
Research Project 1

Evaluating the Network Performance of

ExoGENI Cloud Computing System

Andreas Karakannas
Andreas.Karakannas@os3.nl

Anastasios Poulidis
Anastasios.Poulidis@os3.nl

Supervisors: Dr. Paola Grosso
& ing. Ralph Koning, M.Sc.

University of Amsterdam
February 10, 2014

Abstract

ExoGENI is a federated cloud computing system that offers a multi-domain Infrastructure as a
Service (IaaS) testbed for research and innovation in networking and future internet applications. It is
mostly used for data intensive applications where the network performance and stability is very critical.
In this research project we present a measurement study to evaluate the networking performance for
both the Inter-Rack domain and the Intra-Rack domains of ExoGENI. For the Intra-Rack domains we
also evaluate if the network performance is reproducible among repetitions of the same experiment when
the virtual topology of the experiment is reconstructed from scratch with the same attributes. Our
results show that the network performance on the Inter-Rack domain is different when the end points
are in short and long geographical distance. For the Intra-Rack domains we find out that the network
performance is not affected by the virtual link used for the interconnection of the virtual machines and
the server upon on which the VMs lie. Moreover, our results showed us that the reproducibility of the
network performance for the Intra-Rack domains is always feasible.

1

Contents

1 Introduction 4
1.1 Scope . 5
1.2 Research Questions . 5
1.3 Approach . 5
1.4 Related Work . 5

2 ExoGENI 6
2.1 ExoGENI . 6

2.1.1 Private Clouds Architecture . 7
2.2 ExoGENI domains and limitations . 8
2.3 ORCA . 10

2.3.1 Terminology & Operation . 10
2.3.2 ORCA deployment in ExoGENI . 11

2.4 Flukes . 11
2.4.1 Features . 11
2.4.2 Getting Started . 12

3 Experiments 13
3.1 Experiments Methodology . 13

3.1.1 Network Performance . 13
3.1.2 Expected Results . 13
3.1.3 Virtualization Overhead . 14
3.1.4 Resources Attributes . 14
3.1.5 Measurements Tools . 15
3.1.6 Experimental Setup . 15

3.2 Experimental Scenarios - Experiments . 17
3.2.1 Scenario 1 - Experiment 1 . 17
3.2.2 Scenario 2 - Experiment 2 . 18
3.2.3 Scenario 3 - Experiment 3 . 18
3.2.4 Scenario 4 - Experiment 4 . 19
3.2.5 Experiment 5 . 20

4 Results & Evaluation 21
4.1 Experiment 1 . 21

4.1.1 RTT . 21
4.1.2 TCP Throughput . 22
4.1.3 UDP Throughput – Packet Loss . 23

4.2 Experiment 2 . 25
4.2.1 RTT . 25
4.2.2 TCP Throughput . 25
4.2.3 UDP Throughput - Repeatability of Experiment 2 26

4.3 Experiment 3 . 27
4.3.1 RTT . 27
4.3.2 TCP Throughput . 27
4.3.3 UDP Throughput – Packet Loss . 28

4.4 Experiment 4 . 28
4.4.1 RTT . 28
4.4.2 TCP Throughput . 29
4.4.3 UDP Throughput – Packet Loss . 29

4.5 Packet Loss - Discussion . 30
4.6 Experiment 5 . 30

2

5 Conclusion 31

6 Future Work 32

A WorkFlow 35
A.1 Add Topology . 35
A.2 Node properties . 36
A.3 Slice reservation . 37
A.4 Choose slice name . 38
A.5 Submit slice . 39
A.6 Resource state . 40
A.7 Resource active . 41
A.8 Node login . 42

3

1 Introduction

Cloud Computing Systems, the next generation distributed systems, is a set of hardware, networks, storage,
operating systems and applications that are combined together to deliver computing services and resources
to the end user. Cloud Computing Systems are usually deployed through the Internet (eg. Amazon
EC2) but can also be implemented within a corporate firewall completely independent from the internet,
known as private cloud computing systems. The fundamental technology upon which cloud computing
systems are based is virtualization. With virtualization the cloud computing systems infrastructure can be
shared among multiple users according to each user needs on computing power and storage capacity, thus
optimizing the usability of the physical infrastructures. One of the service models that Cloud Computing
Systems offer is the Infrastructure as a Service (IaaS) model.

In Infrastructure as a Service (IaaS), the cloud computing system provides to the end user the capability
to use hardware, network, and storage resources from the physical infrastructure in order to create his
own virtual network and I.T systems, on which he can install his own operating system, deploy his own
applications and run his own experiments. The end user has control over his virtual network operating
system and applications but he does not manage or control the physical cloud infrastructures upon which
his virtual network runs.

It is clear from the description of the cloud computing service models that the end user knows nothing
about the physical infrastructure upon which his virtual infrastructure lies. This is an important consid-
eration especially for IaaS where the end user wants to construct a virtual network according to his needs.
If the virtual network is not efficiently mapped to the cloud computing physical infrastructure then the
end user will not have the network performance that the physical equivalent would have provided. For this
reason data-intensive applications that need specific network topologies to be executed correctly are diffi-
cult to be implemented efficiently in Cloud Computing Systems, especially when the cloud is distributed
and not within one unique data center.

In the cloud computing landscape we see an emergence of distributed clouds where resources are
spread geographically where the problem of mapping virtual topologies into the physical infrastructures
is even more evident. In our research we focused on ExoGENI. ExoGENI [1] is a distributed cloud
computing system that offers a multi-domain Infrastructure as a Service (IaaS) testbed that was designed
to support research and innovation in networking, operating systems, distributed systems, future Internet
architectures, and deeply networked, data-intensive cloud computing. As in all cloud computing system
the user does not have the capability to manage and control the physical infrastructure and knows nothing
about the underlying infrastructure.

ExoGENI is mostly used for data-intensive e-Science applications that require the transfer of large
volume of data between the computer nodes, thus the network performance among virtual machines
plays a decisive role on the performance of these applications. Specifically, data-intensive applications
require specific network performance and limitation on network performance variation in order to be
implemented efficiently and approximate the optimal performance. For this reason the virtual links that
interconnect and transfer data among the computer nodes in ExoGENI has to be efficiently virtualized from
the physical infrastructure in order to provide the requested network performance. Moreover, the stability
of the network performance on ExoGENI is also very critical especially for data-intensive applications
that use the network performance statistics from previous implementations to be auto-reconfigured or
manually configured from the user in order to optimize their performance. Given the network performance
and stability on ExoGENI the experimenter can determine whether his data-intensive application can be
executed efficiently on ExoGENI.

The structure of this paper is as follow: In Chapter 1 the research questions, our approach, the related
work and the scope of our research are presented followed by Chapter 2 where the ExoGENI testbed, the
ORCA framework and the Flukes tool are described. In Chapter 3 the methodology and the experimental
scenarios are defined. Finally in Chapter 4 the results of our experiments along with their evaluation are
presented followed by the Conclusion and the Future Work that can be made subsequently to our research.

4

1.1 Scope

The scope of our research project aims to evaluate the network performance on the ExoGENI Cloud Com-
puting System in order to provide quantitative measurement results that will be valuable for experimenters
that use the ExoGENI for data-intensive e-Science applications. Although some simple applications will
be used to evaluate the performance of our virtual network topologies, the actual implementation of data-
intensive e-Science applications is out of the scope of this research project.

1.2 Research Questions

• What is the network performance on ExoGENI and how suitable is for data-intensive applications?

• Is the network performance on ExoGENI reproducible when the virtual network topologies are re-
constructed from scratch with the same attributes?

1.3 Approach

Our approach on this research project is to evaluate the network performance of the ExoGENI under
different scenarios. In order to evaluate the network performance of ExoGENI we wrote a simple python
script that makes use of free network performance tools in order to measure and analyze the TCP/UDP
throughput, round trip time (RTT) and packet loss among a simple machine/computer. We then created
virtual network topologies according to our scenarios on ExoGENI using ORCA-Flukes and we evaluated
the network performance of these virtual topologies by running our software on each virtual machine. In
order to have a better understanding of ExoGENI we measure the network performance in a long-time
period for each scenario. Finally in order to evaluate the reproducibility of the network performance
of these virtual network topologies after reproducing them, we attempt to re-create them from scratch
with the same attributes (image, domain rack etc) multiple times with specific interval time periods and
repeated all the aforementioned scenarios experiments for a short time period.

