
University of Amsterdam

System and Network Engineering

Research Project

Controlled DDoS Security Testing

Authors:
Mike Berkelaar

Azad Kamali Roosta

July 11, 2014

1

Abstract
This report describes the concept of performing controlled (distributed)

denial of service (DDoS) attacks for auditing purposes. With DDoS mitiga-
tion strategies and mechanisms likely not being present in a test-setup the
only option may be to perform these attacks on a live production system.
However, this introduces the danger of causing severe damage in the form of
(partial) unavailability. Therefor we propose a method of doing a controlled
attack where the effects are closely monitored to prevent this damage from
occurring.

We researched mechanisms to monitor general forms of attacks from the
application- and network-level attack classes. For application-level attacks
we propose a prediction algorithm that prevents the attack from growing
too big based on the slope of the response times being monitored over time.
For network-level attacks we propose a high frequency monitoring method
that approximates the global packet-loss rate. These mechanisms have a
proof-of-concept implementation in Python for testing purposes.

2

Contents

1 Introduction 4
1.1 Research question . 4
1.2 Related work . 5

2 Background 5

3 Approach 6

4 Basic concepts of a controlled DDoS 7
4.1 Attack observables . 7

4.1.1 Expected behaviour . 7
4.2 Monitoring aspects . 12

4.2.1 Thresholds . 13
4.3 Controlled attack . 14

5 Proposed solution 16
5.1 Architecture . 16

5.1.1 Messages . 17
5.2 State-machine . 17
5.3 Monitoring methods . 18

5.3.1 Probing . 18
5.3.2 Monitoring logic . 19

5.4 Attack simulations . 21

6 Proof-of-concept 23
6.1 Experimentation setup . 23
6.2 Network-level: Traffic flood . 23
6.3 Application-level: HTTP flood . 25

7 Conclusion 27

8 Future work 27

9 Appendices 29
9.1 Terms and Abbreviations . 29
9.2 Code repository . 31
9.3 Figures in Larger scale . 31

3

1 Introduction

A (Distributed) Denial of Service ((D)DoS) attack is mostly done by consuming a tar-
get’s resources in a way that it is no longer able to provide its services as intended or
in the desired way. These resources can be real hardware resources, like available com-
puting cycles, or logical resources like the amount of simultaneous open connections a
server can handle. Other type of denial of service attacks would disrupt the service by
either blocking the communication or altering the physical state in a negative way.

During this project we will be focusing on the resource demanding attacks, commonly
found in distributed denial of service attacks. With this method an attacker has to
gather enough resources to outweigh the target or misuse a vulnerability that will ex-
haust the resources in a more efficient way.

In this project, we will be establishing a framework, along with a proof of concept,
which allows different systems to be tested in various simulated DDoS scenarios. The
simulation should be powerful enough to show the effect of the attack as well as the
systems reaction to it, but at the same time should be managed in a way that does not
cause an actual DoS as it may be used on live environments. The results of these tests
could be beneficial to audit the DoS resiliency of an environment and show potential
bottlenecks.

The resource demanding attacks also have the characteristic of being hard to distin-
guish from normal traffic. From the prospective of intermediate devices, they are not
that different after all. With that being said, the concept of a simulation for such attacks
would be quite close to load testing and stress testing. To be more precise we can call
it a combination of these two tests happening at the same time on a live system with a
vital sign monitoring system which acts like a safety valve, preventing the DDoS attack
from actually doing damage.

1.1 Research question

Simulations are a good way of testing things in practice. If everything is working per-
fectly on paper, it does not necessarily mean that they will actually work as intended.
Evaluating the readiness for attacks on the infrastructure is a critical part of any IT se-
curity audit. In case of DDoS security testing we may want to evaluate the performance
and effectiveness of DoS security measures in place.

Penetration- or stress testing is the main way of doing such audits. While checklists
and process reviews may give one an indication of how secure an infrastructure is, these
tests can be seen as a method which will reveal if all efforts enable the infrastructure
to work as intended. Most of tests can be done without a high risk of causing damage,
hence they can even be performed over a live service. A Denial of Service test however is
an exception to this as the goal of a DoS attack is to prevent the target from providing
its service.

4

The research question central during this project is:
- How can various DoS attacks be simulated in a controlled way?

Essential to the research question are a number of subquestions:
- Which DoS attacks can be simulated in a potentially controlled way?
- Which parameters should be used in order to have a controlled attack?
- Which metrics should be monitored to measure the effects of a DoS?

1.2 Related work

The replication of denial of service attacks for testing and auditing purposes is an active
field of research.

