args=(worker_q, result_q))

 t.daemon = True

 t.start()

 # fill queue with objects

 for rdd_obj in rdd_array:

 worker_q.put(rdd_obj)

 # wait for workers to finish

 worker_q.join()

 # collect resulting values from result_q

 array_of_discrete_values = [result_q.get() for _ in xrange(result_q.qsize())]

 return array_of_discrete_values

ddos analysis specific functions ###

def get_high_hits_by_interval_old(rdd, intervals, threshold=0):

 '''hits per socket is pipelined as:

 # 1. filter dist_records by current interval

 # 2. remove old key from record using map

 # 3. add new key from socket using: "ip_address:port:protocol"

 # 4. reduce by counting #values for this key using countByKey()

 # returns dict '''

 # map flow_record to 'timestamp:ip:port:protocol' -> '1'

 new_key = lambda rec: "%s:%s:%s:%s" % (rec[0],rec[4],rec[5],rec[6])

 total_hits_per_socket_interval = []

 for interval in intervals:

 hits_per_socket = rdd.filter(lambda (k, v): k == interval) \

 .map(lambda (k, v): (new_key(v),1)) \

 .reduceByKey(operator.add) \

 .filter(lambda (k, v): v > threshold)

 total_hits_per_socket_interval.append(hits_per_socket)

 all_hits = spawn_collect_threads(total_hits_per_socket_interval, num_threads =

30)

 return all_hits

main ###

intervals = get_sorted_keys(netflow_records)

hits = get_high_hits_by_interval_old(netflow_records, intervals)

print "high hits by interval:"

for k, v in hits.iteritems():

 print "%s\t%s" % (k, len(v))

34/45

IV Analysis of data in single map/reduce job

ddos analysis specific functions ###

def get_high_hits_by_interval(rdd, threshold=0):
 # input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1)
 def map_by_time(entry):
 '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1)
 output : (u'2014-03-25 17', ('123.123.123.123', '42321', 'TCP', 1))'''
 record, value = entry
 interval, ip, port, proto = record.split(':')
 port = int(port)
 # anonymize ip
 ip = str(hash(ip))[1:10]
 return (interval, ip, port, proto, value)

 result = rdd.filter(lambda (k, v): v > threshold) \
 .map(map_by_time) \
 .collect()

 result.insert(0, ('interval', 'ip', 'port', 'proto', 'hits'))
 return result

main ###

map flow_record to 'timestamp:ip:port:protocol' -> '1'

new_key = lambda rec: "%s:%s:%s:%s" % (rec[0],rec[4],rec[5],rec[6])

count hits by interval

temp_rdd = netflow_records.map(lambda (k, v): (new_key(v), 1)) \

 .reduceByKey(operator.add)

hits = get_high_hits_by_interval(netflow_records, threshold)

print "high hits by interval:"

for k, v in hits.iteritems():

 print "%s\t%s" % (k, len(v))

35/45

V Analysis of network data using only Spark
import pyspark

import cPickle as pickle

import re, operator, collections, csv, time

import os, sys, subprocess, itertools

import IPython

import xlwt

import datetime

import socket

from matplotlib import pyplot

########### FUNCTIONS ########

def create_spark_context(partitions=72):

 '''create spark context with given default partition size'''

 conf = pyspark.SparkConf()

 conf.setMaster('spark://node11.echo.hadoop.vancis.nl:7077')

 conf.setAppName('spark-test')

 # reserve #G RAM for spark thread per node

 conf.set('spark.executor.memory', '16g')

 # increase Akka framesize

 conf.set('spark.akka.frameSize', '64')

 conf.set('spark.local.dir', '/data/2/spark_tmp,/data/1/spark_tmp')

 conf.set('spark.default.parallelism', partitions)

 # enable compression on in memory objects (requires extra processing)

 # conf.set('spark.rdd.compress', 'true')

 # allow concurrent execution of multiple calculations

 # (default == FIFO)

 SCHEDULER = 'FIFO'

 conf.set('spark.scheduler.mode', SCHEDULER)

 conf.set('spark.scheduler.allocation.file','/root/bin/fairscheduler.xml')

 return pyspark.SparkContext(conf = conf)

def read_hdfs_files(file, sc):

