
Implementing Security Control Loops in Security

Autonomous Response Networks

Hristo Dimitrov
University van Amsterdam

July 11, 2014

Abstract

Security in corporate infrastructures is a big issue, because of the ever growing intrusive
technologies. By implementing security as a service a lot can be improved from the situation
of having administrators as security problem solvers. A software solution could share and
reuse the newest techniques for detecting and fixing security threats. Having control loops
actively monitoring the network and responding accordingly when an issue is detected.

This paper shows that control loops that actively monitor and adapt the network in such
away that it can cope with certain types of attacks. . Furthermore we research the way
such loops can be implemented in Software Defined Networks, so they can become Security
Autonomous Response Networks. As a proof of concept, a Security Control Loop with
two possible adjustment responses was implemented. The results show that the concept of
Security Autonomous Response Networks works. Both responses have different effect on the
attack and the systems functionality as a hole. Those effects can be measured and based on
company policies, the responses that caused them can be rated accordingly, so that a most
suitable response can be defined.

Moreover, we also explore the design space of creating control loops. One scalable and
profitable way of implementing such is by using the Enterprise Service Bus architecture and
having pluggable modules for the security threat detection part and for the responses.

1

Preface

I wrote this research paper as a Final Thesis during my Master studies in the System and Net-
working Engineering program at the University van Amsterdam. It contains detailed information
about the research on Security Control Loops in Security Autonomous Response Networks that
I conducted. The main purpose of this research paper is to create an example implementation
and answer the research questions which are given in the Introduction chapter.

I would like to thank all of my teachers for giving me enough knowledge so that I would
be able to conduct this thesis research. And also give special thanks to my project supervisors
Marc X. Makkes and Robert J. Meijer for the great guidance and the useful feedback during my
research project.

Amsterdam, July 11, 2014

Hristo Dimitrov

2

Contents

1 Introduction 5
1.1 Research Questions . 6

2 Related Work 6

3 Scope 6

4 Approach 6
4.1 Methodology . 6
4.2 Tools . 7

5 Example implementation of a Security Control Loop 7
5.1 Topology and environment . 7

5.1.1 Scenario . 7
5.1.2 Implementation . 8

5.2 Response definition and implementation . 9
5.2.1 Attack Isolation Response . 9
5.2.2 Attack Limiting Response . 11

5.3 Readers reminder . 13

6 Results 14

7 Conclusion 18

A Python source code for the attack isolation response implementation of the
control loop 20

B Python source code for the attack limiting response implementation of the
control loop 25

3

List of Figures

1 Example implementation infrastructure . 8
2 Attack Isolation Response of the Security Control Loop 10
3 Attack Limiting Response of the Security Control Loop 13
4 Generated incoming and outgoing traffic of the server in the Attack Isolation

Response scenario . 15
5 Generated incoming and outgoing traffic of the server in the Attack Limiting

Response scenario . 16

List of Tables

1 Response gradings per comparison parameter . 17

4

1 Introduction

Security is a big issue in the field of computer systems and networks, because of the ever growing
intrusive technologies. Companies have administrators and security experts who are supposed
to fix all security threats and problems that may occur. In order to detect attacks Intrusion
Detection Systems (IDSs) are used. But in most of the cases security experts and administrators
have to decide on solutions for resolving the problem and implement them manually. This has
some disadvantages. First of all, there will always be someone smarter or more knowledgeable
in the attacker groups and he/she will use new methods for attacking the company system. This
is the case, because every company can not have the best security experts in the world available
for solving issues at all time. Secondly, the administrators will always need a reasonable amount
of time until they fix the issue. If they are away, they will need to first come on sight. Then
they have to investigate the exact cause and consequences of the problem. Once the problem is
clearly defined, they need to come up with a suitable solution and finally they need to implement
it. This hole process can take from a few hours to a couple of days.

Now the innovative technology of Software Defined Networks (SDNs) [1] which are networks
that are being created, configured and managed by software, allows for a complete automated
network manipulation. Since those networks are virtual, a computer program can not only change
the parameters and policies of such a network, but also its topology. A control loop can be used
in such a network to actively monitor for security issues and trigger adequate countermeasures to
those issues. If such a Security Control Loop is implemented in an SDN a Security as a Service
(SecaaS) architecture can be developed. The result will be a Security Autonomous Response
Network that adjusts itself in order take care of security threats. The way such a network reacts
to the security problem can be different and those different countermeasure actions can be im-
plemented in modules called responses. There can be multiple responses that can solve a given
issue and the Security Control Loop is supposed to trigger the best one.

Modular implementation of a control loop will allow for different companies and organizations
to share resources like security responses or intrusion detection methods with each other. This
will give the companies a way to adopt the best countermeasures technologies that are available.
Outsourcing the security to software will also allow for easily managing the security of very
large and complex networks. A software implementation will be able to keep track of a com-
plex network and fix security issues, without having an administrator to understand the entire
complexity of the network and come up with a feasible solution. Having such complex networks
will also make it harder for the attacker to understand how they work. And finally software will
make it easier to organise the security of a company and implement it in a consistent state.

In section 2 some of the work which is already done on security threat detection is presented.
The scope of the research is defined in section 3 ”Scope”. Then the methodology used to answer
the research questions and the main tools used for the implementation are presented in section 4
”Approach”. The details of and the reasoning for the work done are given in section 5. First the
definition and implementation of the topology and the development environment are described.
And after that the Security Control Loop and the responses it triggers, which are build on top of
SDN implementation are explained. The results from the example implementation are presented
and discussed in section 6. Finally, in section 7, the final conclusions from this research are
drawn and presented compactly.

5

1.1 Research Questions

The research question for this project is defined as follows:

How could a security control loop be implemented as a software solution?

In order to answer that question satisfactory, two more sub-questions are defined as follows:

• What properties should the implementation of a Security Autonomous Response Network
have in order to make it beneficial and effective against security threats?

• How can a Security Autonomous Response Network decide on which response will be better
to execute in a given situation?

2 Related Work

There is some work already done in the field of security threat detection. One of the available
methods is flow analysis. An article [2] by Michael Patterson describes the features and advan-
tages of using flow analysis. Another approach is by using Intrusion Detection Systems (IDSs).
There are a lot of tools available for this method. A report [3] by Tzeyoung Max Wu lists and
describes a large variety of IDS tools. There are different kinds of IDSs, based on how they
operate. A paper [4] by Damiano Bolzoni describes in detail the Anomaly-based IDSs and why
they are better than signature-based IDSs.