The concept of load testing a service has been researched by S. Abu-Nimeh et al.
With a number of selected tools and metrics an application can be tested to show its
bottlenecks. It is suggested that with these results the corresponding configurations can
be optimized in order to be prepared for high demanding scenarios like a denial of service
attack or flash-crowd. [2]

S. Bhatia proposes a framework to realistically simulate DDoS attacks in a distribute
fashion and gather performance metrics from this action. A custom traffic generator,
Botloader, was created to perform different attack scenarios with clustered capabilities.
[1]

M. Yan et al have researched the load testing of webservices on the application level.
Here it is shown that various benchmarks from a single source produce different behavior
from the same load coming from a distributed TaaS (Testing as a service) solution. ’WS-
TaaS is the proposed solution for leveraging cloud infrastructures to create a load test
that is more comparable to real usage.[3]

2 Background

There are numerous denial of service attack methods in existence that are maliciously
performed to degrade the performance or availability of a service. During this research
we distinguish attacks that target the available bandwidth, or network-level attacks,
and application-level attacks that target the over usage of expensive functions in these
services.

Network-level attacks over consume the available bandwidth between the source and
destination by flooding it with unwanted traffic. The effects of this flood could saturate
the links between legitimate sources and the DDoS target anywhere along the path,
resulting in an interrupted availability.

Application-level attacks misuse expensive functions or characteristics of a service to
cause resources to be rapidly consumed on the DDoS target. This could be caused by
out of ordinary usage of for instance a search function, which is likely to depend on a
lot of backend queries that could be rather complex and resource intensive. Other sorts

5

of application-level attacks could target certain weaknesses in protocols, like keeping
connections open by performing artificially slow requests and responses.

Despite the complexity or volume of some DDoS attacks there are mitigation methods
available like filtering of traffic, blacklisting of malicious sources or even just optimis-
ing configurations of the service. However, testing the effectiveness of these mitigation
methods is hard without the risk of causing damage by uncontrollable traffic generators
that can simulate a DDoS attack.

3 Approach

Our focus during this research is exploring possible methods of performing controlled
attack simulations based on the analysis of remote observables. One of the key dilemmas
in being able to control the attack is to determine when an attack is successful in the
sense that a malicious attacker would reach its goal of disrupting a service. Defining the
point that a service is disrupted or damaged may seem straightforward, but the tolerated
level of availability may differ hugely between the type of services, protocols used, their
usage and application.

In any audit process a clear goal has to be set which allows the tester to eventually
determine if a target has passed the test successfully or not. Usually this goal is expressed
in a threshold which the target is supposed to handle. As an example case, consider a
scenario in which a password needs to be secure from brute-force attacks. With a defined
threshold of six months we would state that the scenario would fail if it would take less
time to crack, and pass in case it was more.

In a DDoS audit these thresholds may be harder to define. With most DDoS attack
classes the target is the availability of a service, which can often only be measured as
either available or not. Depending on the scenario it may be the case that the measure-
ments show a disrupted service by means of extra delay or even lower actual availability
with a number of requests simply not being processed. These situations have totally
different impacts on cases like online banking or name resolving, where the latter is far
less sensitive to incidental disruptions.

In order to come up with a comprehensive way of performing controlled attack simu-
lations it is important to find methods to observe a DDoS attack which can be applied
on both ends of this spectrum. The concepts researched during this project will be
implemented in a proof-of-concept implementation, discussed further in this document.

6

4 Basic concepts of a controlled DDoS

In order to analyze and test for DDoS resiliency a possibility would be to simulate an
actual attack, but without crossing the point where damage would occur. We set out to
find a way of performing such attacks where the effects are, to some degree, controllable
and therefor less risky to perform.
During this research we will consider a DDoS target as a single entity, exposing services
over a common protocol like HTTP.

In order to come up with a method to perform such a controllable DDoS attack the
following sub-questions were considered:

• What are the direct effects and observables of a DDoS attack?

• How can DDoS attacks be reliably controlled based on these observables?

4.1 Attack observables

With both network- and application-level DDoS attacks it is required to find observables
that are a direct effect of the attack. If these observables are in any way consistent or
predictable then they might be useful to provide feedback to the attack simulation.

Network-level DDoS attacks are likely to show signs of packet-loss along the network
path once the volume of the attack congests the links to the target. W. Su et al illustrate
how this behaviour can be monitored and utilized to trace attacking sources during a
DDoS attack [5]. With the links congested somewhere along the path there is a direct
relation between the capacity of the link and the volume of all normal and attack traffic
combined, resulting in a decreased probability of every packet actually reaching its des-
tination.

