Timestomping NTFS

(with emphasis on directory index records)

Wicher Minnaard
supervisor: Marco van Loosen (Fox-IT)

UVA/SNE MSc research project presentation
July 2nd, 2014

Research question (1)

What forms of NTFS timestamp tampering can be detected by
inspecting NTFS structures?

Timestamps on NTFS (1)

MACB timestamps:
» Modified !

» Accessed ?
» Changed 3
» Birth 4

!mOdified - cOntents

2updates turned of by default in recent Windows versions
3chAnged - metAdata

*but what does that mean, anyway

Timestamps on NTFS (2)

In the Master File Table entries:

» Sl - STANDARD_INFORMATION attribute. User-modifiable
through SetFileInformationByHandle and
ZwSetInformationFile routines.

» FN - FILE_NAME attribute. Files can have multiple of these,
in different namespaces. They are not exposed to userspace.

» Inside directory indices: timestamps reflecting SI timestamps,
but embedded inside an FN attribute...

Maximum number of timestamps:
4 (MACB) * (1 SI, 3 FN, 3 directory index entries) = 28!

Tampering techniques

How does one tamper with timestamps (" timestomping”) ?
» Through APIs, as classic timestomp.exe® does. Not perfect.

» Direct modification of on-disk NTFS structures. Current
cream of the crop: later versions of SetMace®.

5 James Foster Vinnie Lin, Blackhat 2005
® Joakim Schicht, 2011-2014

Research question revisited

What forms of NTFS timestomping can be detected by inspecting
NTFS structures?

Research question revisited

What forms of NTFS timestomping can be detected by inspecting
NTFS structures?
Subquestions:

» What is the form, function, and location of all these
timestamps? How do they relate to each other?

» What timestomping techniques are available to modify each
timestamp?

» What inconsistencies (if any) do the techniques introduce?

Timestomping detection

SECOND EDITION

The Rootkit

Escape and Evasion in the
Dark Corners of the System

GRS
& =g

4

Reverend Bill Blunden

Timestomping detection

subtlety is key!

This highlights the fact that you should aspire to subtlety, but when it's not feasible to
do so, then you should at least be consistent. If you conceal yourself in such a manner that
you escape naotice on the initial inspection but are identified as an exception during a second
pass, it's going to look bad. The investigator will know that something is up and call for

backup. If you can't change time-stamp information uniformly, in a way that makes sense,
then don't attempt it at all.

Timestomping detection

subtlety is key!

This highlights the fact that you should aspire to subtlety, but when it's not feasible to
do so, then you should at least be consistent. If you conceal yourself in such a manner that
you escape naotice on the initial inspection but are identified as an exception during a second
pass, it's going to look bad. The investigator will know that something is up and call for
backup. If you can't change time-stamp information uniformly, in a way that makes sense,
then don't attempt it at all.

Common slip-up: Forgetting about the 100ns timestamp
resolution: 2014-01-01 12:12:34.000000

Timestomping detection

subtlety is key!

This highlights the fact that you should aspire to subtlety, but when it's not feasible to
do so, then you should at least be consistent. If you conceal yourself in such a manner that
you escape naotice on the initial inspection but are identified as an exception during a second
pass, it's going to look bad. The investigator will know that something is up and call for

backup. If you can't change time-stamp information uniformly, in a way that makes sense,
then don't attempt it at all.

Generally: look for inconsistencies

Timestomping: Inconsistencies

» Causal relationships (happened-before): allocators, sequence
numbers. Willassen, 2008.

» Deriving past operations from the NTFS journal. Cho, 2012.

» Explicit second source of timestamps: directory index entries
in B-tree slack (INDEX_ALLOCATION): INDXParse.py,
Ballenthin, 2011-2014.

Parsing the INDEX_ROOT attribute

With the Hachoir framework:

181

182 &class IndexRoot(FieldSet):

183 # Carrier 370 13.12

184 def createFields(self):

185 yield Enum(textHandIer(UInt32(selF ixtype", "indexed attribute type"), hexadecimal), ATTR_NAME)

186 yield UInt32(self, "collsort”, 1lation sorting rule”)

187 yield UInt32(self,"ixrecsz ‘714-' of -each index record (

188 yield UInt8(self,"ixrecsz(size -of each index record

189 yield PaddingBytes(self, Jun [l 3)

190 yield IndexNodeHeader(self, 'nodeheader’)

191 while self._current_size//8 <= self['nodeheader/use ffset'].value: # <=; for the lists ends with an
empty entry with 'last’ flag set

192 yield DirectoryIndexEntry(self, 'entry(]")

193

194

195 ©class IndexNodeHeader (FieldSet):

196 # Carrier 373 13.14

197 def createFields(self):

198 yield UInt32(self, "start_offset”, "offset to start of index entry list”)

199 yield UInt32(self, "used_of IRt t to end of used portion of index entry list”)

200 yield UInt32(self, "alloc_. set to end of allocated portion of index entry list")