3 Scope

This research focuses on creating an example implementation of Security Control Loops in Secu-
rity Autonomous Response Networks. This is done in order to get a better understanding of how
such a control loop could be implemented in software. The implementation will also have differ-
ent countermeasure scenarios as responses to security threats, so that a way for evaluating those
responses can be defined. Due to time restrictions the amount of the countermeasures that are
going to be defined, characterized and implemented in code will be limited. Also implementing
the logic that will select the most suitable countermeasure response is not in the scope of this
project. And finally since there is a lot of work already done in the field of intrusion detection,
there will be less focus on how does the control loop detect and classify the security problems.

4 Approach

4.1 Methodology

First an attack scenario is chosen. This scenario is going to be the base for creation of an ex-
ample implementation. In order to implement an example control loop, first a suitable network
and environment need to be defined and set. The properties of the development environment
need to accommodate for the chosen attack scenario and also allow for different kinds of counter-
measures to be taken. When the environment is set and its capabilities are defined, two simple
countermeasures are chosen, which will be implemented as responses triggered from the control

6

loop. After the implementation of those responses and the control loop itself, they are going to
be tested, so that their impact on the demonstration attack can be observed. Finally some more
generic conclusions will be drawn from the resulting platform and its behaviour.

4.2 Tools

The SDN which will act as a base for the implementation of the Security Control Loop will be
an OpenFlow [5] network which is set in Mininet [6]. Mininet allows the usage of Python scripts
for defining and configuring the network. Therefore the control loop and the triggered responses
will be programmed in Python. In addition to that some connection and bandwidth monitoring
tools like Pktstat [7] and Dstat [8] will be used by the control loop to observe the state of the
network.

5 Example implementation of a Security Control Loop

5.1 Topology and environment

5.1.1 Scenario

In order to implement an example of a Security Control Loop, first a security threat scenario has
to be defined. There should be an infrastructure which offers some services. This infrastructure
will represent a corporate network. There should also be an attack issued on the server of that
infrastructure and results from this attack should be observable. No complicated topology is
needed for this implementation. The Security Control Loop should operate in the same way
in a really complex topology as it does in a really simple one. Of course more logic should be
programmed into it when it has to to understand more complex topologies and also what it can
do with them.

The security threat

A suitable attack which is both easily detectable and offers different countermeasures for its
neutralization would be a Denial of Service (DoS) attack. In order to have a bigger flexibility
for security response and a better way to observer the consequences of the attack, two services
will be set. One of them will be under attack and the other one will be the one that the normal
user tries to access.

The topology

For this implementation a single OpenFlow switch with multiple hosts is enough (See Figure
1a.). The switch will represent the company network with all the servers and hosts attached to
it. One of the hosts will be set up to act as a server. This server is going to host a web page on
port 8001 and some files on port 8000, both services will use the SimpleHTTPServer. This way,
another host which will act as the attacker can issue a large number of requests for downloading
a big file hosted on port 8000 and consume all the available bandwidth from the server, making
responses from port 8001 slower for yet another host which will have the role of a user (See
Figure 1b.).

7

(a) Topology (b) Attack scenario

Figure 1: Example implementation infrastructure

The Security Control Loop

The Security Control Loop will run in the Python script that controls the network virtual-
ization in Mininet. This will allow the Control Loop to make changes to the virtual network as a
response to a security threat. It will also allow for issuing commands on all of the defined hosts,
which will be helpful both for monitoring and for reconfiguring them.

The network links

Also since the entire SDN with all its hosts will run on a single machine, the virtual network
links are going to be configured to 10 Mb/s, so that there is not too much CPU overhead from all
the requests and responses that need to be processed. This can be done, because in this scenario
the DoS attack targets the link bandwidth and not the CPU load.

5.1.2 Implementation

Setting up the environment

For setting of the environment a Python script was created. The script first initiates a Mininet
topology with the above defined characteristics and then checks the connectivity of the created
network. As soon as this is done, it sets up the HTTP servers on pots 8000 and 8001 of the first
host which is connected to the OpenFlow switch. Just after this is done can the Security Control
Loop be started.

Simulating the attack

For simulating the defined DoS attack, a tool is needed, which can initiate a large number
of downloads at the same time. The wget utility can be set to download a file multiple times or
fragment it and download it from different sources, however the downloads are put on a queue
and performed one by one. Even when multiple instances of the wget command are started,
they still wait for each other instead of setting up multiple TCP connections for the downloads.
Another option was to use a DoS tool like the Hammer [9] which is written in Python or the

8

Slowloris [10] which is written in Perl. Those tools are able to successfully perform a DoS attack
on a specific port of a given host, but it was not possible to set a path and attack a given resource
on a specific port, therefore no download of a specific file could be initiated with those tools.

python3 ~/DoS/hammer/hammer.py -s 10.0.0.1 -p 8000 -t155

perl ~/DoS/slowloris.pl -dns 10.0.0.1 -port 8000 -timeout 10

At the end the Apache Benchmark [11] tool was used for simulating the attack. For this
scenario 100 000 requests were issued to a 1 MB test file and they were performed 1 000 at a
time.

~/httpd-2.4.9/support/ab -n 100000 -c 1000 -r http://10.0.0.1:8000/test_1M.img

This attack was not able to fully bring down the page hosted on port 8001, but it made the
response times of the page about three times slower and for the demonstration purposes of this
implementation this is enough to show the attack. Also the upload bandwidth of the server was
at full usage at all time.

5.2 Response definition and implementation

When dealing with security attacks, cutting off the attacker immediately may not be such a good
idea. This is because when the attacker notices that he/she has been cut off completely, he/she
is going to start looking for other attack vectors to attack the same system. However if the effect
of the attack is neutralized without completely blocking the attacker, then this might keep him
busy for a little longer, since he/she will try to find a way to make the attack work as intended,
before he/she decides to give up on that attack vector. Therefore the following responses are
designed to keep the attacker engaged and still neutralize the effects of the attack.