1.4 Related Work

As far as we know, there is no scientific paper evaluating the behavior of virtual network topologies on
the ExoGENI Cloud Computing Systems. There are some scientific papers in the literature evaluating
the performance of the virtualized cloud computer systems networks. Specifically G. Wang et al. [24]
investigated the impact of machine virtualization on networking performance for Amazon EC2 Data Center
found out that virtualization can cause significant throughput instability and abnormally large packet delay
variation.

Also, D. Battre et al. [25] created an algorithm that reconstructs likely network tree topologies used
for data-intensive applications connecting a set of star VMs topologies in those so far opaque IaaS clouds
and made end-to-end measurements to evaluate their experiments. They observed large variations in the
measured delay between the individual VMs and a distinct gap between VMs being hosted on the same
physical server, and those running on different servers.

Moreover, D. Battre et al. [26] studied to what extent the underlying network topology of virtual
machines inside an IaaS Opaque Cloud Computer Systems can be inferred based end-to-end measurements
found out that common assumptions for end-to-end measurements do not hold in presence of virtualization
and that RTT-based measurements in paravirtualized environments lead to the most accurate inference
results.

Finally, Bill Howe in his paper [27] talks about the importance of the reproducibility of experiments,
how cloud computing can improve this and which are the remaining challenges that should be overcome.

5

2 ExoGENI

2.1 ExoGENI

ExoGENI is a multi-domain Infrastructure as a Service test-bed developed under the Global Environment
for Network Innovations (GENI) [2][3] project and it was launched in order to support research and innova-
tion in networking and future internet applications. ExoGENI [1] orchestrates a federation of independent
cloud sites that are geographically spread (Figure 1) across the United States, Europe (Amsterdam) and
Australia (Sydney) and circuit providers (Internet2,NLR,SURFnet) through their native IaaS API inter-
faces and links them to other GENI tools and resources thus creating a federated cloud computing system
that offers a unique virtual laboratory for experimenting and evaluating future internet technologies and
applications. Each cloud site is a private IaaS cloud located on a host campus and uses a standard cloud
stack to manage a pool of servers. Each cloud site is linked with national research networks through
programmable exchange points. The ExoGENI’s layer 2 connectivity between the ExoGENI private cloud
sites and the circuit providers is shown on Figure 2.The interconnection of these private clouds through
national research networks to a distributed cloud computing system is what enables ExoGENI federation
to operate as a federated cloud computing system.

Figure 1: Geographic Location of the Indivudual Private Clouds [16]

Figure 2: Layer 2 Interconnection between the ExoGENI private cloud sites and the National Research
Networks [17]

6

The provisioning and control of the private clouds is achieved by delegation [1][5]. Each private cloud
delegates certain functions for identity management, authorization, and resource management to common
coordinator services offered by ExoGENI which in turn delegates, a number of these functions to the GENI
federation and to identity systems operated by participating institutions.

ExoGENI test-bed software allows the users to combine resources from any private cloud within the
infrastructure in order to create and manage virtual network topologies on demand. The basic operations
offered by the ExoGENI testbed are [5]:

• Create, modifying and destroying virtual networks topologies consisting of compute resources that
may belong to one (Intra-Rack) or more private clouds (Inter-Rack). The user can choose the
private cloud in which each virtual achine (VM) of his topology belongs but he cannot specify which
national research network will use to interconnect the nodes within the virtual topology. This is
done automatically by the ExoGENI testbed.

• Create virtual network topologies with user-driven packet forwarding control via OpenFlow. These
virtual network topologies are restricted to VLANs provisioned within and between the private cloud.

• Provisioning and control of individual compute resources (virtualized and bare-metal) from the pri-
vate cloud resources. Users have the capability to load their own boot image for the virtualized
instances. The boot images that can be loaded to bare-metal instances are limited.

• Create slices that combine ExoGENI resources with other GENI resources.

2.1.1 Private Clouds Architecture

Each Private Cloud also called an ExoGENI Rack is an IBM cluster (Figure 3) [12][13][14] which is
consisted of 11 x3650M4 servers from which the one is configured to be the head node on which no user
access is allowed and the rest 10 are configured to be worker nodes from where the user is allowed to use
resources when constructing his virtual network topology. Moreover, the rack is armed with a separate
iSCSI storage space of 1TB HDD for storing user OS images and saving measurement data, an 8052 1/10G
management switch for provisioning and managing the rack and an 8264 10/40/100G OpenFlow-enabled
dataplane switch for interconnecting the rack directly with a circuit provider either directly or through an
intermediate Layer 2 provider. The interconnection between all the machines is achieved through 1/10G
Ethernet infrastructure.

Figure 3: IBM rack [18]

7

2.2 ExoGENI domains and limitations

As we mentioned before ExoGENI individual domains operate as a private cloud and the layer 2 intercon-
nections between the private clouds through circuit providers allows ExoGENI to operate as a Federated
Cloud Computing System. The experimenter can construct intra-rack virtual network topologies within a
private cloud and global inter-rack virtual network topologies that combine resources from multiple private
clouds. Table 1 shows the ExoGENI Racks that are available on ExoGENI testbed [11].

RENCI Chapel Hill, North Carolina, USA
BBN Boston, Massachusetts, USA
NICTA Sydney, Australia
FUI Florida, Miami, USA
UFL Florida, Gainesville, USA
UH Texas, Huston, USA
Duke University North Carolina, USA
SL Illinois, Chicago, USA
UCD California, Davis, USA
OSF California, Oakland, USA
UVA Netherlands, Amstedam, Europe

Table 1: ExoGENI Racks

From the above mentioned Racks only a few were provided Inter-Rack topologies due to technical
problems over the Virtual Lans (VLANS) that provide the stitching between the different available racks
in ExoGENI testbed. Specifically, only the network connections between NICTA and UFL were available
most of the days while the connections between RENCI, UH, BBN and FUI where available only for a few
days. Table 2 below provides the rack/network connection availability through our research period.

Date RENCI UFL NICTA BBN UH FUI Reason Details
12/01/2014 Yes Yes Yes No No No Resources Not available VLans
13/01/2014 Yes Yes Yes No No No Resources Not available VLans
14/01/2014 Yes Yes Yes No No No Resources Not available VLans
15/01/2014 No Yes Yes Yes Yes Yes Rack and Cloud network fail RENCI & BBN Network fail
16/01/2014 No Yes Yes No No No Rack and Cloud network fail RENCI & BBN Network fail
17/01/2014 No Yes Yes No No No Rack and Cloud network fail RENCI & BBN Network fail
18/01/2014 Yes Yes Yes No No No Resources Not available VLans
19/01/2014 Yes Yes Yes No No No Resources Not available VLans
20/01/2014 No Yes Yes No No No Cloud network fail BBN Network fail
21/01/2014 No No Yes No No No Cloud network fail BBN & ION Network fail
22/01/2014 Yes No Yes No No No Cloud network fail ION Network fail
23/01/2014 Yes No Yes No No No Cloud network fail ION Network fail
24/01/2014 Yes No Yes No No No Cloud network fail ION Network fail
25/01/2014 Yes No Yes No No No Cloud network fail ION Network fail
26/01/2014 Yes No Yes No No No Cloud network fail ION Network fail
27/01/2014 Yes No Yes No No No Cloud network fail ION Network fail
28/01/2014 No No Yes Yes Yes Yes Cloud network fail BBN & ION Network fail
29/01/2014 No No Yes Yes Yes Yes Cloud network fail BBN & ION Network fail
30/01/2014 No No Yes Yes Yes Yes Cloud network fail BBN & ION Network fail
31/01/2014 No Yes Yes Yes Yes Yes Cloud network fail ION Network fail
01/02/2014 No Yes Yes Yes Yes Yes Cloud network fail ION Network fail
*/02/2014 No Yes Yes No No No Cloud network fail Stitching problems

Table 2: Rack availability during the period of our research

A lot of problems were observed in BBN and ION Cloud Networks where the virtual connections and
the connected racks that used these networks were affected. Also, RENCI rack was failing to be constructed
due the failure of the BBN Network that connected all the adjacent racks. The most serious problem was
observed in the network connections between any rack and one of FUI, BBN, HU due to the limited vlans

8

that were available resulting in the inability to build the dependency tree. All these problems affected the
number of virtual topologies that we were be able to construct because the inter-rack topologies that can
be built with 2 or 3 racks are limited.