201 yield Bit(self, "haschildren”, "one or more ixentries in this node point to child nodes in $INDEX_ALLOCATION")

202 yield NullBits(self, "re ed[1", 31)

203 seekfwd = self['start offset’'].valuex8 - self._current_size

204 if seekfwd:

205 yield RawBytes(self, "paddinz[]”, seekfwd)

206

Growing a directory index

===

Growing a directory index

e R T

Growing a directory index

e ey e [e

Growing a directory index

T T e e R R Uy
ot
Yl T e————

Growing a directory index

e ey ¥ e [et
|-
W/ Atk coot | mdtx allscation] ikvep |3 " \j

Growing a directory index

A e e e R U
P

AT A T Gy

Growing a directory index

A Ceed e i) S
v 3

77|~ oot Tindtr aaliom] it g [30 4 |- J‘\]

Carving root index entries from MFT slack

MFT cececd FrzzZzzl sk

Cp_(‘v,\m to (»«u-&

A cectery \
i g

st o‘ axkeuoke

‘\’:ewk
v -m;ﬂ

[« e T
,L(‘oe{‘ﬂ'"

enbey landes FlLENANE P (gt ankey, Conshmt
Clgs (corsud) atbeibute

SetMACE directory indices

Administrator: C:\Windows'\System32%cmd.exe
C: \cygw1n64\hone\hoer\setmace)Setl‘laceﬁ‘l exe F:shierinshoi —= "2008:01:82:03:04: Bu
h:789:1234 —
Starting Setl"lace by Joakim Schicht
Uersion 1.8.8.%

Record number: 36 found at disk offset: AxBPBABEBBBARARDAAA
Success dismounting F:

Buccess writing timestamps

Job took B.83 seconds

C: \cygw1n64\hone\hoer\setmace)dlr f:ivhierins
Uolume in drive F has no lahel
Uolume Serial Mumber is B467-A7E2

Directory of f:\hierin

H1-82-26811 B65:84 AN <DIR> -
¥1-82-2011 ©65:84 AN <DIR> .-
B1-82-2018 65:84 AN 6 hoi
[— 1 File(s> 6 hytes

2 Dirds? 6,561,792 bytes free

C:scyguinbt4shoneshoerssetmace *more f:ivhierinshoi
ho i

C:\cyguinb4shome\boerisetmace>dir f:N\hierin\
Uolume in drive F has no lahel
Uolume Serial Number is B467-A7EZ

Directory of f:\hierin

H1-82-26811 B65:84 AN <DIR> -
Hl-82-2011 B65:84 AN <DIR> -
H1-682-2088 B65:84 AN 6 hoi
J— 1 File(s> 6 hytes

2 Divds? 6,561,792 bytes free

C:scyguwinb4shone\hoer\setmace >

Fingerprinting timestamp relations (1)

What about self-inconsistencies in time stamps?

Fingerprinting timestamp relations (1)

What about self-inconsistencies in time stamps?

As the FILE_.NAME timestamps are a snapshot of some earlier
state of the STANDARD_INFORMATION timestamps... the
former should always be less or equal to the latter, right?

Fingerprinting timestamp relations (1)

What about self-inconsistencies in time stamps?
As the FILE_.NAME timestamps are a snapshot of some earlier
state of the STANDARD_INFORMATION timestamps... the
former should always be less or equal to the latter, right?
.headers off
select count() from mft
where isdir = 0 and isalloc

select count() from mft

(
where isdir = O and isalloc
and sim >= fnm

select count() from mft
where isdir = 0 and isalloc
and sim < fnm

Fingerprinting timestamp relations (2)

An example fingerprint:

sia = sib < sim < fna = fnb = fnc = fnm < sic

Total number of possible configurations 7 :
7
[
E (:;;—1) = 55581
x=1

"Sum of binomial coefficients

Wildtype timestamps
A skewed, but long-tailed distribution. Example: Cumulative
distribution of timestamp fingerprints of EXE files on 1.5 years old
Windows 7 system.

" 1.0
0.9
0.8
0.7

0.6

$0.5

0.4

0.3

0.2

0.1

0.0

.
ot?

T T T
.00.--»0-..«00"“
*®

T T T T
SO0 ER SO SRR EIRRDIOW

VI NIVBIID

5 10

15 20 25

.y~ —

30
Rank (up to and including)

35 40 45 50

55 60 65

Conclusions

What forms of NTFS timestamp tampering can be detected by
inspecting NTFS structures?
— It depends. When it comes to finding inconsistencies;

> Index records may be overlooked by direct-access
timestomping tools. However, Windows helpfully repairs
resulting inconsistencies.®

» Old index records may be found in slack space.

» Wildtype timestamp configurations do not follow intuitions.
Anomaly detection based on wildtype timestamp configuration
frequencies may be of some use in the ranking phase.

8Next step: Extended consistency checker, for instance, cross-check each of
the FN attributes in the multiple namespaces and the directory indices