5.2.1 Attack Isolation Response

Scenario

The first simple response which will be triggered as a countermeasure to the DoS attack is
going to focus on isolating the attack, so that the other services hosted on the same server become
fully available. When the attacker starts flooding the server with HTTP requests to download
the file hosted on port 8000, than all of the available upload bandwidth for the server gets used
by the responses containing the file. Then the control loop is supposed to detect that and isolate
the attack by setting up a new server on the fly, moving the attacked service to it and redirecting
the incoming requests for that service to the new server. That way the newly set up server will
start generating the HTTP responses containing the file and the bandwidth of the other server
will become available again. The attacker on the other hand will still receive the responses to
his requests, but he will be redirected (See Figure 2.).

Implementation

9

Figure 2: Attack Isolation Response of the Security Control Loop

The purpose of the Security Control Loop is to be able to detect security threats and to
take countermeasure actions when it does. Since this implementation is just an example, it
does not need to be able to monitor large networks and support all kinds of different responses.
Therefore having a simple while loop iterating over some monitoring commands and having the
countermeasure responses in conditional statements can be used for simulating the control loop.
However in real Security Autonomous Response Networks where the functionality of the control
loop needs to be a lot bigger, this solution may not be the best one. A better one would be to
use the Enterprise Service Bus (ESB) [12] architecture, where the intrusion detection part of the
Security Control Loop posts messages about detected anomalies, so that the response part can
pick those up and make the needed adjustments.

Once the control loop starts iterating, a check for ongoing security threats should be per-
formed in every iteration. Detecting security issues is a big problem on its own and there are a
lot of IDSs available which combine the latest technologies for detecting intrusion. Integrating
the Security Control Loop with an existing IDS might be a better idea than creating one from
scratch. Sicne Security Autonomous Response Networks are supposed to deal with security on
a network level rather than on an individual host level, a Network Intrusion Detection System
(NIDS) should be used instead of Host-based Intrusion Detection System (HIDS). The chosen
IDS should also be flexible and configurable and it should provide a way for integration with the
control loop. Bro [13] is an open-source UNIX based NIDS. It is highly configurable in terms
of what it can detect and it allows for setting up custom triggers for when an intrusion was de-
tected. Another open-source NIDS which might be suitable for integration with Security Control
Loops is Snort [14]. It is cross-platform based and there are some third-party tools available to
interface it for reporting, which can be used for integrating it in a SecurityAutonomous Response
Network. However due to the time restrictions of this project, Bro or Snort could not be set up,
configured and integrated with the control loop properly.

For this example implementation it is sufficient to just have the real time statistics of the
bandwidth of the network, so that the control loop knows if there is an attack going on and also
what are the effects of that attack. This was done by using Pktstat [7] to collect statistics about
all connections currently set up with the server. If there are too many of them a flag that there
might be a DoS attack going on is set. Then the attacker is identified by further investigation
of the available statistics. If there is one source IP address, which has a lot of TCP connection

10

originating all from various ports, to the same port of the server, than this is considered to be
the attacker. Please note that this is not a good way for detecting DoS attacks in real life, but
it can be used for this implementation since we already know how the attacker is operating.

If an attacker has been identified in the control loop, then the response is triggered. A new
host in the virtual network is created using the Mininet functions in Python. The service which
is under attack is stopped and a new service is being set on the same port, which responds with
HTTP status code 301 (Moved Permanently) and a pointer to the newly set up server. Also the
stopped service is started on the new server. In Mininet all hosts share the same file-system, so
there is no need to copy the hosted files from one server to the other.

Next we give an overview of the functional steps that were implemented for the Attack Isolation
Response of the control loop (conditional steps are shown in brackets):

• Creating topology

• Testing the Network

• Start Services

• Start Control Loop

– Collect TCP Connections Statistics

– Check Number Of Connections

– (Determine Potential Attacks)

– (Create New Server)

– (Redirect Traffic To It)

The complete code of the implementation of the Attack Isolation Response control loop can be
found in appendix A.

5.2.2 Attack Limiting Response

Scenario

The second simple response will focus on limiting the attack in such a way that it becomes
ineffective, instead of isolating it. Since the first response consists of a single action used to
neutralize the attack, the second response will adjust the network multiple times, if this is neces-
sary, until it stabilises. This will better demonstrate the presence of a control loop which makes
continuous adjustments to the network in order to limit a security threat. This time, when the
attacker starts a DoS attack on the file hosted on port 8000 and the control loop detects is, it
will set up a rate-limit on that port in order to limit the attack. The logic behind this response
is as follows: Whenever there is an attack on port 8000, which consumes all of the available
bandwidth, then limit the attack in such a way that it only consumes half of the link bandwidth,
so that the other half is still available to the other service which is hosted on port 8001.

Implementation

11

For this response the control loop is implemented in the same way as it was for the previous
one. And so is the investigation of TCP connections and the identifying of the potential attacker.

After a DoS attack has been detected and the attackers IP address is known, some bandwidth
statistics need to be checked in order to determine what part of the link bandwidth is consumed
by the attack. The Pktstat tool also outputs the number of transferred Bytes per connection,
however when added those numbers were different than the current bandwidth consumption,
therefore another tool was needed for those statistics. The Dstat [8] tool was used. It provides
bandwidth statistics and allows for saving the output to a CSV file, so by using the CSV module
for Python, it was easily integrated with the Python implementation of the control loop. Based
on how much is the traffic generated by the attack, a rate-limit has to be set or adjusted. Because
with this set up there might be spikes in the traffic, an average bandwidth for 8 seconds time
period is used instead of a single sample.

Ideally a rate-limit which limits the amount of bandwidth used by a given TCP connection
to a given port should be used for this example. That way, by setting a limit per connection,
one can influence the total bandwidth of all connections to that port and this will be at max-
imum the limit which is set multiplied by the number of current connections. However there
was not found any out-of-the-box solution for placing such a rate-limit. So another approach
was used. It is limiting the number of allowed TCP connections to port 8000 per IP address
per second. Limiting the number of incoming connections from the attacker limits also the
number of file requests that will reach the server and respectively the number of responses send
back from the server. This will also result in lower upload bandwidth consumption for the server.

In order to have the rate-limiting adjustments visualized better in a traffic I/O graph (See
Section 6.) a smaller file of size 50 KB was used for the attack. Also the amount of simultaneous
connections was reduced to 15, otherwise there are too many connections that time out after the
rate-limit is being set, that the Apache Benchmark tool gives up and stops issuing requests.

