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Abstract

Next generation networks with large bandwidth and long delay, also known
as Long Fat Network (LFN) pose a major challenge to Transmission Con-
trol Protocol (TCP) performance. Specifically, sustaining the link utilisation
of these networks at a high level is quite challenging, especially when large
(elephant) flows are intermixed with small (mice) flows. A small amount of
packet loss can cause a huge performance loss (1 out of 22,000 lost packets
causes 80x reduction in data transfer, when the Round Trip Time (RTT)
is more than about 10 ms). Under supervision of Ronald van der Pol and
Marijke Kaat from SURFnet, this research investigates the several configura-
tion parameters of the TCP network stack of the Linux kernel. Moreover, it
will be investigated how these configuration choices in correlation with tc(8)
traffic shaping in Linux Operating System (OS) can provide better overall
throughput of the link.
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Chapter 1

Introduction

Next generation networks with large Bandwidth-Delay Product (BDP) pose a
major challenge to TCP performance. Moreover, due to the requirement to
carry a wide variety of network services and traffic types, sustaining high
link utilisation and throughput can be quite challenging especially when
large(elephant) flows are intermixed with small(mice) flows. To alleviate
this problem a lot of research has been carried out [2] [3] [4] [5].

A small amount of packet loss can cause a huge performance loss (1 out of
22,000 lost packets causes 80% reduction in data transfer) [6]. The most im-
portant reason for high packet loss rate is the behaviour of TCP’s congestion
control algorithm. The main problem is trying to maximise the throughput
of the shared link until packet drop occurs. When multiple flows traverse
the shared link all of them are competing for the available bandwidth. Fur-
thermore, not optimising the configuration parameters of the TCP network
stack on the end-hosts can result in losing packets due to the numerous -but
limited- buffers of the kernel.

To alleviate the problem of TCP connections experiencing alarming high
loss rates, even after having undergone a number of enhancements (Hamilton
TCP (HTCP), Cubic), this research project evaluates the usage of queue
management mechanisms that already exist in the Linux kernel of the end-
hosts.

This research paper is structured as follows. In Chapter 2 the theoretical
background needed in determining which factors affect the throughput of the
link is analysed.Furthermore, the effect that packet loss has on throughput
is evaluated and more insight is provided on the Traffic Control (TC) mech-
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anisms that exist in the Linux Kernel. In Chapter 3 the experiments are
divided into three sections that further investigate the subjects mentioned.
Lastly, in Chapter 4 the conclusions are listed and further research is men-
tioned.

1.1 Research Question

For this Research project, I worked on answering the following research ques-
tions:

How can we achieve constant throughput and high utilisation
of the link, while intermixing small and large TCP flows?

This research question leads to the following sub-questions:

• What changes should be made in the configuration of the Linux TCP
network stack to achieve the highest throughput?

• What effect does packet loss have on throughput?

• How can already existing TC techniques be used in order to provide a
better throughput on the link with less packet loss?

1.2 Approach

During this research project the main objective was to achieve high utilisation
and overall throughput of the provided link between two end-hosts.Therefore
the approach could be divided into 4 subcategories:

• Configuration of the end-hosts so that we could achieve the highest
overall throughput. In order to achieve the highest possible utilisation
and throughput throughout our experiments configuration of several
parameters on the end-hosts is used.

• Explore the effect of packet loss on throughput in order to verify the
theory and evaluate how packet loss affects throughput in LFN.

• Use existing Traffic Control mechanisms in order to create a single
constant TCP flow of limited throughput.
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• Evaluate the possible advantages of using Traffic Control mechanisms
for more than one flow.

However, my research was limited by the following assumptions :

• Complete knowledge of the flows that exist in the network. If the flows
that traverse the networks are not known then TC policies cannot be
created effectively.

• Focusing on networks with large BDP a.k.a LFNs.

• Usage of already embedded Traffic Control mechanisms in the Linux
kernel.
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Chapter 2

Background

Our aim in this chapter is to provide the theoretical background needed
to create an understanding of how TCP flows should behave in LFNs and
therefore be able to create a baseline for our observations during the experi-
mentation.