 '''read file from hdfs

 file can be one file, wildcard, or directory!

 return RDD object'''

 dataset = sc.textFile("%s" % file)

 # store as array first, map after as in read_nfdump

 def parse_flow_record(line):

 '''internal function, for each split and

 distribute records as k: 'Y-M-d H', v: flow_record[]'''

 flow_array = map(lambda word: word.strip(), line.split(','))

 # store date part without MM:SS

 flow_array[0] = flow_array[0].split(':')[0]

 # store array as (k, v): k = date, v = flow_record)

 flow_record = (flow_array[0], flow_array)

 return flow_record

 RDD = dataset.map(lambda line: parse_flow_record(line))

 return RDD

def get_high_hits_by_pport(rdd, threshold=0, min_pport=0):

 '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1)

 # 1. filter all values below threshold

 # 2. create (k, v) mapping by pport

 # 3. group all records by pport

 # 4. filter all (pport, []) where len([]) < min_pport

 # 5. sort values by hits and date (affects ewma!)'''

 def map_by_pport(entry):

 '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1)

 output : (u'42321:TCP', ('123.123.123.123', '42321', 'TCP', 1))'''

 record, value = entry

 interval, ip, port, proto = record.split(':')

 interval = datetime.datetime.strptime(interval, '%Y-%m-%d %H')

36/45

 port = int(float(port))

 pport = "%s:%s" % (port, proto)

 # anonymize ip

 ip = str(hash(ip))[-9:]

 return (pport, (interval, ip, port, proto, value))

 def sort_values(records):

 '''sort by hits(4), interval(0)'''

 for i in (4,0):

 result = sorted(records, key=operator.itemgetter(i))

 return result

 result = rdd.filter(lambda (k, v): v > threshold) \

 .map(map_by_pport) \

 .groupByKey() \

 .filter(lambda (pport, records): len(records) > min_pport) \

 .reduceByKey(operator.add) \

 .mapValues(sort_values) \

 .collectAsMap()

 return result

def save_plot(file_name):

 pyplot.ylim(ymin=0)

 pyplot.gcf().autofmt_xdate()

 pyplot.legend()

 pyplot.savefig(file_name)

 pyplot.clf()

def draw_plots(records_by_pport, threshold, router):

 '''make scatterplots of data by pport'''

 colors = itertools.cycle(['b','r','g','c','m'])

 markers = itertools.cycle(['o','x','+','v','s'])

 lines = 0

 for pport, records in records_by_pport.iteritems():

 pyplot.xlabel('date')

 pyplot.ylabel('hits by hour (normalized)')

 dates = map(lambda x: x[0], records)

 # normalize hits

 hits = map(lambda y: y[4], records)

 sum = reduce (operator.add, hits)

 hits_norm = map (lambda x: float(x)/sum, hits)

 port, proto = pport.split(':')

 label = "%s:%s" % (port, proto)

 service = get_service(port, proto)

 pyplot.scatter(dates, hits_norm, label=label, color=next(colors),

marker=next(markers), facecolors='none')

 lines+=1

 if lines%5 == 0 :

 # draw 5 lines on each graph

 save_plot("/root/bin/data/plots/%s_%s_%s_norm.png" %

(router,threshold,lines))

 # capture remaining lines

 if lines%5 != 0:

 save_plot("/root/bin/data/plots/%s_%s_%s_norm.png" %

(router,threshold,lines))

########### GLOBAL ###########

partitions = 1500

threshold = 100

min_pport = 1500

sc = create_spark_context(partitions)

############ MAIN #########

routers = ['router 1', 'router 2', 'router 3', 'router 4', 'router 5', 'router 6',

'router 7', 'router 8', 'router 9', 'router 10']

37/45

for router in routers:

 t_start = time.time()

 hdfs_dir = "hdfs:///tmp/live/%s" % router

 netflow_records = read_hdfs_files(hdfs_dir, sc)

 # create temp rdd which will be used to

 # - calculate hits/hour ratios

 # - retrieve IP's with highest hitrates (overall)

 # map flow_record to 'timestamp:ip:port:protocol' -> '1'

 new_key = lambda rec: "%s:%s:%s:%s" % (rec[0],rec[4],rec[5],rec[6])

 temp_rdd = netflow_records.map(lambda (k, v): (new_key(v), 1)) \

 .reduceByKey(operator.add)

 temp_rdd.persist(pyspark.StorageLevel.MEMORY_AND_DISK_SER)