~/httpd-2.4.9/support/ab -n 10000 -c 15 -r http://10.0.0.1:8000/test_50K.img

When the hole upload bandwidth of the server is consumed by the attack and there is no
rate-limit set, a default rate-limit of 5 TCP connections per source IP address per second will
be set for port 8000 of the server (See Figure 3a.). On every next iteration while the attack
is still going on, the rate limit will be decreased if the consumed bandwidth is more than 60%
of the link bandwidth or increased if it is less than 40% (See Figure 3b and 3c.). This is re-
peated until the consumed traffic by the attack stabilised between 40% and 60% (See Figure 3d.).

Here you can see the functional steps that were implemented for the Attack Limiting Response
of the control loop (conditional steps are shown in brackets):

• Creating topology

• Testing the Network

• Start Services

• Start Control Loop

– Collect TCP Connections Statistics

12

(a) A default rate-limit of 5 TCP connections to port
8000 of the server per second per source IP address
is set

(b) The maximum bandwidth consumed by the at-
tack is less than 40%, so the rate-limit is increased
to 7

(c) The maximum bandwidth consumed by the at-
tack is less than 40%, so the rate-limit is increased
to 9

(d) At a rate-limit of 11 the network stabilizes and
the attack consumes at most about half of the avail-
able badwidth

Figure 3: Attack Limiting Response of the Security Control Loop

– Check Number Of Connections

– (Determine Potential Attacks)

– (Collect Bandwidth Statistics)

– (Adjust Rate Limits)

– (Implement New Rate Limits)

The complete code of the implementation of the Attack Limiting Response control loop can be
found in appendix B.

5.3 Readers reminder

Keep in mind that the choice for example attack and selected example countermeasures for this
attack are not relevant for the conclusion of this research. They were selected, because they are
easy to understand and could efficiently demonstrate how an implementation of a Security Con-
trol Loop would work. A real Security Autonomous Response Network should be able to fix all

13

kinds of attacks and security threats, by the means of all kinds of countermeasures implemented
as responses.

6 Results

In order to show the effects of the implemented responses, a Tcpdump was started on the server
which was under attack. Then both responses were tested and the generated traffic was investi-
gated in Wireshark.

There is also a way to easily visualize live in 3D the entire topology of the Mininet virtual
network by using HyperGlance [15]. In order to do that a OpenDaylight [16] or a HP VAN [17]
controller has to be integrated with the OpenFlow switch. HyperGlance can than connect to
one of those controllers and get all the end to end data about the virtual infrastructure that it
needs. Such a visualization clearly shows in real time the network changes which are made by
the response of the control loop. However the responses implemented during this research are
simple and visualizing them in such a way does not make too much sense.

The I/O graph from the traffic generated by the attack in the attack isolation scenario (See
Figure 4.) shows that after the attack is stated the entire outgoing bandwidth is consumed by
the responses from the server. The incoming traffic is much less, since it only contains the HTTP
requests. It takes about 7 seconds for the control loop to detect the attack and run the response.
After the attack is redirected to the new server, the incoming and outgoing traffic are almost
equal in terms of bandwidth usage. This is because for every HTTP request a HTTP redirect
response which is about the same size as the request is being sent.

The I/O graph from the traffic generated by the attack in the attack limiting scenario (See
Figure 5.) shows the same attack being started as in the other scenario. For this graph a moving
average of 8 samples is used in order to show more clearly the variations of the traffic as a result of
the rate-limit adjustments. This is also the reason why it appears to be smoother than the other
graph which used a moving average of 4 samples only. In about 9 seconds the first rate-limit of 5
connections per second is set. This significantly brings down the accepted HTTP requests from
the attacker, which results also in limited responses from the server. The maximum outgoing
bandwidth consumption is less than 40%, so the control loop increases the rate-limit with 1 on
every iteration. At a rate-limit of 11 connections per second the network stabilizes.

The effects from the two responses can now be compared on different parameters. Each re-
sponse should get a grade for every parameter and those grades should be comparable between
different responses. A suitable way for such grading is by using percentages, 100% being the best
possible result and 0% the worst. Of course those percentages are going to be relative, but as
long as they are comparable this should not matter that much.
Another aspect that needs to be taken into consideration when comparing responses is that ev-
ery company can have different preferences for comparison parameters with varying importance.
A company policy needs to establish which of those parameters are more important for that
company, so that they can be weighted. Than based on the comparison results and the defined
weights of the parameters, a rating can be calculated for every response.

By using this method, the two control loop responses that were implemented can be rated

14

Figure 4: Generated incoming and outgoing traffic of the server in the Attack Isolation Response
scenario

and compared. First the company has to define the comparison parameters and assign weights
to them. Lets say that our imaginary company cares the most for the money that it spends,
so a parameter ”Price” is defined and its weight is set to 25. The company also wants to have
high availability of its web-server which hosts the main page of the company to customers, so
an ”Availability of web-server” parameter is set with weight of 20. The file-server which hosts
some draft reports however is not that important, so ”Availability of file-server” parameter is
set with weight of 5. The effect of the countermeasures on the attacker is also important, so a
parameter called ”Effect on the attacker” is defined with weight of 10. And finally the company
would prefer if there is less traffic flowing in its network, so an ”Overall bandwidth consumption”
parameter is set with weight of 5.

15

Figure 5: Generated incoming and outgoing traffic of the server in the Attack Limiting Response
scenario

Then the responses can be compared and graded (See Table 1.) on every parameter:

• Availability of file-server (5) - The Attack Isolation Response does not lower the effect
of the attack. Even if the file-server is moved, it is still under attack. The Attack Limiting
Response, however, narrows the attack and so the service will also be available to other
users. In this category the Attack Limiting Response is better than the Attack Isolation
Response.

• Availability of web-server (20) - The Attack Isolation Response completely moves
the effect of the attack away from the server which hosts the web page. Only the redirect
messages are handled by it. On the other hand the Attack Limiting Response still dedicates
half of the bandwidth of the link to the server to the attack. Because of that in this category
the Attack Isolation Response is better than the Attack Limiting Response.

• Effect on the attacker (10) - The Attack Isolation Response will be easily visible to
the attacker, because he/she will receive the redirect messages from the first server. The
Attack Limiting Response may be a bit harder for the attacker to grasp, because he/she

16

will only see a number of his/her requests being dropped, which remains consistent over
time. So in this category the Attack Limiting Response is better than the Attack Isolation
Response.