Bearing in mind the limited resources and the technical problems that we were usually facing, only a
few topologies could be built for the inter-rack slices and present them here:

• Point-to-point topology implemented by two different racks connected to each other

• Mesh/Ring topology implemented by three different racks fully connected to each other

• Star topology implemented by one rack connected with two different racks or one rack connected
with two other servers of a different rack

From the above mentioned topologies we chose specific the Point-to-Point and the Star topology:

• The Point-to-Point topology was chosen because it is the simplest topology that could be built and
it will help us undestand in what extent the virtualization of ExoGENI operates and how much is
the network performance of data-intensive applications affected for different physical distances.

• The star topology was chosen in order to make use of data parallelism applications that is widely used
in data-intensive applications and let us understand how this will affect the network performance of
its.

9

2.3 ORCA

ORCA is a control framework and open-source platform originally developed by the NICL Lab at Duke
University [6], and currently being developed jointly with Duke University by the Networking Group [7]
at The Renaissance Computing Institute (RENCI) [8]. ORCA is implemented as a webapp intended to
run inside a Tomcat Java servlet engine. Most of its code is written in Java, although its tools that are
used to speak with GENI are written in Python.

Orca is used to provision virtual networked systems by managing distributed heterogeneous resources
over a shared substrate. This substrate may contain nodes as servers, nodegroups as a collection of servers,
storages, network links and other components.

ORCA is the software used to control the resources on GENI/ExoGENI testbed. It primarily uses
OpenStack to provision the virtual machines but some older racks use Eucalyptus for the same reason.
ORCA is also integrated with xCAT to support baremetal node provisioning.

The ORCA deployment is a dynamic collection of interacting control servers (actors) that work together
to provision and configure resources for each guest according to the policies of the participants. ORCA uses
leases to provide resources to their participants. In order to make this possible needs a resource provider, a
consumer and one more brokering intermediaries. Each server (actor) can manage a large number of leases
consumed by different participants which are independent and may have different boot images, resources
reserved from different racks and/or different resource types.

2.3.1 Terminology & Operation

Substrate - “a collection of resources under specific administrative ownership.”
Sliver - “a smallest unit of some independent resources.”
Slices - “groups of multiple slivers from multiple substrate providers.”

The basic actors that are used in all emulations are three:

• Authority or Aggregate Manager (AM) - “controls access to some subset of the substrate
components.”

• Slice/Service Manager (SM) - “is responsible for creating, configuring, and adapting one or more
slices.”

• Broker – “act as go-between resource discovery and arbitration by controlling the scheduling of
resources at one or more substrate providers over time.”

Figure 4: ORCA Operation [19]

10

Authorities delegate resources to brokers. Brokers hold the promised resources until SMs request them.
Brokers issue tickets for resources from different authorities to an SM, which redeems those tickets at AMs.
AMs instantiate the resource slivers and pass the control of them to the SM. Pluggable control and access
policies help mediate these transactions. Query interfaces allow actors to query the state of other actors
[9].

2.3.2 ORCA deployment in ExoGENI

Each rack in ExoGENI runs its own Slice Manager actor that acts as GENI AM and exposes ORCA
native API (Flukes) and GENI AM API (Omni). From the one hand, each local Rack SM can only create
slices with resources within that rack and cannot use the resources from the other Racks in ExoGENI
testbed. It runs interdependently of the other racks and cannot communicate with them. From the
other hand, ExoSM has global visibility of the racks and can access resources from all the available racks
of the ExoGENI testbed. Thus, can create topologies using resources from different racks and using
network backbone resources can stitch them together creating a distributed network [9]. The ExoSM
allows experimenters to select in which ExGENI Rack each virtual machine of his topology will be placed
but does not allows to configure in which worker node inside the ExGENI Rack each virtual machine will be
placed. Moreover, the user is allowed to configure the desired bandwidth of the virtual connections between
his virtual machines but he is not allowed to configure which ExGENI Rack virtual links will be used to
connect virtual machines that lie on the same Rack and which circuit providers and VLANS (inside these
circuit providers) will be used for interconnecting virtual machines that lies in different ExGENI Racks.

2.4 Flukes

Flukes is a java-based graphical tool for submitting and creating topologies by requesting them to ORCA,
managing and editing the substrate resources and graphically inspecting the ExoGENI resources. It uses
ORCA interfaces and NDL-OWL to describe the resources, allows the user to submit and inspect requested
topologies in a graphical environment called “manifest” and gives the ability to login at the selected image
of each node and configure it at any time [10].

2.4.1 Features

Flukes allows the user to create his desired topology by reserving ExoGENI resources including [10]:

• Nodes that play the role of VMs in the topologies and they are specified by selecting their size that
is related to the resources that will be reserved, the desired OS using one of the available images
and the rack from where the resources will be reserved. Also, they use IP addresses which have
access over the Internet as well as interfaces connecting them with other nodes via Layer 2 circuits.
Moreover, nodes can have dependencies on other nodes and post boot scripts that is being executed
immediately after the instance boots.

• Nodegroups that is a set of nodes with common attributes which have all the functionalities of
ordinary nodes with the only limitation that uses the same vlan when it is connected to other
Nodegroups/Nodes.

Flukes allows the automatically binding of Nodes and Nodesgroups in specific domains (racks) or
selectively node binding to different domains, provisioning inter-domain links on demand among
them and stitching them to built the requested slice.

• Links are the Layer2 circuits that connects the nodes in the topology. There are two types of links,
the point-to-point and the broadcast. The point-to-point is used to connect the nodes/nodegroups
and the broadcast can be used to create isolated vlans inside a nodegroup or to connect multiple
nodes together.

11

• Stitch Ports that is being used to connect a slice that was created using resources from ExoGENI
to a physical external network that is not part of ExoGENI.

• Storage that is an iSCSI volume assigned from the same rack that the node is reserved and attached
to it after being formatted to the desired specifications.

Flukes allows the experimenters to create their own filesystem, kernel and ramdisk images to be used
for a slice or use the available ones. Also, it allows to affix your OpenFlow controller to your slices
and create your own SDN.

2.4.2 Getting Started

The first step in order to create slices in ORCA-Flukes is to generate a public and a private key and
a certificate through GENI Portal that will be used for authorization. Next, you have to configure the
Flukes by editing the “$HOME/.flukes.properties” file adjusting the desired options and save the keys
and certificate to “$HOME/.ssh” and “$HOME/.ssl” respectively . Finally, the user has to select a Slice
Manager/controller that will allow him to reserve resources from specific rack(s) that the SM supports.
ExoSM supports domain binding of nodes or node groups to different provider domains based on resource
availability while the other SMs supports only to specific provider domains [10].

Flukes follows a simple workflow to construct slices and inspect/experiment on them [10]. The various
steps are described here and shown in the Appendix:

• Create or load existing slices A.1

• Set Name, Node Type, Image, Domain, Dependencies and IP addresses manually on each node or
use “Auto IP” A.2

• Reserve your topology for specific time A.3

• Type the name of the slice A.4

• Submit request and observe the reserved resources that are listed A.5

• Switch to Manifest view and select your slice from ’My Slices’ or type the name of the slice and
“Query for Manifest”. A.6

• Continue querying for manifest until slice is ready, meaning that all the resources were reserved. A.7

• Inspect or login on each node of your topology and start your experiments. A.8

12

3 Experiments

In this chapter, we describe our experiments methodology and our experiment scenarios along with the
corresponding experiments based on our motivation explained just before 2.3.

3.1 Experiments Methodology

In this section, we describe the methods we used for our measurements. Firstly, we describe the attributes
we selected for each construction of the virtual topologies on ExoGENI. Then, we describe the tools we
used for our measurements and finally the experiments setup. Before that we explain the basic metrics for
evaluating the network performance, what are the expected results and what factors affect the network
performance on a virtualized environment.

3.1.1 Network Performance

In computer networks, network performance is defined as measurements for estimating the service quality of
a telecommunication connection. The basic metrics for evaluating the network performance are bandwidth,
throughput, round trip time (RTT) and packet loss.

• Bandwidth is the theoretical maximum rate of information that can be transferred through the
physical channel that connects two end points and it is measured in bits per second (bps).