Section 2.1 provides an overview of the TCP protocol. Because in these
research TCP flows are created and evaluated, giving a short introduction
of several key aspects of TCP is essential. In LFNs as stated in the Intro-
duction (1) a small amount of packet loss can drop the throughput of a link
significantly.. Therefore, in sections 2.1.1 and 2.2 the mechanism that is in-
cluded in the TCP protocol is described and how packet loss could affect the
throughput of a link theoretically. Lastly, this research also evaluates how
already existing Traffic Control techniques are performing in LFN and ,as a
result, a detailed analysis is provided in section 2.3.

2.1 TCP

TCP/Internet Protocol (IP) is the most important networking protocol suite
in the world. It is the basis for the Internet and the language spoken by the
vast majority of the world’s networked computers. As depicted in 2.1, it is
divided in four layers. Furthermore, it can be noticed that many protocols
reside in each layer. The TCP protocol resides in the transport layer.
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Figure 2.1: TCP/IP network stack and protocols that reside in each layer

TCP is a connection-oriented, reliable transport protocol for TCP/IP
applications. It guarantees reliable delivery, and therefore, TCP sometimes
incurs relative long delays while waiting for out of order messages or retrans-
missions of lost messages. A technique known as positive acknowledgement
with retransmission is what enables TCP to create a reliable stream of data
between two end-hosts. This technique requires the receiver to respond with
an acknowledgement message as it receives data. The key features that set
TCP apart from User Datagram Protocol (UDP) which is another transport
protocol are:

• Ordered data transfer. TCP verifies by using timestamps and sequence
numbers that packets are received in the right order.

• Retransmission of lost packets.

• Error-free data transfer. TCP verifies that data are delivered without
errors.

• Flow Control. In a connection between two hosts, one host tells the
other the number of bytes it is willing to receive from the former one;
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this is its receive window, which becomes the other’s send window.
Managing the size of these windows is what is called Flow Control in
the TCP protocol.

• Congestion control.(section 2.1.1)

2.1.1 Congestion Control

Congestion control is the mechanism adopted by TCP in order to achieve high
performance and avoid congestion collapse. Congestion collapse is a condition
where little or no useful communication is happening due to congestion. This
mechanism is used in order to keep the data flow that enters the network
below a certain rate that would cause congestion and therefore, packet loss.
Furthermore, it is used in order to achieve fairness when multiple TCP flows
exist in the network. Modern TCP implementations contain four intertwined
algorithms [7], [8]:

• Slow-Start. This is the initial phase during a TCP data connection. In
this phase the sender’s window is increasing rapidly until a congestion
is detected on the link.

• Congestion avoidance. This allows the device to drop the rate at which
segments are sent quickly when congestion occurs.

• Fast retransmit. This is an enhancement to TCP which reduces the
time a sender waits before retransmitting a lost segment.

• Fast recovery. In the Fast Recovery algorithm, during Congestion
Avoidance mode, when packets (detected through 3 duplicate Acknowl-
edgments) are not received, the congestion window size is reduced to
the slow-start threshold, rather than the smaller initial value.

Congestion control has gone through extended research in order to achieve
higher link utilisation and faster convergence when multiple TCP flows tra-
verse the link. Several implementations of TCP exist that perform bet-
ter than the initial Tahoe implementation [9] . Such implementations are
newReno, htcp [10] and Cubic [11].
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2.2 TCP Throughput Testing

A practical methodology for measuring end-to-end TCP throughput in a
managed IP network is described in RFC6349 [12]. According to the method-
ology proposed by Constantine, et al. in RFC 6349 [12] in order to evaluate
the TCP throughput of one or more TCP flows, many variables are involved.
This research, as the mentioned RFC, focuses on these:

• Bottleneck Bandwidth : The lowest bandwidth along the complete
path.

• Round-Trip Time(RTT) : The elapsed time between the clocking of the
first bit of a TCP segment sent and the receipt of the last bit of the
corresponding TCP Acknowledgement.

• Send and Receive Socket Buffers : The Socket Buffers must be large
enough to fill the BDP. BDP refers to the product of a data link’s
capacity (in bits per second) and its end-to-end delay (in seconds).

• Path Minimum TCP Receive and Send window (RWND and SWND):
As mentioned in section 2.1,TCP is connection oriented, and at the
transmitting side, it uses a congestion window (TCP CWND). At the
receiving end, TCP uses a receive window (TCP RWND) to inform the
transmitting end on how many bytes it is capable of accepting at a
given time.