• Overall bandwidth consumption (5) - The Attack Isolation Response will even increase
the overall bandwidth consumption, because additional redirect messages will be sent. And
the Attack Limiting Response will indeed lower the amount of traffic consumed by the
attack. Therefore in this category the Attack Limiting Response is better than the Attack
Isolation Response.

• Price (25) - The Attack Isolation Response sets up new virtual server, which costs money.
So in the final category the Attack Limiting Response is better than the Attack Isolation
Response.

Table 1: Response gradings per comparison parameter

Attack Isolation Attack Limiting
Response Response

Availability of file-server (5) 0% 40%
Availability of web-server (20) 95% 50%
Effect on the attacker (10) 40% 50%
Overall bandwidth consumption (5) 10% 60%
Price (25) 70% 100%

Using the defined grades and their weights, the ratings for the two responses can now be calcu-
lated using the following formula:

Rating = Weight1 ×Grade1 + Weight2 ×Grade2 + ... + Weightn ×Graden (1)

The ratings are calculated as follows:

Attack Isolation Response

5 × 0 + 20 × 0.95 + 10 × 0.4 + 5 × 0.1 + 25 × 0.7 = 19 + 4 + 0.5 + 17.5 = 41 (2)

Attack Limiting Response

5 × 0.4 + 20 × 0.5 + 10 × 0.5 + 5 × 0.6 + 25 × 1 = 2 + 10 + 5 + 3 + 25 = 45 (3)

The Attack Limiting Response gets a rating of 45 which is higher than the rating of 41 for
the Attack Isolation Response. Therefore according to the policies that were defined, the Attack
Limiting Response will be the better choice for this company.

17

7 Conclusion

From the results of this research it can be concluded that the concept of Security Autonomous
Response Networks work and can be implemented.

When implementing a Security Autonomous Response Network there are a few important
things that need to be kept in mind. The main reason for migrating to Security as a Service is
because it has a bigger potential for dealing with security threats than having people responsi-
ble for that. In order to explore that potential, the implementation of a Security Autonomous
Response Network has to be flexible and modular. Modularity can be achieved by having plug-
gable IDSs which can combine technologies for fast and efficient detection of security problems.
Another important part that needs to be pluggable are the responses which are triggered as a
result of detecting an issue. That way various kinds of standard or innovative countermeasures
could be added to the system and waiting to be executed. And this means that knowledge can be
reused and exchanged between companies or other organizations in the form of software modules.
Since every countermeasure is only effective against a given set of security threats, the responses
need to be classified based on what types of problems they can solve. The Security Control
Loop could be implemented inside an actual loop statement which iterates until it is stopped,
however this will make the implementation very inflexible and also not very scalable. A better
way to implement the control loop would be to use an Enterprise Service Bus architecture. This
will allow for multiple IDSs to monitor the infrastructure at the same time and also response
selection and execution agents to agree on solutions and fix different problem in different parts
of the network simultaneously.

When deploying a Security Autonomous Response Network in a company, there are also
some important considerations. The infrastructure of the company should be designed modular
whenever this is possible. That will make it more flexible and allow for a larger amount of dif-
ferent countermeasures to be triggered on separate parts of the whole system. When selecting
and adding different responses to the countermeasure weaponry of the Security Autonomous
Response Network, the company has to define policies according to which the responses should
be rated. Based on the classification and the rating the most suitable response can be selected
for a particular security problem that occurs.

18

References

[1] O. Fundation, “Software-defined networking: The new norm for networks,” ONF White
Paper, 2012. [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&
q=intitle:Software-Defined+Networking+:+The+New+Norm+for+Networks#0

[2] Michael Patterson, “Detecting and Mitigating Network Security Threats,” RTC Magazine,
2013. [Online]. Available: http://www.rtcmagazine.com/articles/view/102912

[3] Tzeyoung Max Wu, “Intrusion Detection Systems,” IATAC, Tech. Rep., 2009. [Online].
Available: http://iac.dtic.mil/csiac/download/intrusion detection.pdf

[4] D. Bolzoni, Revisiting anomaly-based network intrusion detection systems, Enschede,
The Netherlands, Jun. 2009. [Online]. Available: http://purl.org/utwente/doi/10.3990/1.
9789036528535

[5] N. Mckeown, T. Anderson, L. Peterson, J. Rexford, S. Shenker, and S. Louis, “OpenFlow :
Enabling Innovation in Campus Networks,” 2008.

[6] Mininet Team, “Mininet Overview,” 2014. [Online]. Available: http://mininet.org/
overview/

[7] D. Leonard, “pktstat(1) - Linux man page,” 2002. [Online]. Available: http:
//linux.die.net/man/1/pktstat

[8] D. Wieers, “Dstat: Versatile resource statistics tool,” 2012. [Online]. Available:
http://dag.wiee.rs/home-made/dstat/

[9] C. Yalcin, “Hammer DDos Script - Python 3,” 2014. [Online]. Available: https:
//github.com/cyweb/hammer

[10] J. . R. Kinsella, “Slowloris HTTP DoS,” 2013. [Online]. Available: http://ha.ckers.org/
slowloris/

[11] Apache Software Foundation, “ab - Apache HTTP server benchmarking tool,” 2014.
[Online]. Available: http://httpd.apache.org/docs/current/programs/ab.html

[12] A. Manes, “Enterprise Service Bus: A Definition,” Burton Group, pp. 1–35, 2007. [Online].
Available: http://i.i.cbsi.com/cnwk.1d/html/itp/burton ESB.pdf

[13] The Bro Project, “Bro Manual,” 2014. [Online]. Available: http://www.bro.org/sphinx/
index.html

[14] The Snort Project, “SNORT Users Manual 2.9.6,” 2014. [Online]. Avail-
able: http://s3.amazonaws.com/snort-org-site/production/document files/files/000/000/
001/original/snort manual.pdf

[15] Real Status, “HyperGlance for SDN,” 2014. [Online]. Available: http://real-status.com/
product/sdn

[16] A Linux Foundation Collaborative Project, “OpenDaylight,” 2014. [Online]. Available:
http://www.opendaylight.org/

[17] Hewlett-Packard Development Company, “HP Virtual Application Networks SDN
Controller,” 2013. [Online]. Available: http://h17007.www1.hp.com/docs/networking/
solutions/sdn/4AA4-8807ENW.PDF