• Throughput refers to the actual rate of information that is transferred through the physical or logical
link. It is also measured in bits per second. Throughput depends on the link bandwidth and the
additional overhead that each layer protocol adds. For this reason, throughput is always a proportion
of the maximum bandwidth of the link, meaning that if you have a channel with X bps bandwidth
you will get (X −Overhead) bps throughput.

• Round trip time (RTT) is the time required for a data packet to travel from a specific source to a
specific destination and back again.

• Packet Loss is the number of data packets send across a computer network and failed to reach their
destination.

3.1.2 Expected Results

• TCP/UDP Layers Overhead: Layers overhead refers to the extra information that is added in
each layer and it is send along with the data. In ExoGENI, the Ethernet technology with VLAN
tags is used on Data Link layer thus an overhead of 42 bytes is added on the data. On the Network
Layer the Internet Protocol version 4 (IPv4) was used during our measurements, thus an overhead
of 20 bytes was added on the data. On the Transport layer, TCP and UDP add an overhead of 20
and 8 bytes respectively. In order to get the maximum TCP/UDP payload data rates we used 1500
bytes of packets/datagrams (the maximum transmission unit allowed by the Ethernet Technology)
during our measurements. The overall overhead rate along with the maximum TCP/UDP payload
rate [28] that could be achieved during our measurements are shown on Table 3.

Transport Layer Protocol Maximum Payload Data Rate (%) Overhead Rate (%)
TCP 93.9 6.1
UDP 95.4 4.6

Table 3: Transport Layer Protocols Overhead

During our experiments, we used 10Mbps and 100Mbps virtual links, thus the maximum TCP and
UDP throughput that we expected is shown on Table 4 and 5 respectively.

13

Maximum TCP Throughput 9.39Mbps
Maximum UDP Throughput 9.54Mbps

Table 4: TCP/UDP Throughput Expected Results for 10Mbps Virtual Links

Maximum TCP Throughput 93.9Mbps
Maximum UDP Throughput 95.4Mbps

Table 5: TCP/UDP Throughput Expected Results for 100Mbps Virtual Links

• Round Trip Time(RTT): RTT value is affected by the geographical distance of the two end points.
During our measurements we expect to see RTT values that will be analog to the geographical
distance of the two end points.

• Packet Loss: In a reliable connection packet loss rarely occur (< 0.1%). Since we are sending UDP
traffic with the maximum virtual link bandwidth we expect to see a low packet loss rate (< 0.1%).

3.1.3 Virtualization Overhead

In a non-virtualized machine [23] the Operating System (OS) runs on bare-metal hardware. The commu-
nication of the machine with other machines is achieved through the network interface card (NIC). The
OS uses the TCP/IP stack and the NIC driver in order to pass the application data to the NIC which
in turn transmits this data to the network. In a virtualized environment, the virtual machine operating
system runs on top of a VM monitor. In this case the VM OS does not communicate with the NIC directly
through the NIC driver. Instead, the VM has a virtual NIC which emulate NICs’ functions and resources
in software. This virtual NIC are completely decoupled from NIC hardware. The communication between
them is achieved through a software switch implementation that forwards the traffic from the virtual NIC
to the hardware NIC and vice versa. This adds extra layers of packet processing and overhead. ExoGENI
virtualization technology is based on KVM and VMWare hypervisors [20][21]. These hypervisors run
on bare metal and achieve a lower portion of virtualization overhead. However, the virtualization over-
head is not completely removed in ExoGENI, thus depending on the implementation of the virtualization
mechanisms on ExoGENI we expect to see or not the impact of virtualization on our measurements.

3.1.4 Resources Attributes

Each ExoGENI resource has some attributes that can be configured by the user from a pool of available
values. The resources that we use for constructing our topologies are virtual machines and virtual links.
The attributes that can be configured by the user for the aforementioned resources are shown on Table 6.

Virtual Machine Name Type Image Domain Dependencies
Virtual Link Name Bandwidth Label Tag

Table 6: Resource Attributes

For our virtual machines attributes we selected the following values:

• The Name of the Virtual Machine is just used for identification by the user so not any parameters
affected this value.

• For the Virtual Machine Type we selected XOsmall Virtual Machines. XOsmall are virtual machines
that have 1 dedicated CPU 1GB of RAM and 10GB of hard disk space. This choice was based upon
the fact that the tools used for network performance measurements do not need a powerful compute
machine.

14

• No desktop Ubuntu 12.04 was chosen as the OS that will run on our Virtual Machine. No desktop
Ubuntu 12.04 recommended minimum system requirements [15] are 64MB of Ram and 1GB HDD
thus the specific OS can run smoothly on our selected VM type. Moreover, the measurement tools
that we used were supported by this image.

• The domain on which the VM was located was selected according to the needs of the specific exper-
iment.

• Dependencies between nodes where not need for our experiments thus no dependency were selected.

For our Virtual Links attributes we selected the following values:

• The Name of the Virtual Link is just used for identification by the user so not any parameters affected
this value.

• The bandwidth was set to the maximum that the system available resources allowed us. Specifically
for inter-domain virtual links the system available resources allowed us a maximum of 10Mbps and
for intra-domain virtual links 100Mbps.

3.1.5 Measurements Tools

The measurements used to evaluate the network performance on ExoGENI included TCP/UDP through-
put, Packet Round Trip Delay (RTD) and packet loss. For extracting these measurements we developed
a simple python script that makes use of network performance measurement and network packet analyzer
tools. The tools used are described below.

• Iperf was used for measuring the TCP/UDP throughput and Packet Loss. Iperf is an open source
software that uses the client server model in order to measure the network performance between end
points. By default iperf used the TCP Window scaling and fills TCP packets over the connection as
fast as possible, thus it measures the maximum TCP throughput of a connection. It also allows to set
up the target bandwidth for UDP connections thus it can measure the maximum UDP throughput
of a connection. Moreover, it measures packet loss and the packet loss rate of a UDP connection.
For these reason it was chosen our measurement tool for the aforementioned metrics.

• Ping was used for measuring the round trip time (RTT) between our VMs. Ping sends Internet
Control Message Protocol Packets (ICMP) echo request packets to the destination, waits for the
response and reports the minimum, maximum and mean RTT. It can be configured to measure RTT
in specific time intervals for specific amount of time.

• Tcpdump is an open source network packet analyzer tool that gives the user the ability to observe
the packets traversing through the network on which a machine is connected. We used tcpdump for
observing the network traffic of our virtual links.

• Iostat and Top are computer system monitor tools that collect data about a computer I/O devices
and processor and present statistics for these metrics. We used these tools for checking whether the
behavior of the VM CPU and I/O devices affected the performance of our network.

3.1.6 Experimental Setup

For the first 4 experiments we set up on ORCA-Flukes the topologies described above. In order to have a
better idea of the network performance we conducted each measurement for a long time period as shown
on Table 7. TCP/UDP and Packet loss were measured using Iperf and RTT was measured using ping.
For TCP connections we had TCP Window scaling enabled and for UDP we configured iperf in order to
send UDP traffic equal to our virtual link bandwidth. These configurations were done in order to be able
to get the maximum TCP/UDP throughput. During these measurements we also had Tcpdump collecting
information about the network packets traversing through our virtual connections and Iostat and Top

15

Metric Repetitions(times) Time(second) Interval Between Measurements
TCP Throughput 100 60 10 min
UDP Throughput 100 60 10 min

Packet Loss 100 60 10 min
RTT 100 60 10 min

Table 7: Experiment 1-4 Measurement Configuration

collecting CPU and I/O devices usage statistics from each VM. This procedure was automated with a
python script that was running on every virtual machine of our topology.

For our last experiment (Exp. 5) we repeated each one of the previous experiments 100 times with an
interval of 10 minutes between each experiment repetition. Every time one experiment was repeated, it
was reconstructed from scratch and run for a small time period as shown in Table 8.

Metric Repetitions Time(second) Interval Between Measurements
TCP Throughput 100 20 5 min
UDP Throughput 100 20 5 min

Packet Loss 100 20 5 min
RTT 100 20 5 min

Table 8: Experiment 5 Measurement Configuration

For this experiment we used OMNI which is another client tool that uses scripts for interacting with
ExoGENI. It has a command-line interface through which the user can make use of the scripts to create,
delete, modify and get status of his topology. In order to automate this experiment we developed a simple
python script that uses OMNIs scripts and repeated all the previous experiments 100 times.

