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Introduction

http://www.eweek.com/security/slideshows/verisign-sees-sharp-climb-in-ddos-attack-volume-in-q2.html/
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Problem Description

● Analysis of large volumes of network traffic data 
takes time

● A lot of time
● Can we make it faster?



  

Solution?



Overview

● Introduction
● Problem Description
● Research Questions
● Method
● Results
● Conclusion



  

Research Questions

Main research question:
● How can a distributed processing framework be utilized to identify 

network anomalies in historical netflow data?

Sub questions:
● Which processing framework is best suited for identifying DDOS 

attacks?

● How can we distinguish anomalies in netflow data?

● Which algorithms for detecting network anomalies exist and how 
can they be applied in a distributed processing environment?
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Method

1)Review distributed processing frameworks

2)Create application for distributed processing 
framework

3)Implement DDOS-algorithm in application
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Distributed processing frameworks



Distributed processing frameworks

● Hive
– Limited to querying datasets

● Pig
– Extend queries with scripting and ML

● Spark
– Extract data, transform, query, extendable python
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Implementing Spark

● Cluster
– 26 nodes

– 2x2TB disks

– AMD Opteron 3vCPU

– 1GB/s ethernet

● Dataset
Route
r

Dataset Size

1 83,4 MiB

2 126,7 MiB

3 1,1 GiB

4 3,1 GiB

5 10 GiB

6 41,5 GiB

7 88,2 GiB

8 99,3 GiB

9 296,4 GiB

10 444,4 GiB



Implementing Spark

● 3 methods
– Traditional

– Parallelised

– Single MapReduce



Implementing Spark

● Traditional
1)  retrieve unique intervals
2)  partition the data by interval
3)  for each interval create counts of packets for each found 

socket

● Result

> 1,5 hour / 84,4 MiB



Implementing Spark

● Parallelised
1)  retrieve unique intervals
2)  partition the data by interval
3)  Parallel: for each interval create counts of packets for each 

found socket

● Result

~ 10 mins / 126,7 MiB



Implementing Spark

● Single MapReduce
1) Initialize cluster
2) Read network traffic data from HDFS
3) Apply map/reduce to get flow counts for “dest IP:port:protocol:hour”
4) Filter out all counts < #threshold
5) Group results by “port:protocol”
6) Filter out all combinations < #min results
7) Normalize results by “port:protocol
8) Plot all hits for remaining “port:protocol” combinations



Implementing Spark

● Results

Dataset Size (GiB) Execution Time (seconds) Rate (MiB/seconds)

0,128 28 4,57

1,1 45,6 4,07

99,3 430,4 231

444,4 / /



Results (126,7 MiB)



Results (126,7 MiB)



Results (88,2 GiB)



Results (10,0 GiB)
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Implement DDOS-algorithm in application

● Weighted Moving Average

^x(i+1)= yxi+(1− y ) x̂ i

x̂ : estimation x
x i :current valueof x

y : smoothing factor



Implement DDOS-algorithm in application

● Adaptive threshold
– Uses weighted average

– Threshold: Multiple of expected value of the average

alert if x i> threshold∗ x̂i



Implement DDOS-algorithm in application

● Exponential Weighted Moving Average (EWMA)

● Threshold

Gap = 0, avg = X0, Max_Gap = #

If Xi < AVG: 

      update(AVG, Xi)

If Xi > AVG: 

      Alert()

      If Gap >= Max_Gap:

          Gap = 0

           update(AVG, Xi)

     Gap +=1
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Results (training 126,7MiB)
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Results (84,3MiB)



Results (88,2 GiB)



Results (88,2 GiB)
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Conclusion

● ~ 100 GiB  < 10 minutes
● Traffic from different routers require different 

parameters
● Traffic patterns differ per router and service



Future work

● Optimize framework to handle datasets > 100 
GiB

● Test other algorithms on framework
● Apply tuned algorithms to live data
● Identify usage of irregular ports



Questions

● ?
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