E-Safenet encryption Reversing and practical attacks

Jan Laan & Cedric Van Bockhaven

Supervisor: Armijn Hemel - Tjaldur Software Governance Solutions

E-Safenet

- Chinese company specialized in data leak prevention
- Smartphone manufacturers, government, ...
- Android (Linux kernel) released under GPL v2
- License compliance for Tjaldur
- E-Safenet encryption: How does it work, and can we decrypt it?

E-Safenet

• Archives of encrypted source code

///////////////////////////////////////
/// @file udp_client.c
///
/// @brief
/// UDP¿Í»§¶ËÄ£¿é
///
/// @author ÕÅ»ªÊ¤(wation)
/// @date 01/20/2011
///
/// @version 1.0
///
/// @details

/// ±¾Ä£iéÌṩÌ×½Ó×ÖµÄ,÷Àà½ÓiÚ£¬²¢°ÑÔBerkley½ÓiÚÖØÐ·â×°£¬Ìṩ,üÊʺÏ

00000000	62	14	23	65	70	00	90	01	93	86	00	01	45	2d	53	61	b.#epE-Sa
00000010	66	65	4e	65	74	00	00	00	4c	4f	43	4b	00	00	00	00	feNetLOCK
00000020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000030	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000040	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000060	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000070	75	a6	4c	50	4b	be	bd	fd	86	42	ba	8a	70	cb	df	06	u.LPKBp
00000080	ce	42	9c	ef	a2	cd	d0	ae	89	ee	21	b4	ce	35	57	d9	.B!5W.
00000090	96	65	64	df	be	2b	68	25	f5	4d	7b	db	d6	b8	01	99	.ed+h%.M{

Reversing

- Cryptanalysis / Autocorrelation
- E-Safenet data format research
- Attacks?

Autocorrelation

- Used to find repeating patterns
- Comparison of text with a shifted copy of itself
- Peaks at 512 bytes

Plot with blocksize 512 bytes

XOR cipher

XOR truth table

XOR example

XOR cipher

- Every column has byte values from the same range
- Find key by XOR of an entire block with '/'
- Applying this key on the entire file revealed chunks of plaintext

E-Safenet data format

00000000	62	14	23	65	70	00	90	01	93	86	00	01	45	2d	53	61	b.#epE-Sa
00000010	66	65	4e	65	74	00	00	00	4c	4f	43	4b	00	00	00	00	feNetLOCK
00000020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000030	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000040	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000060	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000070	75	a6	4 c	50	4b	be	bd	fd	86	42	ba	8a	70	cb	df	06	u.LPKBp
00000080	ce	42	9c	ef	a2	cd	d0	ae	89	ee	21	b4	ce	35	57	d9	.B!5W.
00000090	96	65	64	df	be	2b	68	25	f5	4d	7b	db	d6	b 8	01	99	.ed+h%.M{

- b?#e??: begin and end of padding
- E-SafeNet LOCK literals
- Size of compressed data
- Checksum composed of addition of values of bytes 512-1023

E-Safenet data format

- Encrypted file has same size as plaintext file
- First encrypted block has header and NUL-byte padding
- This doesn't add up, unless... compression

Compression Original:

/* Copyright Statement:

* This software/firmware and related documentation ("MediaTek Software") are

* protected under relevant copyright laws. The information contained herein

* is confidential and proprietary to MediaTek Inc. and/or its licensors.

* Without the prior written permission of MediaTek inc. and/or its licensors,

* any reproduction, modification, use or disclosure of MediaTek Software,

* and information contained herein, in whole or in part, shall be strictly prohibited.

*

* MediaTek

Compressed:

/* Copyright Statement:** This software/firm` and rel@d docuxation ("MediaTek SÛ") P*
protected underevant copy¬laws.Pe inform¬contain@herein* PSfid[ialX/or its licensors.*
Without theYiD prietary to 'Inc.` written permissjof(1i62,*M yL[ducl!, modific, use D
disclosurT)dô% d;ý,T wholLPart, shall be strictlyHohibiH. .** MediaTek

Compression

- Repeated occurences of data are backreferenced to the earlier copy
- Dictionary over a sliding fixed window size
- Characterizes Lempel-Ziv compression
- Many different algorithms: LZ77, LZ78, LZJB, LZRB, LZF, LZW, LZO, LZX, LZS, LZSS, LZ4, LZMA, LZP, ...

LZO (Lempel-Ziv-Oberhumer)

- Best match of the LZ-family
- Only different in how previous data occurences are being referenced
- Many LZO versions, algorithms, compression levels
- Exhaustive search: LZO1X-1, compiled with LZO version 1.00

Attacks

- Known-plaintext attack
- Probable-plaintext attack
- Ciphertext-only attack

Known-plaintext attack

- plain ⊕ crypted = key
 crypted ⊕ key = plain
- Use a block of 512 bytes of known plain- and ciphertext to extract the key
- Result: Trivial decryption

Probable-plaintext attack

- C files: returning probable keywords const char, return, #define, sprintf, ...
- Binary files (.doc, .xls): many 0x00 and 0xFF
- Slide predefined set of keywords over the file
- If future offsets return plaintext, assume as correct
- Result: successful decryption given enough data (from 17kB, but results vary)

Ciphertext-only attack

- Decrypt a text file without knowledge of that file
- Assumed: Plaintext contains (mostly) printable characters, ASCII value 32-126
- For each column, try all possible key values, use the one that produces the most printable characters
- Result: similar to actual plaintext, can be fixed by manual inspection

Conclusion

- E-Safenet encryption is extremely weak, can almost always be reversed
- Current checksum is useless
- E-Safenet encryption is made for speed
- Possible replacement: Bernstein's stream cipher Salsa20/12

Questions?