Application-level attacks may result in local computing resources to be exhausted,
leading to unexpected behavior that could be very specific to the targeted service. How-
ever, we believe that a number of generalized scenarios can be expected. With less
available resources an increasing latency on responses is to be expected. In some situ-
ations it may be the case that the service has to selectively process requests and drop
the remainder, as the outstanding queue would grow infinitely.

4.1.1 Expected behaviour

As mentioned earlier, the idea is to try to attack the target while keeping an eye on its
operational status and vital signs. These could be any of the resources being monitored,
based on the attack type. We expected that as the attacking rate would increase in small
steps, so would the vital signs like the response time of the target. This way, we could
set a point at which the system’s operation is not acceptable by the end user anymore,
a defined threshold, yet has not reached the point of absolute unavailability. Figure 1

7

shows a representation of how these vital signs would be monitored during the attack
simulation, grouped as ’feedback’.

Figure 1: Expected feedback

However, the expected increasing values of the monitored resources, like the response
time of the service, showed to be everything but smooth and gradual. The reason for
this is likely to be different for each resource type.

For instance, if we consider the ICMP round trip time (RTT) or HTTP response
time being the feedback variable and the network bandwidth to be the targeted resource
then we expect the lowest link capacity to run out at some point in time. When this is
the case the packets used to measure the RTT will start to get a lower probability of
actually reaching the target. Another observation may be that a certain level of queueing
happens at this point anywhere along the path to the target, introducing the slightest
of extra delay, although this is likely to be unnoticeable as the extra delay may only be
a fraction of the total RTT. With low monitoring frequencies the observable RTT will
therefor show sudden signs of packet-loss, as illustrated in figure 2.

8

Figure 2: ICMP monitoring RTT/Time-outs

An interesting phenomenon found is that although the RTT will not increment ac-
cording to the growth in attack rate, it will show a very distorted development to the
point of essential unavailability, whilst it is very stable till the point of convergence. The
concept of keeping track of the variance in RTTs is something that may show potential,
although it is still hard to approximate the point of inoperability or the defined threshold
as illustrated in figure 3.

9

Figure 3: RTT variance

The other parameter candidate as the feedback variable is the frequency of timeouts.
As stated earlier, RTT times tend to be either normal or timed-out (lost). With relative
high frequency monitoring the number of time-outs are related to the probability of a
single packet being forwarded when the capacity of a link is reached. Based on this type
of feedback it may be possible to approximate the total packet-loss during a simulation.
As some degree of packet-loss is acceptable even in normal operation we will have to
further look at what thresholds are suitable for this. Figure 4 shows the result of high
frequency monitoring at the moment of an attack simulation causing packet-loss.

10

Figure 4: Timeout Frequency

In case of an application level attack the network bandwidth resource is often totally
irrelevant compared to the local resources. We found that monitoring the local resources
with daemons like SNMP is not accurate enough. We also fear that the performance
and granularity of these daemons would decrease with an ongoing attack simulation as
resources run out. Rather than finding different ways we revisit the previously discussed
methods on the response time and number of timed out requests. We observe that the
response time of an HTTP service increases more gradual to the point where a threshold
could be placed, as resources run out less abrupt. An illustration for the behaviour of
the application level response time is included in figure 5.

As can be observed, when the server is working under normal workload, most of the
requests are being answered within a relative amount of time. But as the load increases,
some of the requests, although not all, are being delayed. The growth in responses does
not correspond to the increment of requests one by one. Instead, at a certain point we
will experience a jump in response times.

11

Figure 5: Distribution of HTTP Response Times over time with increasing attack rate.

4.2 Monitoring aspects

The concept of using a monitoring system to provide feedback may seem straightforward
at first. However, as we saw in the previous sections there are a number of concerns to
address:

• Choosing the right sensors
Different attacks target different resources of the victim. Hence a victim’s vital
signs are interpreted differently based on attack type. Although keeping an eye
on all available resources could have advantages, it may be the case that only a
limited amount of them can provide the proper feedback required for a controlled
attack simulation.

• Real-time monitoring
The whole idea of having a feedback loop is so that the attacker can regulate its
attack traffic according to the feedback gathered from the target machines. It is
quite obvious that outdated monitoring values would result in false and unreliable
feedback, defeating the whole purpose.

• Out of band feedback signaling
One important point with regard to monitoring traffic is that it is best if the
attack traffic could in no way interfere with it, or the monitoring data could end
up skewed or delayed. In some cases we may actually want the attack to influence
the monitoring data in order to draw conclusions based on for instance monitoring
availability.