 # GET HITS BY PPORT

 hits_by_pport = get_high_hits_by_pport(temp_rdd, threshold, min_pport)

 draw_plots(hits_by_pport, threshold, router)

38/45

VI Code for detection algorithms

EWMA Algorithm
 ewma = {

 'avg' : array[0][4], # Set initial ewma X0 = X1

 'gamma' : 0.3, # gamma

 'thresh' : 4, # threshold multiplication factor

 'max_gap' : 6, # max interval gap

 'gap' : 0, # gap counter

 'alerts' : [] # Store alerts

 }

 if value < ewma['avg']*(1+ewma['thresh']) and value > ewma['avg']*(1-

ewma['thresh']):

 # value is between upper and lower ewma threshold, no alert

 ewma['gap'] = 0

 ewma['avg'] = ewma['gamma']*value + (1-ewma['gamma'])*ewma['avg']

 elif value > ewma['avg']*(1+ewma['thresh']):

 # value exceeds upper bound threshold, alert

 # no alerts for values below lower bound threshold

 ewma['alerts'].append(record)

 ewma['gap'] += 1

 if ewma['gap'] >= ewma['max_gap']:

 # if gap exceeds max gap size:

 # 1. reset gap

 # 2. force update of ewma

 ewma['gap'] = 0

 ewma['avg'] = ewma['gamma']*value + (1-ewma['gamma'])*ewma['avg']

Adaptive Threshold Algorithm
 adapt = {

 'avg' : array[0][4], # X0 = X1

 'gamma' : 0.3, # gamma

 'thresh' : 1.2, # threshold multiplication factor

 'alerts' : []

 }

 adapt['avg'] = adapt['gamma']*value + (1-adapt['gamma'])*adapt['avg']

 if value > adapt['avg']*(1+adapt['thresh']):

 # value exceeds upper bound threshold, alert

 adapt['alerts'].append(record)

39/45

VII Final implementation
#!/usr/bin/env pyspark

spark test

import pyspark

import cPickle as pickle

import re, operator, collections, csv, time

import os, sys, subprocess, itertools

import Queue, threading

import IPython

import xlwt

import datetime

import socket

from matplotlib import pyplot

########### FUNCTIONS ########

def create_spark_context(partitions=72):

 '''create spark context with given default partition size'''

 conf = pyspark.SparkConf()

 conf.setMaster('spark://node11.echo.hadoop.vancis.nl:7077')

 conf.setAppName('spark-test')

 # reserve #G RAM for spark thread per node

 conf.set('spark.executor.memory', '16g')

 # increase Akka framesize

 conf.set('spark.akka.frameSize', '64')

 conf.set('spark.local.dir', '/data/2/spark_tmp,/data/1/spark_tmp')

 conf.set('spark.default.parallelism', partitions)

 # enable compression on in memory objects (requires extra processing)

 # conf.set('spark.rdd.compress', 'true')

 # allow concurrent execution of multiple calculations

 # (default == FIFO)

 SCHEDULER = 'FIFO'

 conf.set('spark.scheduler.mode', SCHEDULER)

 conf.set('spark.scheduler.allocation.file','/root/bin/fairscheduler.xml')

 return pyspark.SparkContext(conf = conf)

def read_hdfs_files(file, sc):

 '''read file from hdfs

 file can be one file, wildcard, or directory!

 return RDD object'''

 dataset = sc.textFile("%s" % file)

 # store as array first, map after as in read_nfdump

 def parse_flow_record(line):

 '''internal function, for each split and

 distribute records as k: 'Y-M-d H', v: flow_record[]'''

 flow_array = map(lambda word: word.strip(), line.split(','))

 # store date part without MM:SS

 flow_array[0] = flow_array[0].split(':')[0]

 # store array as (k, v): k = date, v = flow_record)

 flow_record = (flow_array[0], flow_array)

 return flow_record

 RDD = dataset.map(lambda line: parse_flow_record(line))

 return RDD

def read_object_from_disk(file):