19

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Software-Defined+Networking+:+The+New+Norm+for+Networks#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Software-Defined+Networking+:+The+New+Norm+for+Networks#0
http://www.rtcmagazine.com/articles/view/102912
http://iac.dtic.mil/csiac/download/intrusion_detection.pdf
http://purl.org/utwente/doi/10.3990/1.9789036528535
http://purl.org/utwente/doi/10.3990/1.9789036528535
http://mininet.org/overview/
http://mininet.org/overview/
http://linux.die.net/man/1/pktstat
http://linux.die.net/man/1/pktstat
http://dag.wiee.rs/home-made/dstat/
https://github.com/cyweb/hammer
https://github.com/cyweb/hammer
http://ha.ckers.org/slowloris/
http://ha.ckers.org/slowloris/
http://httpd.apache.org/docs/current/programs/ab.html
http://i.i.cbsi.com/cnwk.1d/html/itp/burton_ESB.pdf
http://www.bro.org/sphinx/index.html
http://www.bro.org/sphinx/index.html
http://s3.amazonaws.com/snort-org-site/production/document_files/files/000/000/001/original/snort_manual.pdf
http://s3.amazonaws.com/snort-org-site/production/document_files/files/000/000/001/original/snort_manual.pdf
http://real-status.com/product/sdn
http://real-status.com/product/sdn
http://www.opendaylight.org/
http://h17007.www1.hp.com/docs/networking/solutions/sdn/4AA4-8807ENW.PDF
http://h17007.www1.hp.com/docs/networking/solutions/sdn/4AA4-8807ENW.PDF

A Python source code for the attack isolation response im-
plementation of the control loop

control loop-response isolation.py

#!/usr/bin/python

from mininet.topo import Topo

from mininet.net import Mininet

from mininet.util import dumpNodeConnections

from mininet.log import setLogLevel

from mininet.cli import CLI

from mininet.node import CPULimitedHost

from mininet.link import TCLink

import time

import os

Define global variables

n = 4 # number of nodes

ncon = 0

fileserverpid = None

webserverpid = None

results = None

dos = False

counter = 0

hosts = {}

hostips = {}

hostints = {}

switchints = {}

accesslinkopts = dict(bw=10, delay=’3ms’, use_htb=True)

distrlinkopts = dict(bw=100, delay=’1.5ms’, use_htb=True)

corelinkopts = dict(bw=1000, delay=’0.5ms’, use_htb=True)

class MyTopo(Topo):

"Simple topology example."

def __init__(self):

"Create custom topo."

Initialize topology

Topo.__init__(self)

Add hosts and switches

h1 = self.addHost(’h1’, cpu=.5/n)

h2 = self.addHost(’h2’, cpu=.5/n)

h3 = self.addHost(’h3’, cpu=.5/n)

h4 = self.addHost(’h4’, cpu=.5/n)

s1 = self.addSwitch(’s1’)

20

Add links

self.addLink(h1, s1, **accesslinkopts)

self.addLink(h2, s1, **accesslinkopts)

self.addLink(h3, s1, **accesslinkopts)

self.addLink(h4, s1, **accesslinkopts)

def netSetUpAndTest():

Create Network

topo = MyTopo()

net = Mininet(topo=topo, host=CPULimitedHost, link=TCLink)

net.start()

Test Network

print "Dumping host connections"

dumpNodeConnections(net.hosts)

print "Testing network connectivity"

net.pingAll()

print "Testing bandwidth between h1 and h4"

h1, h4 = net.get(’h1’, ’h4’)

net.iperf((h1, h4))

Start services on h1

print h1.cmd(’cd ~/fileserver/’)

print h1.cmd(’python -m SimpleHTTPServer 8000 > /dev/null 2>&1 &’)

global fileserverpid

fileserverpid = int(h1.cmd(’echo $!’))

print "Fileserver is running now on port 8000 with PID:", fileserverpid

print h1.cmd(’cd ~/webserver/’)

print h1.cmd(’python -m SimpleHTTPServer 8001 > /dev/null 2>&1 &’)

global webserverpid

webserverpid = int(h1.cmd(’echo $!’))

print "Webserver is running now on port 8001 with PID:", webserverpid

time.sleep(2)

h2 = net.get(’h2’)

Test services on h1

print h2.cmd(’cd ~’)

print "Services can be tested using the following commands:"

print "h2 wget http://%s:8000/test_10K.img" % (h1.IP())

print "h2 time curl http://%s:8001/index.html" % (h1.IP())

CLI(net)

return net

def tcpStats(h1):

print "Collecting TCP connections statistics..."

Detecting attack

h1.cmd("pktstat -1 -ntT -i h1-eth0 -w 5 > /tmp/h1_bandwidth.out &")

time.sleep(8)

while os.stat(’/tmp/h1_bandwidth.out’).st_size<=2 :

print "Wating for connection statistics..."

h1.cmd("pktstat -1 -ntT -i h1-eth0 -w 5 > /tmp/h1_bandwidth.out &")

21

time.sleep(8)

result = open(’/tmp/h1_bandwidth.out’)

global results

results = result.readlines()

result.close()

global ncon

ncon = int(results[0].split()[0])

print "Number of connections:", ncon

def detAttackVectors(h1):

print "Determining potential attack vectors..."

attsrcip = ""

attdstipport = ""

attsrcips = {}

portconns = 0

if ncon > 30 and counter == 0 :

for i in range(1, (ncon+1)):

if results[i].split()[2] == "tcp" :

attdstipport = results[i].split()[3]

attsrcip = results[i].split()[5].split(":")[0]

if attdstipport == "10.0.0.1:8000" :

if attsrcips.has_key(attsrcip) :

attsrcips[attsrcip] += 1

else:

attsrcips[attsrcip] = 1

portconns += 1

print "There are currently %s active connections to port 8000!" % portconns

print "Sources:", attsrcips

asi = attsrcips.keys()

attsrcip = asi[0]

for i in range(1, len(asi)):

if attsrcips[asi[i]] > attsrcips[attsrcip]:

attsrcip = asi[i]

global dos

dos = True

print """The IP %s is a potential attacker! It currently has %s active

connections to port 8000.""" % (attsrcip, attsrcips[attsrcip])

else :

print "There are no potential attack vectors found."

def isolateResponse(net):

h1 = net.get(’h1’)

h2 = net.get(’h2’)

s1 = net.get(’s1’)