12

• Monitoring watchtower location
When trying to monitor the vital signs another debate is where the actual moni-
toring should happen. Some values, like the local resource utilization, can only be
obtained from the local system while observable values like the response time may
better be distributed to multiple monitoring agents for improved accuracy. Also,
monitoring resources from the local system itself may show troublesome when mon-
itoring data can no longer be monitored due to the unavailability of spare resources
during an attack.

4.2.1 Thresholds

In some cases simple thresholds can be set to define the boundaries that the vital signs
of a service can be measured at during an attack simulation. In cases like the response
time these are likely to be different between services. Live environments of distinct ap-
plications will have different allowances on the speed and responsiveness, like comparing
a webmail environment to a stock trading application. Therefor we believe that these
thresholds should be taken as user-input for every test performed. However, we can
assume this threshold to be measured in a number of seconds.

In other cases the response time is not a very good monitoring value to control an
attack simulation, as discussed in section 4.1. For instance, with a network-level attack
we may only observe the frequency of packets being lost. A number of packets being
lost does not directly translate to a certain level of (un)availability of a service as used
protocols may have different ways of handling recovery mechanisms, like retransmissions.
The effects of packet-loss on TCP communication is an extensive field of research. T.V.
Lakshman et al analysed the effects of random loss in communication continuity [4]. We
performed a test to analyse the effects of packet-loss on HTTP communication in our
proof-of-concept, described in section 6. In this test we monitored the success rate of
HTTP requests with packet-loss rates of 0.1, 1 and 2 percent of the total traffic. Figure
6 shows that the higher packet-loss rates result in much more HTTP requests having
a higher response time or even timing out due to retransmissions, indicated by the
upper boundary of the line. These values require more research to be used as thresholds
to measure the general availability of a service under a DDoS attack. We believe that
different values may be required for different protocols and link capacities, although they
can be used to test the concept of controlling an attack simulation with this method in
our proof-of-concept setup.

13

Figure 6: HTTP response time and loss

4.3 Controlled attack

In order to simulate attacks a traffic generator is required that can generate packets
equal to a malicious DDoS attack of its class. An important addition however is the
possibility to have precise control over the effect of the simulation.

Both network- and application-level attacks can be measured in a number of units per
second. In case of a network-level attack the number of packets per second (PPS) and
their size define the volume of the attack. An application-level attack usually consists
of a number of transactions per unit of time, making up requests in some form or way
at a packet rate not necessarily equal to the request rate.

Both attack classes can be controlled at the most basic level by adjusting the volume
of the attack based on these parameters. A method of doing a controlled attack simula-
tion could be to increment the volume based on monitoring the observables as discussed
in section 4.1. If the monitoring data shows no sign of the attack hitting a threshold
or causing damage then the attack rate can be increased. If the last or next increment
however is predicted to do so then the attack should be halted.

The increments should be interleaved with periods of a constant attack volume in
order to get reliable monitoring feedback with as little variation due to the simulation
itself. As the monitoring feedback is expected to show only limited change till the DDoS
is about to cause damage, the increment rate is considered to be a constant for the du-
ration of the simulation. A variable increment rate would likely make options like trend
monitoring or predictions a lot more complex, due to this behaviour. The increment
should be based on the approximate capacity and the permitted aggressiveness of the

14

simulation. While lower increments would result in a higher granularity, it may actually
result in the simulation being skewed for being too slow, as variations in monitoring
feedback is to be expected on a live system over longer periods of time.

15

5 Proposed solution

In order to do a controlled DDoS simulations we propose a framework that is extendable
with various DDoS attacks. This framework is separated in a number of components
regarding the traffic-generation, monitoring and orchestration of the DDoS attack. This
chapter describes the architecture and design of the methods of section 4, while a proof
of concept implementation is discussed in section 6.

5.1 Architecture

The traffic generation of the attack is a resource intensive task and may require the
combined strength of multiple nodes in order to test more powerful services. It may
also be of added value to gather monitoring data from multiple nodes in different net-
works, resulting in different network paths to the targeted service being probed. These
distributed components have to be orchestrated by a central entity we refer to as the
Master. While the agents only follow instructions and pass on the gathered data, the
Master actually performs the logic to control the attack simulation in a controlled way.
A visualisation of the architecture is added in figure 7.

Figure 7: Architecture

An essential part of this architecture is the communication between the agents and
the master. Monitoring data has to propagate to the master as quick as possible in order
to determine if the attack simulation reached, or is about to reach, a threshold. If the

16

attack simulation has to adjust certain characteristics of the attack, or abort it entirely,
then these instructions have to be spread to all attacking agents as soon as possible in
order to avoid the damage discussed in section 4.1. Apart from that it is even more
important to have these delivered at all and without corruption. Therefor, all agents set
up TCP sessions to the master, ensuring reliable delivery and a certain degree of data
integrity.