 '''read pickled object from file and return it'''

 try:

 fh = open(file, 'rb')

 object = pickle.load(fh)

 fh.close()

 return object

 except:

 print "ERROR: can't read from file"

40/45

 return False

def write_object_to_disk(file, object):

 '''write object to file'''

 try:

 fh = open(file, 'wb')

 pickle.dump(object, fh)

 fh.close()

 except:

 print "ERROR: can't access file"

 return False

 print "INFO: write succeeded"

 return True

def get_data_size(router):

 '''retrieve size of data on hdfs in MB'''

 du_output = subprocess.Popen(

 ['/usr/bin/hadoop', 'fs', '-du', '-h', '/tmp/live'],

 stdout=subprocess.PIPE).communicate()[0]

 for line in du_output.splitlines():

 # '126.7 M /tmp/live/sarar9'

 if re.search(router, line):

 size, unit, path = line.split()

 if unit == 'G':

 size = float(size)

 size *=1024

 return size

 print "ERROR: router not found"

 return False

def get_high_hits_by_pport(rdd, threshold=0, min_pport=0):

 '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1)

 # 1. filter all values below threshold

 # 2. create (k, v) mapping by pport

 # 3. group all records by pport

 # 4. filter all (pport, []) where len([]) < min_pport

 # 5. sort values by hits and date (affects ewma!)'''

 def map_by_pport(entry):

 '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1)

 output : (u'42321:TCP', ('123.123.123.123', '42321', 'TCP', 1))'''

 record, value = entry

 interval, ip, port, proto = record.split(':')

 interval = datetime.datetime.strptime(interval, '%Y-%m-%d %H')

 port = int(float(port))

 pport = "%s:%s" % (port, proto)

 # anonymize ip

 ip = str(hash(ip))[-9:]

 return (pport, (interval, ip, port, proto, value))

 def sort_values(records):

 '''sort by hits(4), interval(0)'''

 for i in (4,0):

 result = sorted(records, key=operator.itemgetter(i))

 return result

 result = rdd.filter(lambda (k, v): v > threshold) \

 .map(map_by_pport) \

 .groupByKey() \

 .filter(lambda (pport, records): len(records) > min_pport) \

 .reduceByKey(operator.add) \

 .mapValues(sort_values) \

 .collectAsMap()

 return result

def get_high_stats_by_interval(rdd, threshold, min_pport):

 '''input: rdd with:

 [(u'2014-03-25 17:123.123.123.123:42321:TCP', 1)]

41/45

 output:

 stats {}

 '''

 def map_by_pport(entry):

 '''input : (u'2014-03-25 17:123.123.123.123:42321:TCP', 1)

 output : (u'42321:TCP', ('123.123.123.123', '42321', 'TCP', 1))'''

 record, value = entry

 interval, ip, port, proto = record.split(':')

 interval = datetime.datetime.strptime(interval, '%Y-%m-%d %H')

 port = int(float(port))

 pport = "%s:%s" % (port, proto)

 # anonymize ip

 ip = str(hash(ip))[-9:]

 return (pport, (interval, ip, port, proto, value))

 def apply_algorithms(array):

 '''algorithms to be applied on "values" which are grouped by

 "port:protocol" combination" e.g. array of:

 [

 (datetime.datetime(2014, 3, 24, 23, 0), '555170168', 123, u'UDP', 13),

 (datetime.datetime(2014, 3, 29, 19, 0), '829666315', 123, u'UDP', 13),

 (datetime.datetime(2014, 3, 3, 20, 0), '829666315', 123, u'UDP', 15),

]'''

 # loop through array by date

 array = sorted (array, key=operator.itemgetter(0))

 # parameters for ewma calculations

 # avg initialized as first value in array

 # orig gamma: 0.05 thresh 0.2

 ewma = {

 'avg' : array[0][4],

 'gamma' : 0.3,

 'thresh' : 4,

 'max_gap' : 6,

 'gap' : 0,

 'alerts' : []

 }

 adapt = {

 'avg' : array[0][4],

 'gamma' : 0.3,

 'thresh' : 1.2,

 'alerts' : []

 }

 n = len(array)

 total = 0

 top_1000 = []