• Path Maximum Transmission Unit(MTU) : MTU is the Maximum
Transmission Unit which is the largest packet (layer 3, including the
layer 3 header) that can be transmitted.

• Packet loss

In the experimental setup, bottleneck bandwidth and RTT are static.
Furthermore, Send and Receive socket buffers and path’s MTU are going to
be configured so that the maximum throughput can be achieved on the link.
This is essential in order to measure the effect of packet loss while checking
how the sender’s congestion window changes.

A formula was provided by Mathis et al. at [13] which predicts how
throughput is affected by packet loss theoretically. This provides a baseline
for this research’s experiments. The formula is :

Rate <= (MSS/RTT ) ∗ (1/√p) (2.1)
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In this equation MSS stands for Maximum Segment Size(bits), RTT is
the Round Trip Time(s) and p is the percentage of packet loss that exist
in the network. This equation will be used during our experiments to see
whether our environment is responding in accordance to it.

2.3 Traffic Control [1]

Traffic Control (TC) is the process of managing, prioritising, controlling or
reducing the network traffic. In this research,the effect on throughput of one
or more TCP flows is evaluated when TC is used in a Long Fat Pipe (LFP).
Linux embeds a module that provides this functionality. The module resides
between the IP Layer and the network interface driver as depicted in figure
2.2.

Figure 2.2: Traffic Control

The TC module is used to control the dequeueing of the packets from
the sender’s buffer that are transmitted on the network. At the core, it is
composed of queueing disciplines or "qdisc", that represent the scheduling
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policies applied to a queue. Each interface on the end host can have multiple
queues that can be managed with TC in order to change several character-
istics of the transmission of data. Such characteristics are the delay and the
rate that data are transmitted.

Queueing disciplines are divided into two categories, the Classless and the
Classful. Classless queueing disciplines are those that, by and large accept
data and only reschedule, delay or drop it. Examples of these are :

• p_fifo : This queue is the kernel’s default and as the name indicates it
is a First In First Out queue.

• Token Bucket Filter (TBF) : A "qdisc" that only passes packets arriv-
ing at a rate which is not exceeding some administratively set rate, but
with the possibility to allow short bursts in excess of this rate.

• Stochastic Fairness Queueing (SFQ) : Round Robin implementation
with FIFO queues.

Classful queueing disciplines contain multiple classes. These classes are
internal to the "qdisc" and may contain a "qdisc" as well. This creates
a tree policy which can be used in order to shape the outgoing traffic of
a host. Filters are used in order to divide the outgoing traffic and assign
it to different qdiscs and therefore, to different scheduling/policing/shaping
ruleset. Traffic shaping is the retiming (delaying) of packets (or frames)
until they meet specified bandwidth and or burstiness limits. The Classful
queueing disciplines are :

• PRIO : Doesn’t actually shape, it only subdivides traffic based on how
the filters were configured. Therefore, it is used if the user wants to
give priority to a certain kind of traffic without using the Type of
Service (TOS) flags.

• Class Based Queueing (CBQ) : It is a queuing discipline for the network
scheduler that allows traffic to share bandwidth, after being grouped by
classes. The classes can be based upon a variety of parameters, such as
priority, interface, or originating program. It can shape and prioritize
chosen traffic flows according to the configuration.

• Hierarchical Token Bucket (HTB) : Has the same functionality as CBQ.
The major difference between CBQ and HTB is that in CBQ when
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you allocate certain bandwidth to class, it cannot use more than the
allocated bandwidth even if more bandwidth is available. However, in
HTB you can specify how much extra bandwidth (if available) can be
used by a class. In this research, this functionality is important in order
to achieve higher utilization of the link. When multiple flows exist in
the link and one flow ends, the other flow should be able to use the
remaining bandwidth of the link.