5.1.1 Messages

A simple message format was defined for all agents to communicate with the master.
We suspect that extending this framework with different attack classes will also require
different parameters and monitoring values over time. Therefor, an easily extendable
message format is used based on key-value pairs.
Another aspect that was handled in the message format is the issue of an attack agent
becoming unresponsive. It may be possible that during a simulation the agent consumes
all of its own capacity and is therefor no longer able to communicate with the master,
resulting in the attack proceeding without the master still being in control. To handle
this we propose a ’ticket’ mechanism where the attack agent is instructed to perform
the attack during a certain time slot and stop if no further instructions are received,
preventing total loss of control.

The formats used for the monitoring- and attacking agents are shown in listings 1 and
2.

Listing 1: Attack format

id : {
Hostname : Target Hostname
Port : Target Port
Attack : {

Type : Attack Type
Rate : Attack Rate
T i c k e t s t a r t : S ta r t t ime
Ticket end : End time
Param A : A
}

}

Listing 2: Monitoring format

id : {
Hostname : Target Hostname
Port : Target Port
Monitoring : {

Type : Mon type
Time : Timestamp
Mon data : {Data}
}

}

5.2 State-machine

The attack simulation can have a number of states that are defined in the state diagram
of figure 8. We envision the monitoring- and attack agents registering at the master and
listening for instructions. The master initialises the agents by sending the parameters
of the attack and monitoring. Based on the processed monitoring data, or feedback, the
attack will be regulated to either stop, increase, decrease or keep the rate constant.

As explained in section 5.1.1, we limit the validity of these instructions. In case an
agent becomes unresponsive it will only perform an attack for the remainder of the
instruction’s validity.

17

Figure 8: State machine interaction

5.3 Monitoring methods

The observables during an attack simulation were analyzed in section 4. The monitoring
data that we will be focusing on are the remote observables of a target with ICMP
and HTTP packets. The probing for this data is handled in the monitoring agents.
The interpretation of this data is done by the master, which translates this into new
instructions for the attack agents.

5.3.1 Probing

A probing method that was considered is the use of local monitoring daemons that could
precisely report on the resource utilization. Although this method could have favorable
characteristics for application-level attacks it was decided to not further research this
option as we think that the performance and granularity of these daemons would de-

18

crease with an ongoing attack simulation as resources run out. Preliminary testing also
showed that some of these daemons, like SNMPd, do not show real-time monitoring data
but rather a sliding average of roughly the last minute.

The observables discussed in section 4.1 have in common that they can be gathered
from remote and are directly influenced by the availability of the target. The metrics
that we will be focusing on are the ICMP Echo round trip time (RTT), ICMP Echo
packet-loss count, HTTP response time and HTTP packet-loss count.

These metrics can be measured by sending ICMP Echo- and HTTP-requests, and
keeping track of the replies. In order to reliably interpret the results of these mea-
surements we need to make sure that the requests adhere to some expectations. For
instance, the intervals between these requests should be evenly spaced to prevent the
probing from showing bursting behavior or creating large unmonitored gaps because of
unexpired time-out values, as this would likely skew the response times and loss count.
These concerns become even more important when the probing rate should be increased
for a higher granularity. An asynchronous probing solution would allow evenly spaced re-
quests to be sent at a constant rate while incoming responses are then handled separately.

A network-level DDoS attack will cause congested links to the monitored target. As
a result the probing requests have a rather large probability of being lost, suggesting
packet-loss is occurring but not at what rate. In order to approximate the packet-loss
rate one solution would be to increase the probing rate to a substantial portion of the
total traffic. With a known ratio of the probing rate opposed to the attack simulation
volume we can approximate the global packet-loss rate and compare this to the thresholds
defined. A requirement for this however is that the probe packets should be equal in size
to the packets of the attack simulation, or else no comparison could be made on solely
the PPS. In the proof-of-concept implementation a ratio of 95 : 5 was utilized, resulting
in the monitoring actually making up roughly five percent of the total attack [6].

5.3.2 Monitoring logic

The probing data resulting from the methods discussed in section 5.3.1 will require dif-
ferent ways of interpretation. Despite the different approaches they all have in common
that the processing should happen in near-realtime in order to provide rapid feedback
to the attack simulation.

By watching the slope of increasing response times or occurrences of packet-loss over
time, certain prediction could be made. The approximation of the total packet-loss count
and monitoring for hard thresholds are, on the other hand, more practical approaches to
check if an attack simulation is considered to be at its limit or if there is still a margin
to continue.