Define attributes

global counter

global hosts

global hostips

global hostints

global switchintss

counter +=1

print "Counter:", counter

22

hosts[counter] = "nh%s" % counter

print "Host:", hosts[counter]

hostips[hosts[counter]] = "10.0.0.%s" % (n+counter)

print "IP:", hostips[hosts[counter]]

hostints[hosts[counter]] = "%s-eth0" % hosts[counter]

print "Host interface:", hostints[hosts[counter]]

switchints[hosts[counter]] = "s1-eth%s" % (n+counter)

print "Switch interface", switchints[hosts[counter]]

Create new host and redirect the old one

print h1.cmd("kill -9", fileserverpid)

h = net.addHost(hosts[counter] , cpu=1/8)

time.sleep(2)

net.addLink(h, s1, **distrlinkopts)

s1.attach(switchints[hosts[counter]])

print h.cmd("ifconfig", hostints[hosts[counter]],

hostips[hosts[counter]])

print "Redirecting now..."

print h1.cmd("~/mininet/examples/redirect.py %s &" %

hostips[hosts[counter]])

print "Redirected!"

print h.cmd(’cd ~/fileserver/’)

print h.cmd(’python -m SimpleHTTPServer 8000 > /dev/null 2>&1 &’)

#Test the newly created host

print h2.cmd(’cd ~’)

print "h2 wget http://%s:8000/test_10K.img" % (h1.IP())

print "h2 time curl http://%s:8001/index.html" % (h1.IP())

def controlLoop(net):

h1 = net.get(’h1’)

global dos

loopcounter=0

The control loop starts here

while True:

loopcounter +=1

print "=="

print "Starting loop %s..." % loopcounter

print "--"

dos = False

#check for attacks

tcpStats(h1)

print "--"

detAttackVectors(h1)

print "--"

Trigger response if attack is found

if dos == True :

isolateResponse(net)

print "--"

print "End of loop %s..." % loopcounter

print h.cmd(’kill %python’)

net.stop()

if __name__ == ’__main__’:

Tell Mininet to print useful information

setLogLevel(’info’)

net = netSetUpAndTest()

23

controlLoop(net)

redirect.py

#!/usr/bin/python

import SimpleHTTPServer

import SocketServer

import sys

PORT = 8000

class myHandler(SimpleHTTPServer.SimpleHTTPRequestHandler):

def __init__(self, req, client_addr, server):

SimpleHTTPServer.SimpleHTTPRequestHandler.__init__(self, req,

client_addr, server)

def do_GET(self):

print self.path

self.send_response(301)

new_path = "http://%s:8000%s" % (str(sys.argv[1]), self.path)

self.send_header(’Location’, new_path)

self.end_headers()

class MyTCPServer(SocketServer.ThreadingTCPServer):

allow_reuse_address = True

if __name__ == ’__main__’:

handler = MyTCPServer(("", PORT), myHandler)

handler.allow_reuse_address = True

print "serving at port", PORT

handler.serve_forever()

24

B Python source code for the attack limiting response im-
plementation of the control loop

control loop-response limiting.py

#!/usr/bin/python

from mininet.topo import Topo

from mininet.net import Mininet

from mininet.util import dumpNodeConnections

from mininet.log import setLogLevel

from mininet.cli import CLI

from mininet.node import CPULimitedHost

from mininet.link import TCLink

import time

import os

import csv

Define global parameters

n = 4 # number of nodes

ncon = 0

deliprule1 = None

deliprule2 = None

deliprule3 = None

attacked = "h1"

port = 8000

protocol = "tcp"

seconds = 1

linkspeed = 1000000

hitcount = 5

results = None

dos = None

max_bandwidth = None

accesslinkopts = dict(bw=10, delay=’3ms’, use_htb=True)

distrlinkopts = dict(bw=100, delay=’1.5ms’, use_htb=True)

corelinkopts = dict(bw=1000, delay=’0.5ms’, use_htb=True)

class MyTopo(Topo):

"Simple topology example."

def __init__(self):

"Create custom topo."

Initialize topology

Topo.__init__(self)

Add hosts and switches

h1 = self.addHost(’h1’, cpu=.5/n)

25

h2 = self.addHost(’h2’, cpu=.5/n)

h3 = self.addHost(’h3’, cpu=.5/n)

h4 = self.addHost(’h4’, cpu=.5/n)

s1 = self.addSwitch(’s1’)

Add links

self.addLink(h1, s1, **accesslinkopts)

self.addLink(h2, s1, **accesslinkopts)

self.addLink(h3, s1, **accesslinkopts)

self.addLink(h4, s1, **accesslinkopts)

def netSetUpAndTest():

Create Network

topo = MyTopo()

net = Mininet(topo=topo, host=CPULimitedHost, link=TCLink)

net.start()

Test Network

print "Dumping host connections"

dumpNodeConnections(net.hosts)

print "Testing network connectivity"

net.pingAll()

print "Testing bandwidth between h1 and h4"

h1, h4 = net.get(’h1’, ’h4’)

net.iperf((h1, h4))

Start services on h1

print h1.cmd(’cd ~/fileserver/’)

print h1.cmd(’python -m SimpleHTTPServer 8000 > /dev/null 2>&1 &’)

time.sleep(2)

h2 = net.get(’h2’)

Test services on h1

print h2.cmd(’cd ~’)

print "Fileserver can be tested using the following command:"

print "h2 wget http://%s:8000/test_10M.img" % (h1.IP())

CLI(net)

return net

def tcpStats(h1):

print "Collecting TCP connections statistics..."