Using the above measurement metrics as we described above give us reliable results for evaluating the
network performance of ExoGENI.

16

3.2 Experimental Scenarios - Experiments

In order to evaluate the network performance of ExoGENI we conducted a number of experiments based
on four different scenarios that emerged from ExoGENIs architecture. In this section we describe our
scenarios and the experiments that we conducted for investigating each one. Table 9 shows an overview
of our experimental scenarios and their purpose.

Cloud Scenario Topology/Communication Purpose
Inter-Racks 1 Point to Point Short/Long Distance End Points Network Performance
Inter-Racks 2 Star/Point to Multipoint Competition Upon Circuit Provider Physical Infrastructure
Intra-Racks 3 Point to Point Same/Different Worker Node End Points Network Performance
Intra-Racks 4 Star/Point to Multipoint Competition Upon ExoGENI Rack Physical Infrastructure
Both 5 All Reproducibility of Network Performance

Table 9: Experimental Scenarios Overview

3.2.1 Scenario 1 - Experiment 1

• Scenario:ExoGENI Racks are distributed geographically among the world from United States to
Netherlands and to Australia. On this scenario we aim to evaluate the network performance of
a virtual link that connects VMs from ExoGENI Racks that are in a short geographical distance
(eg. within US) and in long geographical distance (eg. US – Australia). Virtual links that connect
short geographical distance ExoGENI Racks are expected to have better network performance than
virtual links that connect ExoGENI Racks that have long geographical distance. We investigate this
scenario to find out whether our hypothesis is true.

• Experiment:In order to investigate scenario 1 we constructed the virtual network topology shown
in Figure 5. This virtual network topology connects one VM located in ExoGENI Rack A with a VM
located in ExoGENI Rack B. In the first case the virtual link connects two VMs that lie on ExoGENI
Racks that have long geographical distance whereas the second case the virtual link connects VMs
that lie on short geographical distance. After constructing this topology, we performed end-to-end
network performance measurements for both cases.

Figure 5: Experiment 1

17

3.2.2 Scenario 2 - Experiment 2

• Scenario:ExoGENI Racks are inter-connected through virtual lans provided by circuit providers.
With this scenario we intent to investigate whether two or more virtual links that connects VMs on
ExoGENI Rack A with VMs on ExoGENI Rack B are competing upon the underlying network.

• Experiment:To investigate the behavior of the network performance of Scenario 2 we constructed
the virtual network topology shown in Figure 6. This virtual network topology connects VM1 that is
located on ExoGENI Rack A to VM1 and VM2 located on ExoGENI Rack B through virtual links 1
and 2 respectively. VM1 on Rack A sends simultaneously network traffic to VM1 and VM2 on Rack
B. By implementing this we can conclude if the competition upon the physical underlying network
exists or not.

Figure 6: Experiment 2

3.2.3 Scenario 3 - Experiment 3

• Scenario:On ExoGENI the experimenter is allowed to construct a virtual network topology in
which all the resources are derived from the same ExoGENI Rack. The problem here is that the
experimenter is not allowed to choose whether his VMs lie on the same server inside the Rack or in
separate servers. When VMs lie on the same server the virtual link is implemented upon the servers’
bus, thus it is expected to have better network performance comparable to VMs that lie on different
servers on which the virtual link is implemented upon the Ethernet infrastructure that connects the
servers inside the Rack. In this scenario we investigate this hypothesis.

• Experiment:The virtual network topology shown on Figure 7 was constructed in order to examine
Scenario 3. This virtual network topology connects two VMs located in ExoGENI Rack A. In the
first case the virtual link connects two VMs that lie on the same worker node whereas the second case
the virtual link connects VMs that lie on separate worker node. After constructing this topology, we
performed end-to-end network performance measurements for both cases.

18

Figure 7: Experiment 3

3.2.4 Scenario 4 - Experiment 4

• Scenario:This scenario goal is to examine whereas two or more virtual links that are implemented
on the Ethernet infrastructure that connects the machines on the ExoGENI Rack are competing
upon the underlying network.

• Experiment:For investigating Scenario 4 we constructed the virtual network topology shown in
Figure 8. In this topology the VM of worker node A is connected with 3 VMs that are on different
worker nodes among them and the VM of worker node A. VM on worker node A sends simultaneously
network traffic to all the other VMs. By implementing this we can conclude if the competition upon
the physical underlying network exists or not.

Figure 8: Experiment 4

19

3.2.5 Experiment 5

Reproducibility plays a big role to experimenters and researchers. They ideally want a system which will
allow them to repeat their experiment a lot of times and achieve the same results and thus the overall
performance of the system to be stable and accurate. The ExoGENI Cloud System must perform the
virtualaziation of the physical machines and connections in that way that will allow the achievement of
these demanding results without unexpected behaviours. It must also allow the experimenters to trust the
system in that way that they can relay on the results of an experiment that will be used as a guideline
for other more complicated experiments where anything can go wrong and the system should not be their
concern. Finally, the network performance must be stable in order to allow data intesive application to
perform well and in an expected way. The purpose of our final experiment is to evaluate the network
performance reproducibility on ExoGENI. In order to evaluate the network performance reproducibility of
ExoGENI we will repeat all the aforementioned experiments multiple times with a specific interval for a
long time period. Each time an experiment is repeated it is re-constructed from scratch. A re-constructed
experiment follows that the virtual network topology used for that experiment will have different values on
some attributes that the experimenter cannot configure. Virtual links used for the interconnection of the
VMs and the worker node inside an ExoGENI Rack upon which a VMs lie are parameters that may vary
among re-constructed from scratch topologies. By applying these experiments we are able to get insights
on the variation of network performance and we are able to characterize the reproducibility of the network
performance.

20

4 Results & Evaluation

In this chapter, we present and analyze the results of our experiments. Firstly, we present and analyze
the results for RTT and TCP throughput and then the results for UDP and packet loss together. As
we mentioned on the experimental methodology section on the previous chapter, UDP throughput and
packet loss were measured using iperf. Due to the fact that when you do a UDP connection with iperf you
get results for both the UDP throughput and packet loss we intentionally present and analyze these two
metrics together since they are timely related in our experiments. Finally, we have a discussion about the
unexpected packet loss rate that occured in all our experiments.

4.1 Experiment 1

For experiment 1 scenario we manage to gather results for 5 end-to-end points pairs as shown on Table 10.

A/A End Point 1 End Point 2 Distanes
1 RENCI NICTA Long
2 UFL NICTA Long
3 RENCI UFL Short
4 BBN NICTA Long
5 BBN UH Short

Table 10: Experiment 1 Pairs

Due to the unavailability of resources on ExoGENI the experiments for the pairs 1,2 and 3 were
conducted in different time periods than the experiments for pair 4 and 5. Between these time periods
maintenance was performed on the ExoGENI.

4.1.1 RTT

The measurements of RTT for all the inter-rack point-to-point connections are shown in Figure 9. By
analyzing the graphs we observed that the Average RTT of the long distances (UFL – NICTA, BBN –
NICTA, RENCI - NICTA) are way higher than the Average RTT of the short distances (RENCI – UFL,
BBN – UH) connections as we were expecting (3.2.1). This is the result of the time required for the ICMP
packet to travel to a distance of 15500, 15000, 16258 and 931, 2584 km respectively. The problems that
these connections encountered was that in a few time intervals there was a number of high RTT events
(up to 20 times higher than average) that was correlated with the increased packet loss rates over the
period of 10seconds with the result of increased average RTT. Also sometimes, we observed a ‘destination
host unreachable’ event due to the inability to complete the ARP resolution of the destinations address.
These events which happened prior to the maintenance was only a few and led as to the conclusion that
there was a temporarily congestion over the underlying connection which didn’t affect the overall RTT of
the connection. Moreover, these events weren’t representative of the actual RTT due to their nature and
they were removed from Table 11 values. In Figure 9 we observe the cumulative distribution of our short
distance point-to-point connections that is 4-5 smaller compared with the one of the long distance. This
is the result of the lower Average RTT of the small distances over the long distances.

21

Figure 9: Experiment 1 - RTT CDF

The point-to-point measurements of the our topologies that include RENCI, NICTA and UFL racks
was made prior to an important maintenance that was being held in during our research. But, the
measurements made on BBN, NICTA and UH racks was being made after the maintenance. As you can
see the previous network problems we encountered was fixed and the connection between these racks was
more stable and the RTT values as well as the Standard Deviation (Table 11) was as expected.