 #adaptive_alerts = []

 for record in array:

 value = record[4]

 total +=value

 # calculate top 1000

 if len(top_1000) < 1000:

 top_1000.append(record)

 else:

 pass

 # update top1000 if current hits_count is higher than that of

 # the entry with the current lowest hitcount in top_1000 list

 index, min_record = min(enumerate(top_1000), key=lambda x: x[1][4])

 lowest = min_record[4]

 if value > min:

 top_1000[index] = record

 # apply ewma algorithm

 if value < ewma['avg']*(1+ewma['thresh']) and value > ewma['avg']*(1-

ewma['thresh']):

 # value is between upper and lower ewma threshold, no alert

 ewma['gap'] = 0

42/45

 ewma['avg'] = ewma['gamma']*value + (1-ewma['gamma'])*ewma['avg']

 elif value > ewma['avg']*(1+ewma['thresh']):

 # value exceeds upper bound threshold, alert

 # no alerts for values below lower bound threshold

 ewma['alerts'].append(record)

 ewma['gap'] += 1

 if ewma['gap'] >= ewma['max_gap']:

 # if gap exceeds max gap size:

 # 1. reset gap

 # 2. force update of ewma

 ewma['gap'] = 0

 ewma['avg'] = ewma['gamma']*value + (1-ewma['gam-

ma'])*ewma['avg']

 # apply adaptive threshold algorithm

 adapt['avg'] = adapt['gamma']*value + (1-adapt['gamma'])*adapt['avg']

 if value > adapt['avg']*(1+adapt['thresh']):

 # value exceeds upper bound threshold, alert

 adapt['alerts'].append(record)

 result = {

 'n': n,

 'top_1000': top_1000,

 'ewma_alerts': ewma['alerts'],

 'ewma_gamma' : ewma['gamma'],

 'ewma_thresh': ewma['thresh'],

 'ewma_max_gap': ewma['max_gap'],

 'adapt_alerts': adapt['alerts'],

 'adapt_gamma' : adapt['gamma'],

 'adapt_thresh': adapt['thresh'],

 'total':total }

 return result

 # filter out values below threshold

 # group records by "port:proto" combination

 # filter out arrays with data on less then min_pport intervals

 # apply algorithms to each array of results for certain "pport" combination

 # [(key, [values]), (key, [values])]

 stats_by_pport = rdd.filter(lambda (k, v): v > threshold) \

 .map(map_by_pport) \

 .groupByKey() \

 .filter(lambda (pport, records): len(records) > min_pport) \

 .mapValues(apply_algorithms) \

 .collectAsMap()

 return stats_by_pport

def get_hhi_stats(rdd):

 '''calculate the mean,median,max for given interval

 in rdd and return array with given stats by hour'''

 hits_hour = rdd.collectAsMap()

 hhi_arr = []

 header = ['interval','mean','max']

 hhi_arr.append(header)

 for (hour, value) in sorted(hits_hour.items()):

 interval = hour+':00'

 mean = value[0]

 max = value[1]

 hhi_arr.append([interval,mean,max])

 return hhi_arr

output functions ###

def write_array_to(array, file, mode='wb'):

 '''write array to file as csv'''

 with open(file, mode) as fh:

 writer = csv.writer(fh)

 writer.writerows(array)

def get_service(port, proto):

 try:

43/45

 return socket.getservbyport(int(port), proto.lower())

 except:

 return ""

def save_plot(file_name):

 pyplot.ylim(ymin=0)

 pyplot.gcf().autofmt_xdate()

 pyplot.legend()

 pyplot.savefig(file_name)

 pyplot.clf()

def draw_plots(records_by_pport, threshold, router):

 '''make scatterplots of data by pport'''

 colors = itertools.cycle(['b','r','g','c','m'])

 markers = itertools.cycle(['o','x','+','v','s'])

 lines = 0

 for pport, records in records_by_pport.iteritems():

 pyplot.xlabel('date')

 pyplot.ylabel('hits by hour (normalized)')

 dates = map(lambda x: x[0], records)

 # normalize hits

 hits = map(lambda y: y[4], records)

 sum = reduce (operator.add, hits)

 hits_norm = map (lambda x: float(x)/sum, hits)

 port, proto = pport.split(':')

 label = "%s:%s" % (port, proto)

 service = get_service(port, proto)

 pyplot.scatter(dates, hits_norm, label=label, color=next(colors),

marker=next(markers), facecolors='none')

 lines+=1

 if lines%5 == 0 :