Slope watching
In order to proactively monitor the feedback received from the target, one needs to
estimate when the threshold would be reached. One way of doing so is to look at the

19

very last sample and trigger an alert as soon as it gets close to an specified boundary
or threshold, or as soon as it finds an extra ordinary gap with the previous sample.
However, relying on a single sample is likely to show a lot of false positives. A way of
monitoring the trend of samples is needed instead of relying only on the last value. By
investigating different behaviors we found that in some cases, like HTTP response times,
such a trend can be mapped to the slope by which the last group of samples are either
de- or increasing. For this purpose we measure the slope of a logical line crossing the
current sample and the first sample after latest change in direction of samples. So as
soon as the samples start to ascend/descend, we mark our first sample and when the
direction (ascending/descendin) changes again, we mark our last sample and calculate
the slope of line crossing these two. The resulting slope value can then be compared to
a defined threshold. However, as the samples do not necessarily steadily de- or increase
we need a way of finding high deviations in the monitoring data. The First Sample
would always hold the value of the first sample after a sudden change in the slope.
The Current Sample is the current value that the master received to process, while the
Last Sample is the value of the previous monitoring value. The following pseudo code
describes the algorithm that would be called for every received monitoring value by the
master:

Algorithm 1 Slope watching

if ((Last Sample ≥ First Sample) AND (Current Sample ≤ Last Sample)) OR
((Last Sample <First sample) AND (Current sample >Last Sample)) then

Swap Direction
First sample = Last Sample
Count = 1

else
Count = Count + 1
if ((Current Sample - First Sample) / Count) >Threshold then

Trigger Alarm()
end if

end if

Packet-loss approximation
With the attack simulation likely making up the better portion of the total traffic it
is possible to make relatively accurate approximations of the total packet loss rate. A
possibility of doing this is by calculating the ratio of lost ICMP probing requests or
responses compared to the total traffic sent to the target over a period of time. As the
monitoring probing rate has a sliding value fixed to the total attack simulation rate this
value always scales to the defined treshold. The following formula calculates the total
packet-loss ratio that can be compared with the threshold set for the simulation, with
the ICMP probing rate (P), received ICMP responses (R) and attack simulation rate

20

(A):
Loss = (P −R)/(A + R)

Hard thresholds
Another practical method would be to regularly check if certain thresholds, like the
ICMP RTT or HTTP response time, are reached yet. Although this is relatively safe way
of monitoring an attack simulation, it is also likely to trigger too fast due to incidental
noise or peak values in the probing data. We expect the probing values to show a
distorted incline before being passed through a smoothing function. In order to filter
out these outliers we define a function that won’t trigger before at least half of the last
(X) values equal the threshold, where X should be a reasonable number based on the
monitoring frequency.

Algorithm 2 Hard threshold - Mean

X = 20
while ProbingData do

if V alue > Threshold then
Y = Y + 1

end if
if V alue < Threshold then

Y = Y − 1
end if
if Y >= X then

Exit
end if

end while

5.4 Attack simulations

For this research project we made the distinction between application- and network-level
DDoS attacks. We found that these attack classes in general require different ways of
monitoring in order to prevent damage.

Network-level
With a network-level attack we target the available bandwidth to a service by flooding
it with traffic of any type. As discussed in section 4.1, a good observable for this attack
class is the number of packets lost during the attack. To monitor the attack simulation
we previously defined the packet-loss approximation method in section 5.3.2. With this
method the monitoring frequency is a sliding percentage of the total attack volume,
really being a part of the attack in itself. One can then detect the occurrence of packet-
loss based on the number of returned or acknowledged monitoring packets and compare
this to the defined threshold, given that the monitoring packets are equal to the attack
packets.

21

Figure 9 shows the attack simulation consisting of the attack-rate and monitoring
combined. The actual echoed or acknowledged monitoring packets may be lower than
the monitoring packets sent when packet-loss occurs.

Figure 9: Traffic flood components

Application-level
An application-level attack targets the local resources of a service. By mis- or overusing
certain characteristics of a service one exhausts the resources, resulting in an increasing
response time as the processing of incoming requests is being delayed. The main ob-
servable of this event happening is the response time and variance between successive
requests increasing. We believe that the slope watching method from section 5.3.2 can
predict the point of reaching a threshold in advance by analysing the increments of the
response time over a longer period of time. This could be an advantage as the threshold
that is considered as damaging can be avoided altogether.