Connection Average RTT (ms) Standard Deviation (ms)
RENCI - UFL 23,767 10,392

BBN - UH 50,424 0,030
RENCI - NICTA 225,047 12,986

UFL - NICTA 243,785 8,336
BBN - NICTA 237,869 0,070

Table 11: Experiment 1 - Average RTT & SD

4.1.2 TCP Throughput

Figure 10 shows the cumulative distribution of TCP Throughput among all the point to point connections.
From these results we can see that the long distance end to end point connections achieve on average 9,3
Mbps TCP throughput whereas the short distance connections achieve on average 8,2 Mbps (Table 12).
Moreover the standard deviation of the short distance pairs is times smaller than the standard deviation
of the long distance pairs. These results come in agreement with our initial hypothesis that the network
performance on short distance connections is better than in the long distance connections In addition, in
this experiment we observed two unexpected measurements from RENCI to UFL (Figure 10). Specifically,
in two measurements the TCP throughput falls below 8 Mbps. We couldn’t get any insights on these two
measurements from tcpdump and iostat analysis so we conclude that during these two time periods the
underlying link may had congestion that resulted in packet loss, packet delay and retransmissions.

22

Figure 10: Experiment 1 - TCP Throughput CDF

Connection Average TCP Throughput(Mbps) Standard Deviation
RENCI - UFL 9,3384 0,271166

BBN - UH 9,3787 0,07804
RENCI - NICTA 8,386 0,607711

UFL - NICTA 8,2014 0,364523
BBN - NICTA 8,1979 0,542064

Table 12: Experiment 1 - TCP Throughput Results

4.1.3 UDP Throughput – Packet Loss

During our experiments for measuring the UDP throughput and Packet Loss for the first three pairs
before the maintenance of the system we observed the abnormal behavior shown on Figure 11. For these
measurements the UDP throughput had an average of 9.5Mbps on the first two measurements but from
the third measurement and on UDP throughput dropped to approximately 1% of the link bandwidth.
That was due to the packet loss that increased from 1-2% to 99%. From our insights we couldn’t find a
logical explanation for this behavior so we conducted the IT Engineers of ExoGENI who also observed this
behavior of UDP and they couldn’t find a good reason for that. But, after a maintenance they performed
on ExoSM Slices, this abnormality was solved as we will show later.

Figure 11: Experiment 1 - UDP Throughput - Packet Loss

23

Experiment 1 for pairs 4 and 5 was performed after the aforementioned maintenance. Table 13 shows
the average UDP throughput along with its standard deviation and the average packet loss. Figures 12
and 13 show the average UDP throughput and the percentage of packet loss for each one of the 100
measurements. From these we can observe that the UDP throughput and packet loss for both short and
long distance connections is approximately the same. This comes in contrast with our initial hypothesis and
our findings about the TCP throughput for short-long distance relation. However, in TCP connections the
sender has to wait for an acknowledgment (ACK) before sending the next packet where in UDP connection
the sender sends packets continuously without having to wait for an ACK. These ACKs introduce more
delay for every packet send via a TCP connection so we conclude that the different outcomes for TCP/UDP
throughput are related to this factor. It is also important to mention that the UDP throughput from BBN
– UH has three specific measurements where the average UDP throughput is below 8 Mbps due to higher
packet loss rates on these time intervals. After analyzing the tcpdump and iostat for that time periods we
couldn’t observe something that could be related to this, thus we conclude that the underlying link was
overloaded and introduced this high packet loss rates. On the contrary, the UDP connection from BBN –
NICTA has no unexpected behavior in any measurement and can be considered more stable.

Connection Average UDP Throughput(Mbps) Standard Deviation Average Packet Loss(%)
BBN - UH 9,3787 0,634186 5,456

BBN - NICTA 9,6011 0,078040 3,966

Table 13: Experiment 1 - UDP Results

Figure 12: BBN-UH UDP Throughput- Packet Loss Results

Figure 13: BBN-NICTA UDP Throughput - Packet Loss Results

24

4.2 Experiment 2

For this experiment we manage to gather results between BBN and UH ExoGENI Racks. Specifically, we
use one Virtual Machine from BBN Rack to generate network traffic simultaneously to 2 Virtual Machines
that where both located in UH Rack. Our results are presented and analyzed below.

4.2.1 RTT

As shown on table 14 the average RTT has a value close to 50ms (50,85514) for the connection between
BBN and UH1 and also a value close to 50ms (51,07125) for the connection between BBN and UH2. In
both graphs the Average RTT is stable without any significant malfunctions and its value is comparable
with the value of the previous topology, between the same Racks. The existence or not of the competition
that we investigate will be shown during our TCP and UDP throughput measurements.

Connection Average RTT (ms) Standard Deviation (ms)
BBN - UH1 50.85514 0.778143842
BBN - UH2 51.07125 0.817486384

Table 14: Experiment 2 - RTT Results

4.2.2 TCP Throughput

As shown on Figures 14 we observe an unexpected behavior on TCP throughput for both connections.
For the connection BBN – UH 1 and BBN – UH 2 the average TCP throughput is 1.34 Mbps and 1.38
Mbps respectively. This unexpected behavior on the TCP throughput could not be explained, so in order
to further investigate this behavior we reconstructed the topology and performed another experiment. We
generated TCP traffic from BBN to UH1 for 20 minutes and on the middle of this interval we started
generating TCP traffic from BBN to UH2.

Figure 14: Experiment 2 - TCP Throughput

25

The results of this experiment as shown on Figure 15 didn’t give us any insights on what could be
the reason that affected our initial experiment unexpected results. Specifically, when the VM on BBN
starts sending data to the VM 2 on the UH Rack the TCP throughput of the connection BBN UH 1
remains stable and the connection BBN – UH2 achieves approximately the same TCP throughput with
the connection BBN – UH1. The results of this experiment were as expected thus we can conclude that the
unexpected behavior of our initial experiment was not related to competition upon the underlying network.
Moreover, the results of this experiment showed us that for TCP connections there is no competition upon
the physical infrastructure.

Figure 15: Experiment 2 - Repeated

4.2.3 UDP Throughput - Repeatability of Experiment 2

UDP throughput results shown on Figure 16 can be characterized as normal. The average UDP throughput
is 9.6 Mbps for both connections. These results imply that there is no competition between the two virtual
connections on the underlying network.

Figure 16: Experiment 2 - UDP Throughput

26

4.3 Experiment 3

We implemented Experiment 3 on UFL and UH ExoGENI Racks. Since all ExoGENI Racks have the
same architecture and hardware we believe that our results should be the same for all the ExoGENI
Racks. Below, we present and analyze these results.

4.3.1 RTT

The results of our measurement can be shown here. We observed an average RTT of 0.75738 in the first
long-distance connection between different servers and an Average RTT of 0.33727ms in the short-distance
connection in the same server. From the one hand, the differences between short and long distances are
not big, but this behaviour is normal because we investigating connections between servers in the same
physical machine. From the other hand, the dissimilar RTT between the short and the long distance
workers is clear as we were expecting.

Figure 17: Experiment 3 - RTT VMA-VMB

Figure 18: Experiment 3 - RTT VMA-VMA

4.3.2 TCP Throughput

Table 15 second column shows the TCP throughput of a connection where the VMs are on the same worker
node inside the Rack (VMA-VMA) and the third column shows the TCP throughput for a connection that
the VMs are on a different worker node (VMA – VMB). In both cases the average Throughput results are
displayed.

The average TCP throughput for the VMA – VMA connection is 100 Mbps for both ExoGENI Racks
where the average TCP throughput for the VMA – VMB connection on UFL and UH are approximately
99.7Mbps. The difference is minimal, thus we can conclude that the worker node on which the VMs are
lying does not impact the TCP throughput and that the virtualization inside these two ExoGENI Racks
does not affect this metric.

27

ExoGENI Rack VM A – VM A TCP Throughput (Mbps) VM A – VM B TCP Throughput (Mbps)
UFL 100 99,734
UH 100 99,732

Table 15: Experiment 3 - TCP Throughput Results

4.3.3 UDP Throughput – Packet Loss

In Table 16 we present the average UDP throughput and packet loss for both UFL and UH. For UFL the
UDP throughput and packet loss for both connections VM A – VM A and VM A – VM B is approximately
the same. The same result can be observed for UH Rack. From these results it is clear that the worker node
where each VM lies does not affect these metrics. Moreover the results for both Racks are approximately
the same so we can believe that all the ExoGENI Racks have the same behavior since they all have the
same architecture. In order to prove this assertion we have to repeat this experiment in all ExoGENI
Racks. Due to the limited time available for this research project and the unavailability of resources for
most of ExoGENI Racks during this time period we didn’t manage to repeat this experiment in all the
Racks.