In the experiments of this research HTB is chosen as the queueing dis-
cipline. This is due to the fact that shaping of the traffic is needed (so we
cannot use any classless or PRIO "qdisc") and because of the advantages
stated in [14]. Traffic shaping is needed because the bandwidth is shared
between multiple flows and we should be able to divide the link in lower-
bandwidth parts which in turn could be assigned to the TCP flows. Some of
the advantages of HTB that are also mentioned in [14] are :

• HTB does use TBF as estimator instead of EWMA(Exponentially Weighted
Moving Average) of idle time (which is used in CBQ). As result one
need to set only rate and burst ( max/minburst ..). Estimators are used
in order to verify if the class is overlimit meaning that it surpasses the
bandwidth assigned to it.

• TBF is more precise in estimating rate. For proof see [14]

• "tc class show" shows actual byte and packet rate measured over 10
sec. This in our experiments would be very usefull in order to verify
that qdisc configurations are working as they were supposed to.

• TBF doesn’t need precise end of send time as ewma-idle needs. As a
result, HTB works robustly on all network devices (including loopback
and wireless) where CBQ gives weird and wrong rates.

Furthermore, the HTB3 is now part of the official kernel sources (from
2.4.20-pre1 and 2.5.31 onwards) and according to [15] HTB is not slower
than CBQ, HTB. Because HTB is more precise, can work robustly on all
network devices and is not slower than CBQ, this research uses it for the
experimentation procedure. An example of the HTB queueing discipline is
depicted in figure 2.3.
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Figure 2.3: HTB example [16]

In figure 2.3 the following terminology is used:

• burst : The size of the token bucket.

• rate : The speed that tokens are generated and as a result, the packets
are deqeueued.

• quantum : The maximal amount of bytes that a leaf in the tree policy
will try to send at once.

• ceil : Maximum rate that a class can send traffic by borrowing rate
from the parent class.

• cburst : Maximum burst that traffic can be sent.

In the example [16] above, we have a root “qdisc handle 1” and two leaves
“qdisc handle 10” and “qdisc handle 20”. The root will apply filters to decide
where a packet should be directed and by default packets are sent to leaf
#20 (default to 20).The leaf #10 has a rate value of 200kbits/s, a ceil value
of of 400kbibts/s (which means it can borrow 200kbits/s more that its rate)
and a priority (prio) of 1.The leaf #20 has a rate value of 200kbits/s, a ceil
value of 200kbbits/s (which means it cannot borrow anything, rate == ceil)
and a priority of 2.
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In this example [16], the bucket for leaf #10 does not contain enough
tokens to let the first packets pass, so it will try to borrow some from its
neighbor leaf #20. The quantum value of leaf #10 is set to the MTU (1500
bytes), which means the maximal amount of data that leaf #10 will try to
send is 1500 bytes. If packet #1 is 1400 bytes large, and the bucket in leaf
#10 has enough tokens for 1000 bytes, then the leaf will try to borrow the
remaining 400 bytes from its neighbor leaf #20.

Figure 2.3 shows that HTB support shaping of the bandwidth and that
a class can use extra bandwidth through borrowing from other classes if it
is available. Further theoretical,configuration details and examples can be
found in [1], [16], [17].
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Chapter 3

Experiments and analysis

This chapter provides an overview of the topology and tools used(section
3.1). Moreover, the configuration of the end hosts and in particular the
configuration of the TCP/IP network stack is depicted in detail in section
3.3. These configurations were needed because using the default values for
send and receive buffers, congestion avoidance algorithm and the network
card would not provide a constant high utilization of the link. Furthermore,
having small send and receive buffers could lead to having higher packet loss
than expected and could affect our experimentation process.

To assess whether the relation between throughput and packet loss on our
experimental environment follows the formula shown in section 2.2 we exe-
cute an experiment with virtual packet loss added and measure the through-
put(section 3.4). This is needed in order to verify and evaluate how packet
loss affects throughput on LFNs and in our particular experimental case sup-
porting the initial observation that small percentage of packet loss can lead
to a high loss in throughput.