 # draw 5 lines on each graph

 save_plot("/root/bin/data/plots/%s_%s_%s_norm.png" % (router,thresh-

old,lines))

 # capture remaining lines

 if lines%5 != 0:

 save_plot("/root/bin/data/plots/%s_%s_%s_norm.png" % (router,thresh-

old,lines))

def draw_stat_plots(results, threshold, router):

 '''make scatterplots of data by pport'''

 colors = itertools.cycle(['b','r','g'])

 markers = itertools.cycle(['.','>','<'])

 for pport, records in results.iteritems():

 pyplot.xlabel('date')

 pyplot.ylabel('hits by hour')

 port, proto = pport.split(':')

 i = 0

 for arr in [records['top_1000'], records['ewma_alerts'], rec-

ords['adapt_alerts']]:

 dates = map(lambda x: x[0], arr)

 hits = map(lambda y: y[4], arr)

 port, proto = pport.split(':')

 i+=1

 if i%3 == 1:

 label = "%s:%s" % (port, proto)

 if i%3 == 2:

 label = 'ewma alert'

 if i%3 == 0:

 label = 'adapt alert'

 pyplot.scatter(dates, hits, label=label, color=next(colors),

marker=next(markers), facecolors='none')

 save_plot("/root/bin/data/plots/%s_stats_%s_%s_%s.png" % (router,thresh-

old, port, proto))

def write_array_to_excel(array, file):

 wb = xlwt.Workbook()

44/45

 xf =xlwt.easyxf(num_format_str='DD-MM-YY HH')

 for pport, records in array.iteritems():

 port, proto = pport.split(':')

 label = "%s_%s" % (port, proto)

 sheet = wb.add_sheet(label)

 # insert table header

 records.insert(0, ('interval', 'ip', 'port', 'proto', pport))

 for row, array in enumerate(records):

 for col, value in enumerate(array):

 if col == 0 and row != 0:

 sheet.write(row,col,value, xf)

 else:

 sheet.write(row,col,value)

 wb.save(file)

def write_stats_to_excel(results, file):

 wb = xlwt.Workbook()

 xf =xlwt.easyxf(num_format_str='DD-MM-YY HH')

 for pport, records in results.iteritems():

 port, proto = pport.split(':')

 label = "%s_%s" % (port, proto)

 sheet = wb.add_sheet(label)

 # insert table header in first printed dataset

 records['top_1000'].insert(0, ('interval', 'ip', 'port', 'proto', pport))

 for row, array in enumerate(records['top_1000']):

 for col, value in enumerate(array):

 if col == 0 and row != 0:

 sheet.write(row,col,value, xf)

 else:

 sheet.write(row,col,value)

 records['ewma_alerts'].insert(0, ('interval', 'ip', 'port', 'proto', 'ewma'

))

 for row, array in enumerate(records['ewma_alerts']):

 for col, value in enumerate(array):

 col += 5

 if col == 5 and row != 0:

 sheet.write(row,col,value, xf)

 else:

 sheet.write(row,col,value)

 records['adapt_alerts'].insert(0, ('interval', 'ip', 'port', 'proto',

'adapt'))

 for row, array in enumerate(records['adapt_alerts']):

 for col, value in enumerate(array):

 col += 10

 if col == 10 and row != 0:

 sheet.write(row,col,value, xf)

 else:

 sheet.write(row,col,value)

 arr = [('n', records['n']),

 ('ewma_gamma' , records['ewma_gamma']),

 ('ewma_thresh', records['ewma_thresh']),

 ('ewma_max_gap', records['ewma_max_gap']),

 ('adapt_gamma' , records['adapt_gamma']),

 ('adapt_thresh', records['adapt_thresh']),

 ('total', records['total'])

]

 for row, array in enumerate(arr):

 for col, value in enumerate(array):

 col += 15

 sheet.write(row,col,value)

 wb.save(file)

########### GLOBAL ###########

set cores to use per process 24 servers * 3 cores = 72

45/45

higher for larger datasets

partitions = 1500

threshold = 100

min_pport = 1500

sc = create_spark_context(partitions)