ExoGENI Rack VM A – VM A VM A – VM B VMA – VMA VM A – VM B
UDP Throughput (Mbps) UDP Throughput (Mbps) Packet Loss (%) Packet Loss (%)

UFL 95,937 95,971 4 4
UH 95,911 95,929 4 4

Table 16: Experiment 3 - UDP Throughput/Packet Loss Results

4.4 Experiment 4

4.4.1 RTT

In this experiment the head node of our star topology sends packets to the destination nodes at the same
time and the purpose of this experiment was to investigate the existence or not of competition. The
average RTT between the head Node0 and the Node1, Node2 and Node3 that was measured, was equal
to 0.51338, 0.57622, 0.57411 respectively. As we can, the three graphs have a lot similarities as a result of
the virtual machines belonging to the same server.

Figure 19: Experiment 4 - Average RTT

28

4.4.2 TCP Throughput

Experiment 4 was also implemented on UFL and UH ExoGENI Racks and the results are shown on
Table 17. The average TCP throughput for all the connections for both UFL and UH is approximately
99.9Mbps. This result implies that there is no competition of the virtual links upon the physical Ethernet
infrastructure that interconnects the worker nodes inside the Rack.

4.4.3 UDP Throughput – Packet Loss

On the other hand UDP throughput has a much different behavior. In particular, the 3rd link that
connects the head node with the VM on worker node D has an average UDP throughput of 72Mbps and
77Mbps for UFL and UH Racks respectively. On Figure 20 we show the average UDP throughput of each
measurement along with its’ corresponding packet loss. As shown on Table 14 the UDP connection has
some time intervals where the packet loss is increased to 60% on average. Moreover, during these time
intervals the RTT was increased up to 5 times on average. In order to investigate this unexpected behavior
we search on our iostat statistics and tcpdum network traffic file. We find out that on the time intervals
that this unexpected behavior was observed the cpu load had an average value of 70% where in other time
intervals the cpu overload had an average value of 50%. This insight looked suspicious so we repeated the
same experiment but this time we use XO Large type for our VMs. XO large has 2 cores, and 6G of Ram
thus we could prove if this unexpected behavior of UDP was related to the compute power of the VMs
we use. The results from this experiment were the same as the initial one so we couldn’t conclude on a
logical explanation for this unexpected behavior. In order to further research this behavior we contact the
RENCI engineers which asked us to repeat our experiment and let them know in order to check if these
changes on the UDP throughput are caused from other topologies that are constructed or deleted during
this time intervals. We are still waiting for their findings.

Figure 20: Experiment 4 - UDP Throughput

ExoGENI Rack TCP Throughput UDP Throughput
VM B VM C VM D VM B VM C VM D

UFL 99,926 99,949 99,908 96,656 95,379 72,186
UH 99,904 99,942 99,893 94,925 94,338 77,596

Table 17: Experiment 4 - UDP Results

29

4.5 Packet Loss - Discussion

For all our experiments we observed a high packet loss rate of approximately 4%. After analyzing the cpu
statistics, we observed that when iperf sends/receives UDP traffic it consumes much more cpu power than
when it sends/receives TCP traffic (table 18 and 19).

Network Traffic Sender CPU Load (%) Receiver CPU Load (%)
UDP 4 1.5
TCP 0.1 0

Table 18: Iperf TCP/UDP CPU Load (10Mbps Network Traffic)

Network Traffic Sender CPU Load (%) Receiver CPU Load (%)
UDP 17 6
TCP 0.3 0.1

Table 19: Iperf TCP/UDP CPU Load (100Mbps Network Traffic)

These results gave us some insights on what could be the reason of the high packet loss rate on all
UDP connections. In order to find out if the high packet loss rate is related to this observation we need
to research how the scheduler of cpu operates for high cpu power consuming processes and in what degree
it can affect the performance of these processes. Due to the limited available time for our research project
we didn’t manage to research this hypothesis.

4.6 Experiment 5

Table 20 shows the results of the reproducibility of our experiments that we explained in the previous
chapter.

Experiment Reproducibility Results
1 Not Available Resources -
2 Not Available Resources -
3 Possible Same as Initial Experiment
4 Possible Same as Initial Experiment

Table 20: Reproducibility Results

In Experiments 1 and 2 where we used Inter-Racks domains to build the point-to-point and star
topologies the recreation of our topologies was not possible due to unaivalability of resources. Thus, the
repeatability of the network performance for the Inter-Racks domains could not be evaluated. For Intra-
Rack domains the recreation of of our topologies was achieved for all the 100 times as a result of the
availabity of resources and the reproducibility of the network performance was evaluated succesfully. Our
results showed that the reproducibility of the network performance for the intra-rack domains was the
same as the initial experiments, thus we can conclude that the network performance reproducibility is
possible for intra-rack domains.

30

5 Conclusion

In this research project we evaluate the network performance of ExoGENI. For the Inter-Rack domain we
evaluate the network performance for point to point connections when the ExoGENI Racks are in a short
and long geographical distance (4.1). For the intra-rack domains we evaluate the network performance
when the VMs are on the same and separate worker node (4.3) inside an ExoGENI Rack. Furthermore we
investigate if multiple virtual connections compete upon the underlying network for both Inter (4.2) and
Intra-Rack (4.4) connections. Finally, we attempt to evaluate the repeatability the network performance
for all the aforementioned cases.

After our experiments for the Inter-Rack domain we find out that the short distance virtual connections
have an efficiently and stable network performance for both TCP and UDP. Moreover, we observed that
the long distance virtual connections also have an efficiently and stable network performance for UDP.
These connections can be considered suitable for data-intensive applications since they achieved both
efficient and stable network performance. For the case of long distance TCP connections we observed
11% lower throughput than the short distance TCP connections. Furthermore the long distance TCP
connections had a throughput standard deviation of approximately 5 times higher than the short distance
TCP connections. Bearing this in mind we conclude that long distance TCP connections are not suitable
for data-intensive applications. The second experiment was only implemented among the pair BBN and
UH. The results from this experiment showed that point to multipoint UDP connections are efficient and
stable while TCP connections are not. However, due to the fact that results for this experiment were
only extracted only for one pair of ExoGENI Racks we cannot have a general idea for this scenario so we
cannot conclude. The reproducibility experiment was not able to be implemented due to unavailability of
resources, so no conclusion can be made upon the repeatability of the network performance.

Our experiments for the Intra-Rack domains showed us that the worker node upon on which the VMs
are lying does not affect the network performance for both TCP and UDP connections. For both cases the
TCP and UDP performance were efficiently and stable thus we conclude that data-intensive applications
that use point to point connections can be efficiently implemented in Intra-Rack domains. On the other
hand, point to multipoint connections inside an ExoGENI Rack gave us different results for TCP and UDP
connections. Specifically, for TCP connections we observe an efficient and stable network performance while
for UDP connections the network performance was insufficient and unstable. This observation makes the
point to multipoint connections suitable for data-intensive applications that uses TCP connections and
inappropriate for those who use UDP connections. The reproducibility experiment (4.6) was successfully
implemented and gave us the same network performance results as the initial experiments. From this, we
can conclude that the network performance in the Intra-Rack domains is reproducable when the virtual
network topology is reconstructed from scratch.

Finilazing, besides our results during our research project we faced a lot of difficulties in reserving
resources and constructing Inter-Rack topologies on ExoGENI. In general, the system could not provide
us what it was designed for (eg. high bandwidth virtual links, multi-domain topologies) the most of the
days and during the days that we were able to construct Inter-Rack topologies we observed some cases
of unexpected behaviors that neither we or ExoGENI IT enginners could explain. From our experience
during our research project we can say that the Inter-Rack domain needs some improvements on resource
provisioning and managing in order to offer a suitable experimental environment for the experimenters.