In order to evaluate how Linux TC is functioning and to check how TC
and TCP are cooperating we create a single flow with limited bandwidth.
This is depicted in section 3.5. In order to achieve high utilization of the link
when multiple flows exist the bandwidth should be divided between them.
However, high utilization could not be achieved if by using TC the TCP flows
are not able to take over the whole bandwidth part assigned to them or if
they are not able to sustain a constant high throughput. In order to verify
that we create one flow, limit the bandwidth that is assigned to it and then
verify if the throughput is stable and if the flow reaches the bandwidth we
assigned to it.
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This research’s purpose is to evaluate the usage of Linux embedded TC
when more than one TCP flow exists on the same LFP compared to TCP’s
native way of sharing the bandwidth [18]. Therefore, multiple experiments
are run with two TCP flows competing for the LFP. This is depicted in
section 3.6. In order to get a more complete view various configurations
are used(with limited overall bandwidth, full overall link bandwidth, with
priorities/queueing, without priorities/queueing).

3.1 Topology

The topology used for the experiments is depicted in figure 3.1. When traffic
is sent from the sender it goes through the left switch and the router, then
to Chicago,where it is looped and then to the receiver. This adds up delay
so that a LFP is simulated. The RTT is 187 ms and throughout the network
Jumbo frames are used ( 8948 Maximum Segment Size (MSS)). It can be
noticed that the bottleneck of our testbed is between the end-hosts and the
switches.
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Figure 3.1: Experimental Setup, network topology

3.2 Tools

In order to perform the experiments that will lead to determining whether TC
is able to be used instead of only counting on TCP’s native way of sharing the
bandwidth several tools were used. They should provide a way of creating the
TCP flows needed for the experiments, analyse the packets that pass through
the LFP and also, measure the Send and Receive congestion windows in order
to verify,understand and therefore analyse our hypothesis and results.

The tools used for the experiments are :

• Iperf1.

• Tshark/Wireshark2.
1http://code.google.com/p/iperf/
2http://www.wireshark.org/
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• Traffic Control(TC) (see section 2.3).

• netem3.

• Tcp probe4.

Iperf is a commonly used network tool that can create TCP and UDP
data streams and measure the throughput of a network that is carrying them.
In our testbed these streams are sent from the sender to the receiver. Each
iperf client is using one thread and it reports back the bandwidth every 1
second.

Wireshark and its command line edition tshark are free and open-source
packet analysers. In our experiments it is used to measure packet loss and
create the graphs of the throughput of each flow. An example of a wireshark
capture is shown in figure 3.2.

Figure 3.2: Wireshark capture

3http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
4http://www.linuxfoundation.org/collaborate/workgroups/networking/

tcpprobe
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Netem provides Network Emulation functionality for testing protocols by
emulating the properties of wide area networks. The current version emulates
variable delay, loss, duplication and re-ordering. In our experiment it is used
in order to add virtual packet loss to the link. This is needed in order to
verify that in LFPs the relations of packet loss and throughput follows the
Mathis’ formula.

Lastly, TCP probe was used. TCP probe is a module that records the
state of a TCP connection in response to incoming packets. It works by
inserting a hook into the tcp_recv processing path using kprobe so that the
size of the congestion window and sequence number can be captured. As
mentioned, by capturing and analysing the sender’s congestion window, we
could be able to notice whether by using TC higher or lower packet loss was
noticed. An example output is depicted in figure 3.3.

Figure 3.3: TCP Probe example

3.3 Network Tuning Step-by-Step

In this section, the steps needed to tune the end hosts are described in order
to achieve optimal throughput for use with 1 GigE network interfaces. The
default network configuration does not allow us to benefit from the full net-
work pipe because the system TCP/IP stack’s buffer sizes (receive and send
windows) are too small by default in each OS presently on the market (MS
Vista is an exception) and because the MTU size by default is 1500 bytes.
Using an MTU of 9000 bytes (Jumbo Frames) improves network performance
by decreasing overhead.

There has been extensive research on this field which was used as a guide-
line for the values used [19] [20]. The steps are:
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• Customisation of the memory settings buffers for TCP/IP:

### sets min/default/max TCP read buffer, default 4096 87380 174760
net.ipv4.tcp_rmem = 4096 87380 67108864
### sets min/default/max TCP write buffer, default 4096 87380 174760
net.ipv4.tcp_wmem = 4096 65536 67108864
### Since jumbo frames are enabled
net.ipv4.tcp_mtu_probing = 1

• Core Memory Tuning

### Increase the length of the processor input queue,
### default 30000
net.core.netdev_max_backlog = 250000
### Maximum receive socket buffer size, default 131071
net.core.rmem_max = 67108864
### Maximum send socket buffer size, default 131071
net.core.wmem_max = 67108864