22

6 Proof-of-concept

In order to analyze the methods of controlling DDoS attacks we created a proof-of-
concept implementation of the architecture discussed in section 5. This implementation
is coded in Python and consists of the distributed architecture of attack- and monitoring
agents and the master. The source code to this project is published on GitHub. [6]

We tested the scenarios of both a network- and application-level attack with general-
ized methods. Although the implemented attacks are in no way advanced or performant,
they do enable us to test the effectiveness of the monitoring methods used to control the
attack simulation.

6.1 Experimentation setup

The proof-of-concept was tested in a shared environment which required some adjust-
ments to the maximum attack volume during our tests. We created a test setup consist-
ing of a Linux server based on Ubuntu to facilitate an HTTP service. We used different
Linux machines to perform the tasks of attack/monitoring agents and the master. Al-
though these machines are all interconnected at speeds of at least 1Gbps, we configured
the server’s interfaces to 100Mbps in order to prevent a denial of service from growing
beyond just the targeted server during these tests.

An extension to the proposed architecture for these tests is a control panel that di-
rectly hooks into the monitoring data that is gathered on the master. It allows manual
intervention of the attack simulation while underway to also test beyond the threshold
values defined at the start of the test. The code to this is also in the code repository. A
screen capture of this tool is shown in figure 15 in appendix.

Using this panel, the operator can see the overal statistics about monitoring system,
feedback and also attack parameters like current attack rate. The operator also can
intervene at any time and change the rate of the attack using the slider.

6.2 Network-level: Traffic flood

The traffic flood attack performed sends fixed size packets of 500 bytes to the victim
machine at a rate controlled by the master. The monitoring of this attack is based on
the packet-loss approximation of section 5.3.2, making up roughly five percent of the
total attack-rate with equal 500 byte ICMP packets.

Instead of increasing the attack rate divided over all the distributed attack agents we
increase the monitoring rate above five percent of the threshold to get direct feedback
on whether this would result in packet-loss. If an increment of the monitoring rate is
not triggering any of the defined thresholds the monitoring rate is reset to five percent
of the attack rate, while the attack rate is increased with the last increment. We refer
to this process as the ’hand-off’ procedure. Figure 10 shows the monitoring rate (green)
and acknowledged monitoring rate (black) increasing equally, suggesting no packets are

23

being lost. The attack rate (red) is increased every hand-off sequence.

Figure 10: Traffic flood process

If we look at the results from a full traffic flood simulation, illustrated in figure 11,
we can see that at some point packet-loss starts to occur, visualised by the difference
between the green (monitoring rate) and black (acknowledged monitoring rate) lines.
This simulation was configured to stop when the monitoring approximates that 1 per-
cent packet-loss is occurring for the global traffic to this target [4.2.1]. This threshold is
met at the end of the graph, after which the simulation is sustaining the attack rate in
a stable state.

24

Figure 11: Traffic flood (full)

6.3 Application-level: HTTP flood

The application level attack is similar to the traffic flood in concept.
The attack was ever increasing with 10 requests every 5 seconds. As it can be observed
in Fig. 12, the response time (red) started to increase and became variant when roughly
500 HTTP requests per second are being made (green). The simulation continues until
the slope (blue) threshold is reached at 100. At this point, the Master predicts that an
outage is imminent if the attack simulation is continued and orders the attack agents to
halt. The attacked service is able to quickly recover from the attack once it is stopped.

25

Figure 12: HTTP flood process

26

7 Conclusion

During this research we explored possibilities for doing controlled DDoS simulations. We
analysed the observables of both the application- and network-level DDoS attack classes
to find ways of monitoring these attacks. We found a number of different monitoring
methods that unfortunately do not universally apply to both attack classes.

We chose to further test the packet-loss approximation for the network-level attacks
and the slope prediction for application-level attacks, as described in section 5.3.2.

One of the key findings here is that relative low frequency probing is not very suitable
for the monitoring of network-level attacks. Instead, it becomes a viable option to
monitor the responses to a portion of the attack traffic, which we simulated with equally
sized ICMP echo requests, to approximate the global packet-loss.

Application-level attacks in general may however show more gradual changes in ob-
servables, like the response time. We found that these values can be used fairly reliable
to predict when a threshold is about to be reached.

Although more testing is required to test these monitoring methods on different attacks
within their respective attack class, they show potential to reliably trigger on a threshold
being reached. With the monitoring methods providing feedback, the proof-of-concept
showed successful control over the attack simulations. For both attack classes we defined
sample thresholds that were honored by the simulation, enabling DDoS testing without
causing damage.

8 Future work

Based on the explored methods and findings of this research project we recognize a
number of items that may require further attention to further develop on the concept of
doing controlled DDoS simulations.