31

6 Future Work

On our research project we evaluate the network performance for four scenarios that emerged from Ex-
oGENI architecture. For each of our scenarios we only implemented experiments for a small number of
ExoGENI Racks. In order to have the full picture of ExoGENI network performance each of our scenarios
experiment has to be implemented for all the possible combinations of ExoGENI Racks. Especially the
network performance of the Inter-Rack domain where each interconnection between the Intra-Rack do-
mains is provided by a different circuit provider needs to be further researched. Moreover, the experiment
for the repeatability of the network performance for the Inter-Rack domain wasn’t able to be implemented
due to unavailability of resources thus it is proposed for future work. Finally, the high packet loss rate
observed during our experiments needs to be further researched.

32

References

[1] Ilia Baldine, Yufeng Xin, Anirban Mandal, Paul Ruth, Chris Heerman and Jeff Chase, “ExoGENI: A
Multi-Domain Infrastructure-as-a-Service Testbed”, RENCI, Department of Computer Science Duke
University

[2] “GENI : Exploring the Networks of the Future”, http://www.geni.net/

[3] “Global Enviroment for Networking Innovations (GENI)”, http://www.nsf.gov/funding/pgm_

summ.jsp?pims_id=501055

[4] “ExoGENI Rack Details”, https://wiki.exogeni.net/doku.php?id=public:hardware:start

[5] “ExoGENI Introduction”, https://wiki.exogeni.net/doku.php

[6] “NICL Lab Duke”, http://nicl.cod.cs.duke.edu/

[7] “BEN Renci”, https://ben.renci.org/

[8] “Renci”, http://www.renci.org/

[9] “ORCA”, https://geni-orca.renci.org/trac/

[10] “Flukes”, https://geni-orca.renci.org/trac/wiki/flukes

[11] “Available inter-racks”, https://wiki.exogeni.net/doku.php?id=public:experimenters:rspecs

[12] “ExoGENI Rack Campuses” http://groups.geni.net/geni/attachment/wiki/

GEC12GENIDeploymentUpdates/GEC12-ExoGENI-Racks-campuses.pdf

[13] “Rack Operators” https://wiki.exogeni.net/doku.php?id=public:operators:start

[14] “ExoGENI Hardware” https://wiki.exogeni.net/doku.php?id=public:hardware:start

[15] “Hardware Requirements” https://help.ubuntu.com/lts/installation-guide/i386/

minimum-hardware-reqts.html

[16] “Rack Location” http://www.exogeni.net/locations/

[17] “ExoGENI Interconnections” https://wiki.exogeni.net/doku.php?id=public:experimenters:

topology

[18] “ExoGENI Racks Architecture” http://groups.geni.net/geni/attachment/wiki/

GEC12GENIDeploymentUpdates/GEC12-ExoGENI-Racks-campuses.pdf?format=raw

[19] “ORCA Operation” https://geni-orca.renci.org/trac/attachment/wiki/

orca-introduction/orca-arch.png

[20] “Virtualization Overhead 1/2” http://sdqweb.ipd.kit.edu/publications/descartes-pdfs/

HuQuHaKo2011-CLOSER-ModelVirtOverhead.pdf

[21] “Virtualization Overhead 2/2” http://www.cc.iitd.ernet.in/misc/cloud/hypervisor_

performance.pdf

[22] “ICMP Packet size” http://searchnetworking.techtarget.com/answer/

What-are-the-minimum-and-maximum-sizes-of-an-ICMP-packet

[23] Yong Wang “Networking Virtualization”, VMWARE

[24] G. Wang, T. S. Eugene Ng, “The Impact of Virtualization on Network Performance of Amazon EC2
Data Center”, Dept. of Computer Science, Rice University

33

http://www.geni.net/
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=501055
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=501055
https://wiki.exogeni.net/doku.php?id=public:hardware:start
https://wiki.exogeni.net/doku.php
http://nicl.cod.cs.duke.edu/
https://ben.renci.org/
http://www.renci.org/
https://geni-orca.renci.org/trac/
https://geni-orca.renci.org/trac/wiki/flukes
https://wiki.exogeni.net/doku.php?id=public:experimenters:rspecs
http://groups.geni.net/geni/attachment/wiki/GEC12GENIDeploymentUpdates/GEC12-ExoGENI-Racks-campuses.pdf
http://groups.geni.net/geni/attachment/wiki/GEC12GENIDeploymentUpdates/GEC12-ExoGENI-Racks-campuses.pdf
https://wiki.exogeni.net/doku.php?id=public:operators:start
https://wiki.exogeni.net/doku.php?id=public:hardware:start
https://help.ubuntu.com/lts/installation-guide/i386/minimum-hardware-reqts.html
https://help.ubuntu.com/lts/installation-guide/i386/minimum-hardware-reqts.html
http://www.exogeni.net/locations/
https://wiki.exogeni.net/doku.php?id=public:experimenters:topology
https://wiki.exogeni.net/doku.php?id=public:experimenters:topology
http://groups.geni.net/geni/attachment/wiki/GEC12GENIDeploymentUpdates/GEC12-ExoGENI-Racks-campuses.pdf?format=raw
http://groups.geni.net/geni/attachment/wiki/GEC12GENIDeploymentUpdates/GEC12-ExoGENI-Racks-campuses.pdf?format=raw
https://geni-orca.renci.org/trac/attachment/wiki/orca-introduction/orca-arch.png
https://geni-orca.renci.org/trac/attachment/wiki/orca-introduction/orca-arch.png
http://sdqweb.ipd.kit.edu/publications/descartes-pdfs/HuQuHaKo2011-CLOSER-ModelVirtOverhead.pdf
http://sdqweb.ipd.kit.edu/publications/descartes-pdfs/HuQuHaKo2011-CLOSER-ModelVirtOverhead.pdf
http://www.cc.iitd.ernet.in/misc/cloud/hypervisor_performance.pdf
http://www.cc.iitd.ernet.in/misc/cloud/hypervisor_performance.pdf
http://searchnetworking.techtarget.com/answer/What-are-the-minimum-and-maximum-sizes-of-an-ICMP-packet
http://searchnetworking.techtarget.com/answer/What-are-the-minimum-and-maximum-sizes-of-an-ICMP-packet

[25] D. Battre, N. Frejnik, S. Goel, O. Kao and D. Warneke, “Evaluation of Network Topology Inference
in Opaque Compute Clouds Through End-to-End Measurements”, T.U. Berlin, T.U. Munich

[26] D. Battre, N. Frejnik, S. Goel, O. Kao and D. Warneke, “Inferring NetworkTopologiesin Infrastructure
as a Service Cloud”, T.U. Berlin, T.U. Munich

[27] Bill Howe, “Virtual Appliances, Cloud Computing, and Reproducible Research”, University of Wash-
ington, Seattle, WA

[28] Layers Overhead http://sd.wareonearth.com/~phil/net/overhead/

34

http://sd.wareonearth.com/~phil/net/overhead/

A WorkFlow

A.1 Add Topology

35

A.2 Node properties

36

A.3 Slice reservation

37

A.4 Choose slice name

38

A.5 Submit slice

39

A.6 Resource state

40

A.7 Resource active

41

A.8 Node login

42

	Introduction
	Scope
	Research Questions
	Approach
	Related Work

	ExoGENI
	ExoGENI
	Private Clouds Architecture

	ExoGENI domains and limitations
	ORCA
	Terminology & Operation
	ORCA deployment in ExoGENI

	Flukes
	Features
	Getting Started

	Experiments
	Experiments Methodology
	Network Performance
	Expected Results
	Virtualization Overhead
	Resources Attributes
	Measurements Tools
	Experimental Setup

	Experimental Scenarios - Experiments
	Scenario 1 - Experiment 1
	Scenario 2 - Experiment 2
	Scenario 3 - Experiment 3
	Scenario 4 - Experiment 4
	Experiment 5

	Results & Evaluation
	Experiment 1
	RTT
	TCP Throughput
	UDP Throughput – Packet Loss

	Experiment 2
	RTT
	TCP Throughput
	UDP Throughput - Repeatability of Experiment 2

	Experiment 3
	RTT
	TCP Throughput
	UDP Throughput – Packet Loss

	Experiment 4
	RTT
	TCP Throughput
	UDP Throughput – Packet Loss

	Packet Loss - Discussion
	Experiment 5

	Conclusion
	Future Work
	WorkFlow
	Add Topology
	Node properties
	Slice reservation
	Choose slice name
	Submit slice
	Resource state
	Resource active
	Node login