• TCP Congestion Avoidance Algorithm

### The suggested congestion control algorithm is htcp ,
### default cubic
net.ipv4.tcp_congestion_control = htcp

• Network Card Interface Configuration

### Disable segmentation offloading on the network interface,
### default on.
### The kernel is performing the segmentation.
ethtool -k ethN tso off
### Change the sending queue size, default 1000
/sbin/ifconfig ethN txqueuelen 10000

• Optional customisations
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### (Optional) Turn SACK support off, default 1
net.ipv4.tcp_sack = 0
### (Optional) Turn TCP timestamp support off, default 1,
### reduces CPU usage
net.ipv4.tcp_timestamps = 0

In our working environment the customisations that are mentioned as
optional were not enabled. Turning Selective Acknowledgements off could
reduce slightly the host processing load but on the other hand, reduce the
maximum throughput which would therefore reduce the utilization of the
link. Furthermore, since the total bandwidth of the link was 1Gbps disabling
the TCP timestamps was not needed because the receiver can handle the load
of the traffic. However, we reckon that for 10Gbps links it would be optimal
as mentioned also in [20].

3.4 Effect of packet loss on network performance

In this experiment virtual packet loss is added in order to evaluate if the
relation between packet loss and throughput is according to the formula
shown in section 2.2. A single TCP flow was created and as the virtual packet
loss was increasing the corresponding throughput was measured using both
iperf reports and tshark/wireshark.

In our working environment the effect of packet loss on network perfor-
mance is depicted in figure 3.4.
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Figure 3.4: Throughput vs Packet Loss

The virtual packet loss is added on both the receiver and sender end-
hosts by using netem, which adds Network Emulation functionality to TC.
Netem is controlled through TC. The added packet loss is specified in the
TC command in percent. It causes that percent of packets to be randomly
dropped. The blue line in figure 3.4 is the measured throughput while the
red is the theoretical throughput according to the Mathis et. al. formula
mentioned in section 2.2. The RTT of the link used is 187ms which was
used in order to calculate the theoretical throughput. Even though this
experiment was run 3 times the results were almost identical and as a result
one plot is given.

From figure 3.4 can be noticed that throughout the experiment the mea-
sured throughput in our experiment is higher that the theoretical throughput
according to Mathis’ formula. Furthermore, the rate with which throughput
is decreasing is substantially less in our experimental setup compared to the
theoretical throughput.

The Netem and TC parameters used are :

### add an ingress qdisc:

25



tc qdisc add dev eth1 ingress
tc filter add dev eth1 parent ffff: protocol ip u32

match u32 0 0 flowid 1:1 action mirred egress
redirect dev ifb1

tc qdisc add dev eth1 root netem loss <loss>
tc qdisc add dev ifb1 root netem loss <loss>

3.5 Creating a constant flow

In order to evaluate how Linux TC is functioning and to check how TC and
TCP are cooperating we create a single flow with limited bandwidth. High
utilization could not be achieved if by using TC the TCP flows are not able
to take over the whole bandwidth part assigned to them or if they are not
able to sustain a constant high throughput. In order to verify that we create
one flow, limit the bandwidth that is assigned to it and then verify if the
throughput is stable and if the can reach the bandwidth assigned to it.

During this research a constant 200Mbps flow was created by using Linux
TC. The throughput of the flow is depicted in figure 3.5.

26



Figure 3.5: Constant rate flow 200Mbps

In order to create the constant TCP flow, both an ingress queueing dis-
cipline and an egress needs to be created using TC. Moreover, two classes
need to be created that limit the bandwidth available and that are children
of the respective queueing disciplines. The configuration needed follows:

### add an ingress qdisc:
tc qdisc add dev eth1 ingress
tc filter add dev eth1 parent ffff: protocol ip u32

match u32 0 0 flowid 1:1 action mirred egress
redirect dev ifb1

### add an HTB qdisc on the egress interface:
tc qdisc add dev eth1 root handle 1: htb default 1
tc class add dev eth1 parent 1: classid 1:1 htb

rate 200Mbit ceil 200Mbit cburst 0 burst 0

### add an HTB qdisc on the ingress interface:
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tc qdisc add dev ifb1 root handle 1: htb default 1
tc class add dev ifb1 parent 1: classid 1:1 htb

rate 200Mbit ceil 200Mbit cburst 0 burst 0

Furthermore, in order to verify if the flow is constant, we make sure that
the congestion window is stable using TCP Probe. This is depicted in figure
3.6.