############ MAIN #########

routers = ['sarar4', 'sarar9', 'klantr2-alm', 'alm01-r05', 'saraxs1', 'klantr1-

alm', 'klantr2-asd', 'klantr1-asd', 'sarar1', 'sarar6']

sarar4 = p:any, thr:10, min_pport:10

alm01-r05 =p:600, thr:20, min_pport:20

saraxs1 =p:1000, thr:100, min_pport:1000

klantr1-alm =p:1000, thr:500, min_pport:1000

klantr2-asd =p:1500, thr:100, min_pport:1500

sarar1 =p:3000, thr:2000, min_pport:1000

execution_times = []

#for router in ['sarar9']:

#for router in ['sarar4', 'klantr2-alm', 'alm01-r05']:

#for router in ['saraxs1', 'klantr1-alm']:

#for router in ['klantr2-asd']:

for router in ['klantr1-asd', 'sarar1', 'sarar6']:

 t_start = time.time()

 hdfs_dir = "hdfs:///tmp/live/%s" % router

 netflow_records = read_hdfs_files(hdfs_dir, sc)

 # ! parallel

 #intervals = get_sorted_keys(netflow_records)

 #hits = get_high_hits_by_interval_old(netflow_records, intervals)

 # create temp rdd which will be used to

 # - calculate hits/hour ratios

 # - retrieve IP's with highest hitrates (overall)

 # map flow_record to 'timestamp:ip:port:protocol' -> '1'

 new_key = lambda rec: "%s:%s:%s:%s" % (rec[0],rec[4],rec[5],rec[6])

 temp_rdd = netflow_records.map(lambda (k, v): (new_key(v), 1)) \

 .reduceByKey(operator.add)

 temp_rdd.persist(pyspark.StorageLevel.MEMORY_AND_DISK_SER)

 # GET HITS BY PPORT

 hits_by_pport = get_high_hits_by_pport(temp_rdd, threshold, min_pport)

 draw_plots(hits_by_pport, threshold, router)

 if router in ['sarar4', 'sarar9', 'klantr2-alm', 'alm01-r05', 'saraxs1',

'klantr1-alm']:

 # # only write if it fits into excel sheet

 hhp_xls = "/root/bin/data/%s_hhp.xls" % (router)

 write_array_to_excel(hits_by_pport, hhp_xls)

 # GET HIGH STATS

 hits_by_stats = get_high_stats_by_interval(temp_rdd, threshold, min_pport)

 draw_stat_plots(hits_by_stats, threshold, router)

 stats_file = "/root/bin/data/%s_stats_%s_%s.xls" % (router, threshold,

min_pport)

 write_stats_to_excel(hits_by_stats, stats_file)

 d_size = float(get_data_size(router))

 t_finish = time.time()

 t_total = t_finish - t_start

 rate = d_size/t_total

 execution_times.append([router, d_size, t_total, rate,threshold, partitions,

threshold])

write_array_to(execution_times, '/root/bin/data/execution_times.csv', 'a')

	Summary
	Index
	1 Introduction
	1.1 Generic
	1.2 Research Questions
	1.3 Ethical considerations

	2 Background
	2.1 What is Hadoop?
	2.1.1 MapReduce
	2.1.2 HDFS
	2.1.3 YARN: cluster manager and resource divisor

	2.2 Extended components of Hadoop
	2.3 Detecting DDOS attacks
	2.3.1 LADS: Large-scale Automated DDoS Detection System
	2.3.2 Massively Parallel Anomaly Detection in Online Network Measurement

	3 Methodology
	3.1 Dataset and Cluster
	3.2 Distributed processing algorithm
	3.3 DDOS algorithms methodology

	4 Results
	4.1 Spark
	4.1.1 Anomalies
	4.1.2 Trends

	4.2 DDOS algorithms
	4.2.1 Performance on training set
	4.2.2 Performance on non-training datasets

	5 Conclusion
	5.1 Spark
	5.2 DDOS Algorithms

	6 Future work
	7 References
	Appendix
	I Write netflow data to HDFS
	II Sequential analysis of intervals
	III Parallel analysis of intervals
	IV Analysis of data in single map/reduce job
	V Analysis of network data using only Spark
	VI Code for detection algorithms
	VII Final implementation

