

Detecting distributed attacks using distributed
processing frameworks

RP2 #59
Sudesh Jethoe

Overview

● Introduction
● Problem Description
● Research Questions
● Method
● Results
● Conclusion

Introduction

http://www.eweek.com/security/slideshows/verisign-sees-sharp-climb-in-ddos-attack-volume-in-q2.html/

Overview

● Introduction
● Problem Description
● Research Questions
● Method
● Results
● Conclusion

Problem Description

● Analysis of large volumes of network traffic data
takes time

● A lot of time
● Can we make it faster?

Solution?

Overview

● Introduction
● Problem Description
● Research Questions
● Method
● Results
● Conclusion

Research Questions

Main research question:
● How can a distributed processing framework be utilized to identify

network anomalies in historical netflow data?

Sub questions:
● Which processing framework is best suited for identifying DDOS

attacks?

● How can we distinguish anomalies in netflow data?

● Which algorithms for detecting network anomalies exist and how
can they be applied in a distributed processing environment?

Overview

● Introduction
● Problem Description
● Research Questions
● Method
● Results
● Conclusion

Method

1)Review distributed processing frameworks

2)Create application for distributed processing
framework

3)Implement DDOS-algorithm in application

Distributed processing frameworks

Distributed processing frameworks

Distributed processing frameworks

● Hive
– Limited to querying datasets

● Pig
– Extend queries with scripting and ML

● Spark
– Extract data, transform, query, extendable python

Method

1)Review distributed processing frameworks

2)Create application for distributed processing
framework

3)Implement DDOS-algorithm in application

Implementing Spark

● Cluster
– 26 nodes

– 2x2TB disks

– AMD Opteron 3vCPU

– 1GB/s ethernet

● Dataset
Route
r

Dataset Size

1 83,4 MiB

2 126,7 MiB

3 1,1 GiB

4 3,1 GiB

5 10 GiB

6 41,5 GiB

7 88,2 GiB

8 99,3 GiB

9 296,4 GiB

10 444,4 GiB

Implementing Spark

● 3 methods
– Traditional

– Parallelised

– Single MapReduce

Implementing Spark

● Traditional
1) retrieve unique intervals
2) partition the data by interval
3) for each interval create counts of packets for each found

socket

● Result

> 1,5 hour / 84,4 MiB

Implementing Spark

● Parallelised
1) retrieve unique intervals
2) partition the data by interval
3) Parallel: for each interval create counts of packets for each

found socket

● Result

~ 10 mins / 126,7 MiB

Implementing Spark

● Single MapReduce
1) Initialize cluster
2) Read network traffic data from HDFS
3) Apply map/reduce to get flow counts for “dest IP:port:protocol:hour”
4) Filter out all counts < #threshold
5) Group results by “port:protocol”
6) Filter out all combinations < #min results
7) Normalize results by “port:protocol
8) Plot all hits for remaining “port:protocol” combinations

Implementing Spark

● Results

Dataset Size (GiB) Execution Time (seconds) Rate (MiB/seconds)

0,128 28 4,57

1,1 45,6 4,07

99,3 430,4 231

444,4 / /

Results (126,7 MiB)

Results (126,7 MiB)

Results (88,2 GiB)

Results (10,0 GiB)

Method

1)Review distributed processing frameworks

2)Create application for distributed processing
framework

3)Implement DDOS-algorithm in application

Implement DDOS-algorithm in application

● Weighted Moving Average

^x(i+1)= yxi+(1− y) x̂ i

x̂ : estimation x
x i :current valueof x

y : smoothing factor

Implement DDOS-algorithm in application

● Adaptive threshold
– Uses weighted average

– Threshold: Multiple of expected value of the average

alert if x i> threshold∗ x̂i

Implement DDOS-algorithm in application

● Exponential Weighted Moving Average (EWMA)

● Threshold

Gap = 0, avg = X0, Max_Gap = #

If Xi < AVG:

 update(AVG, Xi)

If Xi > AVG:

 Alert()

 If Gap >= Max_Gap:

 Gap = 0

 update(AVG, Xi)

 Gap +=1

Overview

● Introduction
● Problem Description
● Research Questions
● Method
● Results
● Conclusion

Results (training 126,7MiB)

Results (training 126,7MiB)

Results (84,3MiB)

Results (88,2 GiB)

Results (88,2 GiB)

Overview

● Introduction
● Problem Description
● Research Questions
● Method
● Results
● Conclusion

Conclusion

● ~ 100 GiB < 10 minutes
● Traffic from different routers require different

parameters
● Traffic patterns differ per router and service

Future work

● Optimize framework to handle datasets > 100
GiB

● Test other algorithms on framework
● Apply tuned algorithms to live data
● Identify usage of irregular ports

Questions

● ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