Figure 3.6: TCP Probe output for constant flow 200Mbps

Figure 3.6 depicts the congestion window(cwnd) and the Slow-Start thres-
hold (ssthresh). It shows that the throughput should be stabilised around
the 30th second. However, according to our report from iperf(figure 3.5) and
wireshark(figure 3.7) the flow reaches the highest throughput at around the
2nd second. This leads us to assume that tcp probe is not reporting as it
should assuming that the packet captures we received from wireshark are
correct (and this is assumed throughout this research cause they appear to
be the most trustworthy).
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Figure 3.7: Throughput(bits/sec) vs Time(sec) - Constant flow
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3.6 More than one flow intermixing using Traf-
fic Control

This section demonstrates the performance of two flows intermixing in the
same link. In the experiments one flow (flow 1 for simplicity reasons) exists
throughout the experiment(0-120 sec) and another flow(flow 2) tries to enter
the network at the twentieth(20) second of the experiments. Flow 2 lasts for
30 seconds. The following sections exhibit the variations in throughput, the
congestion window,the Slow-Start threshold and how many packets of flow 2
manage to be transferred. Furthermore, the amount of packets transferred
from flow 2 is indicated. In the wireshark reports for the amount of packets
transferred, the Displayed packets are the packets of flow 2 that managed to
reach the receiver. Therefore, we can perform a rounded evaluation of the
performance of TCP and TC in each scenario. In all the experiments the iperf
parameters remain the same(the window size is 32Mbyte). This is enough
to achieve the highest throughput because according to the theoretical back-
ground 24510.5 KByte window is enough to achieve 1Gbps throughput.
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3.6.1 Full link,no traffic control, 2 Flows competing for
the bandwidth

In figure 3.8 the overall throughput of the link is depicted(black line) as well
as the throughput of flow 1(green line) and flow 2(red line). The overall
throughput appears to be unstable and this results in lower throughput and
utilisation of the link.

Figure 3.8: Throughput(bits/sec) vs Time(sec)

In figures 3.9 and 3.10 the congestion windows and Slow-Start thresholds
are depicted. Even though, TCP probe reports them to be stable we can see
in the previous figure (3.8) that the throughput is not stable and therefore,
we can assume that TCP probe is not reporting the values for the congestion
window and Slow-Start threshold correctly.
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Figure 3.9: Congestion Window and Slow-Start threshold for flow 1
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Figure 3.10: Congestion Window and Slow-Start threshold for flow 2

Figure 3.11 indicates the amount of packets transferred when 2 flows are
competing for the link. This creates a baseline with which we will compare
the following experiments and draw our conclusions.

Figure 3.11: Number of packets second flow - wireshark report
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3.6.2 Full link,divided in half,with priorities borrowing

In this experiment, the overall bandwidth of the link is divided between the
two flows by using Traffic Control. With priorities and borrowing means
that flow 1 is able to achieve throughput up to 1Gbps(full link throughput)
as long as another flow with higher priority does not exist in the link. If
another flow (flow 2) exists on the link then it can achieve throughput up to
500 Mbps. The overall throughput of the link(black line) and the throughput
of flow 1(green line) and flow 2(red line) are depicted in figure 3.12.

Figure 3.12: Throughput(bits/sec) vs Time(sec)

In figures 3.13 and 3.14 the congestion window and the Slow-Start thresh-
old are depicted for each flow. It can be noticed that around the 20th second
for flow 1, even though the throughput decreases due to the fact that flow 2
started transmitting both the congestion window and the Slow-Start thresh-
olds are stable. This is contradicting which leads us to assume that tcp probe
is erroneous.
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Figure 3.13: Congestion Window and Slow-Start threshold for flow 1
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Figure 3.14: Congestion Window and Slow-Start threshold for flow 2

In figure 3.15 the overall number of packets that were transmitted are
displayed followed by the number of packets that were transmitted for flow
2.