We believe the thresholds as discussed in section 4.1 are for a large portion user defined
and highly dependent on the type of service. However, it may be the case that to some
degree generalized values apply to the type of service or protocol in use. For instance,
we found that roughly 1 percent of packet-loss on a 100Mbps link only just resulted in
acceptable behaviour for HTTP traffic.

Another area of research could be to include the use of local monitoring instead of
relying solely on the remote observables. We believe that non-out-of-band local moni-
toring would show low granularity during an attack simulation although there may be
workarounds for this. Further research in this area could focus on the interpretation of
local monitoring data and the communication from an attacked system to the master,
for instance through out of band communication or resource reservations.

27

References

[1] S. Bhatia, D. Schmidt, G. Mohay, A. Tickle, A framework for generating realistic
trafc for Distributed Denial-of-Service attacks and Flash Events, 2013
http://www.sciencedirect.com/science/article/pii/S0167404813001673

[2] S. Abu-Nimeh, S. Nair, M. Marchetti, Avoiding Denial of Service via Stress Testing,
2006
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1618370

[3] M. Yan, H. Sun, X. Wang, X. Liu, WS-TaaS: A Testing as a Service Platform for
Web Service Load Testing, 2012
http://www.computer.org/csdl/proceedings/icpads/2012/4903/00/

4903a456-abs.html

[4] T.V. Lakshman, U. Madhow The Performance of TCP/IP for Networks with High
Bandwidth-Delay Products and Random Loss, 1997
http://www.kth.se/polopoly_fs/1.123418!/Menu/general/column-content/

attachment/lakshman-tcp.pdf

[5] W. Su,C. Kung, T. Lin, C Wu. J. Hsu An On-line DDoS Attack Traceback and
Mitigation System Based on Network Performance Monitoring, 2008
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4494041

[6] A. Kamali, M. Berkelaar Controlled (D)DoS framework code repository, 2014
https://github.com/mikeberkelaar/controlleddos

28

9 Appendices

9.1 Terms and Abbreviations

• DDoS: Distributed Denial of Service (attack)

• PPS: Packets Per Second

• RTT: Round trip time

• SNMP: Simple Network Management Protocol

• Master: Master is a role in our architecture which is considered to be as the
orchestrator of the whole process. All decisions are made there and every Agent
registers at and reports to the him.

• Agents: Agents are those processes in charge of doing the actual work. They
register themselves at the Master and get their commands from him. They also
send any probably feedback/report to the Master. There are two different Agents:

– Attack Agent: An Attack Agent is in charge of performing attach via sending
out the proper traffic with defined rate at defined moments. All the definitions
are clarified by the Master.

– Monitoring Agent: A monitoring Agent keeps its eyes on the target in order to
gather its vital signs. It will then report back to the server with the raw data
gathered from the target. Feedback variable: is the actual resource parameter
being monitored as the vital sign of the target machine. Examples of such
variable would be: CPU utilization, number of packets loss, Response time,
and so on.

• Inoperability point (or point of inoperability) This is the point in which the service
becomes unavailable and the DoS attack would completely take down the target.
The ultimate goal of this project is to predict this point while being as close as
possible so that we can tell for sure the service will become unavailable with next
move. Traffic Types:

• Attack Traffic All the traffic an Attack Agent sends our to the target is considered
as Attack Traffic. This traffic are supposed to cause the actual Denial of Service
and henve share these common characteristics :

– The sources address is spoofed;

– They are being sent as fast as could without any delay (according to the
defined rate of Master);

– No responses is gathered regarding these traffic. Any probable feedback/re-
sponse/answer is discarded as soon as possible.

29

– Monitoring Traffic: In contrast to the Attack Traffic, Monitoring Traffic is
supposed to be as much of real traffic as possible. This traffic is supposed to
simulate the behaviour of an end-user and work as an advocate of him to check
(o defined intervals) if and how the service is still operating. Monirointg traffic
is in a very low ratio compared to the attack traffic and onviously consists of
legitimate source addresses.

– Global Traffic: The sum of all monitoring traffic being sent from Monitoring
Agents and all attack traffic being sent from Attack Agents would be the
Global Traffic which is the amount of traffic the target machine would be
dealing with.

30

9.2 Code repository

The source code used as a proof-of-concept implementation is shared on GitHub at
https://github.com/mikeberkelaar/controlleddos. [6]

9.3 Figures in Larger scale

Some of the figures in this documented are available with a higher resolution:

• Traffic flood: Figure 13

• HTTP flood: Figure 14

• Control panel: Figure 15

31

Figure 13: ICMP Flooding Attack Full

32

Figure 14: HTTP flood process

33

Figure 15: Master’s Control Panel

34