Detecting attack

h1.cmd("pktstat -1 -ntT -i h1-eth0 -w 5 > /tmp/h1_bandwidth.out &")

time.sleep(8)

while os.stat(’/tmp/h1_bandwidth.out’).st_size<=2 :

print "Waiting for connection statistics..."

h1.cmd("pktstat -1 -ntT -i h1-eth0 -w 5 > /tmp/h1_bandwidth.out &")

time.sleep(8)

result = open(’/tmp/h1_bandwidth.out’)

global results

results = result.readlines()

result.close()

global ncon

ncon = int(results[0].split()[0])

26

print "Number of connections:", ncon

def detAttackVectors(h1):

print "Determining potential attack vectors..."

attsrcip = ""

attdstipport = ""

attsrcips = {}

attdstipports = {}

if ncon > 10 :

for i in range(1, (ncon+1)):

if results[i].split()[2] == "tcp" :

attdstipport = results[i].split()[3]

attsrcip = results[i].split()[5].split(":")[0]

if attsrcips.has_key(attsrcip):

attsrcips[attsrcip] += 1

else:

attsrcips[attsrcip] = 1

if attdstipports.has_key(attdstipport):

attdstipports[attdstipport] += 1

else:

attdstipports[attdstipport] = 1

print "Destinations:", attdstipports

print "Sources:", attsrcips

asi = attsrcips.keys()

attsrcip = asi[0]

for i in range(1, len(asi)):

if attsrcips[asi[i]] > attsrcips[attsrcip]:

attsrcip = asi[i]

adip = attdstipports.keys()

attdstipport = adip[0]

for i in range(1, len(adip)):

if attdstipports[adip[i]] > attdstipports[attdstipport]:

attdstipport = adip[i]

print "Most used attacker IP is %s, used %s times." % (attsrcip,

attsrcips[attsrcip])

print "Most used attacked IP and port are %s, used %s times." % (attdstipport,

attdstipports[attdstipport])

print "--"

banStats(h1)

else :

print "There are no potential attack vectors found."

def banStats(h1):

print "Collecting bandwidth statistics..."

h1.cmd("rm /tmp/band_h1.csv")

h1.cmd("dstat -nt --nocolor --output /tmp/band_h1.csv &")

time.sleep(8)

h1.cmd("kill %dstat")

h1.cmd("sed -i ’1,6d’ /tmp/band_h1.csv")

global max_bandwidth

max_bandwidth = None

band = csv.DictReader(open("/tmp/band_h1.csv"))

for row in band:

bandwidth = int(row["send"].split(".")[0])

27

if max_bandwidth == None or max_bandwidth < bandwidth:

max_bandwidth = bandwidth

if max_bandwidth != None:

print "Max bandwidth consumed by the attack:", max_bandwidth

else:

print "Error (No bandwidth statistics saved.)"

global dos

dos = True

def limitResponse(net):

print "Adjusting rate limits..."

h = net.get(attacked)

global deliprule1

global deliprule2

global deliprule3

global hitcount

change = True

if deliprule1 == None and deliprule2 == None and deliprule3 == None:

Add the IP to the list:

print h.cmd ("""iptables -A INPUT -p %s --destination-port %s --syn

-m state --state NEW -m recent --set --name RATELIMITED""" % (protocol, port))

deliprule1 = """iptables -D INPUT -p %s --destination-port %s --syn

-m state --state NEW -m recent --set --name RATELIMITED""" % (protocol, port)

Drop if exceeded limit:

print h.cmd ("""iptables -A INPUT -p %s --destination-port %s --syn

-m state --state NEW -m recent --update --seconds %s --hitcount %s --rttl

--name RATELIMITED -j DROP""" % (protocol, port, seconds, hitcount))

deliprule2 = """iptables -D INPUT -p %s --destination-port %s --syn

-m state --state NEW -m recent --update --seconds %s --hitcount %s --rttl

--name RATELIMITED -j DROP""" % (protocol, port, seconds, hitcount)

Accept if inside limit:

print h.cmd ("""iptables -A INPUT -p %s --destination-port %s --syn

-m state --state NEW -j ACCEPT""" % (protocol, port))

deliprule3 = """iptables -D INPUT -p %s --destination-port %s --syn

-m state --state NEW -j ACCEPT""" % (protocol, port)

print "Rate limit is now set to %s connections per %s second!" % (hitcount,

seconds)

else :

Calculating new hitcount value

if max_bandwidth > (linkspeed/10)*6 :

hitcount -= 1

elif max_bandwidth < (linkspeed/10)*4 :

hitcount += 1

else :

change = False

if change :

print h.cmd (deliprule1)

print h.cmd (deliprule2)

print h.cmd (deliprule3)

Add the IP to the list:

print h.cmd ("""iptables -A INPUT -p %s --destination-port %s --syn

-m state --state NEW -m recent --set --name RATELIMITED""" % (protocol, port))

deliprule1 = """iptables -D INPUT -p %s --destination-port %s --syn

-m state --state NEW -m recent --set --name RATELIMITED""" % (protocol, port)

28

Drop if exceeded limit:

print h.cmd ("""iptables -A INPUT -p %s --destination-port %s --syn

-m state --state NEW -m recent --update --seconds %s --hitcount %s --rttl

--name RATELIMITED -j DROP""" % (protocol, port, seconds, hitcount))

deliprule2 = """iptables -D INPUT -p %s --destination-port %s --syn

-m state --state NEW -m recent --update --seconds %s --hitcount %s --rttl

--name RATELIMITED -j DROP""" % (protocol, port, seconds, hitcount)

Accept if inside limit:

print h.cmd ("""iptables -A INPUT -p %s --destination-port %s --syn

-m state --state NEW -j ACCEPT""" % (protocol, port))

deliprule3 = """iptables -D INPUT -p %s --destination-port %s --syn

-m state --state NEW -j ACCEPT""" % (protocol, port)

print "Rate limit is now set to %s connections per %s second!" % (hitcount,

seconds)

def controlLoop(net):

h1 = net.get(’h1’)

global dos

loopcounter=0

The control loop starts here

while True:

loopcounter +=1

print "=="

print "Starting loop %s..." % loopcounter

print "--"

time.sleep(2)

dos = False

#check for attacks

tcpStats(h1)

print "--"

detAttackVectors(h1)

print "--"

Trigger response if attack is found

if dos == True :

limitResponse(net)

print "--"

print "End of loop %s..." % loopcounter

print h.cmd (deliprule1)

print h.cmd (deliprule2)

print h.cmd (deliprule3)

net.stop()

if __name__ == ’__main__’:

Tell Mininet to print useful information

setLogLevel(’info’)

net = netSetUpAndTest()

controlLoop(net)

29

	Introduction
	Research Questions

	Related Work
	Scope
	Approach
	Methodology
	Tools

	Example implementation of a Security Control Loop
	Topology and environment
	Scenario
	Implementation

	Response definition and implementation
	Attack Isolation Response
	Attack Limiting Response

	Readers reminder

	Results
	Conclusion
	Python source code for the attack isolation response implementation of the control loop
	Python source code for the attack limiting response implementation of the control loop