Figure 3.15: Number of packets second flow - wireshark report

3.6.3 Full link,divided 800-200,with priorities borrow-
ing

In this experiment the link is divided in an uneven way. Flow 1 can achieve
up to 1Gbps throughput while flow 2 can achieve up to 200Mbps. Figure
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3.16 indicates the overall throughput and the throughput for each flow.

Figure 3.16: Throughput(bits/sec) vs Time(sec)

From figures 3.17 and 3.18 in comparison to 3.16, it can be deducted
again that as in the previous section congestion window for flow 1 is stable
instead of decreasing around the 20th second. This leads us to disregard
these figures from our conclusions because they appear to be erroneous.
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Figure 3.17: Congestion Window and Slow-Start threshold for flow 1
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Figure 3.18: Congestion Window and Slow-Start threshold for flow 2

In figure 3.19 the overall number of packets that were transmitted are
displayed followed by the number of packets that were transmitted for flow
2.

Figure 3.19: Number of packets second flow - wireshark report
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3.6.4 Full link,divided 800-200,without priorities bor-
rowing

In this experiment, the overall bandwidth is divided statically between the
two flows. Flow 1 can achieve up to 800Mbps throughput without taking
into account if another flow exists on the link. On the other hand, Flow 2
can achieve up to 200Mbps.

Figure 3.20: Throughput(bits/sec) vs Time(sec)

In figures 3.21 and 3.22 the congestion window and the Slow-Start thresh-
olds can be noticed for each flow. As far as figure 3.21 is concerned, the
congestion window appears to increase until the 20th second. However, it
can seen in the wireshark graph that flow 1 has reached a stable throughput
in the first 5 seconds and then stabilised. Furthermore, figure 3.22 indicate
that the congestion window was increasing from the 20th second to approxi-
mately the 46th second. However, it appears to be erroneous in comparison
to the throughput reported for flow 2 in the figure 3.20.
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Figure 3.21: Congestion Window and Slow-Start threshold for flow 1
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Figure 3.22: Congestion Window and Slow-Start threshold for flow 2

In figure 3.23 the overall number of packets transferred is indicated as
well as the number of packets transferred for flow 2.

Figure 3.23: Number of packets second flow - wireshark report
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3.6.5 Link limited to 400Mbps,no further traffic con-
trol,2 flows competing

In order to fully evaluate how TCP performs in correlation with the Traffic
Control that is embedded in the Linux Kernel we limit the overall throughput
of the link to 400Mbps and we leave the two flows to compete for the band-
width. This creates a baseline and provides further information whether TC
provides a stable way of creating limited throughput flows with TC. Figure
3.24 depicts the overall throughput of the link (black line), the throughput
achieved by flow 1 (green line) and by flow 2(red line).

Figure 3.24: Throughput(bits/sec) vs Time(sec)

Figure 3.25 depicts the congestion window and Slow-Start threshold for
flow 1. Even though the congestion window appears to drop during the
40th second it should also drop during the 20th second when the bandwidth
assigned to this flow was being limited by TC due to the fact that flow 2 was
starting to transmit packets.
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Figure 3.25: Congestion Window and Slow-Start threshold for flow 1

Figure 3.26 is again erroneous because even though there was a decrease
in throughput after the 45th second as shown in the wireshark graph, the
congestion window kept increasing.
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Figure 3.26: Congestion Window and Slow-Start threshold for flow 2

In figure 3.27 the overall number of packets that were transmitted are
displayed followed by the number of packets that were transmitted for flow
2.

Figure 3.27: Number of packets second flow - wireshark report
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3.6.6 Link limited to 400Mbps,divided in half,with pri-
orities borrowing

Figure 3.28 depicts the overall throughput and the throughput for each flow
respectively. Furthermore, figures 3.29 3.30 3.31 depict the congestion win-
dow, the Slow-Start threshold and the number of packets from flow 2 that
are received from the receiver.

Figure 3.28: Throughput(bits/sec) vs Time(sec)

In figures 3.29 and 3.30 the congestion window and the Slow-Start thresh-
olds are depicted for each flow. It can be noticed that around the 20th second
for flow 1, even though the throughput decreases due to the fact that flow 2
started transmitting both the congestion window and the Slow-Start thresh-
olds are stable. This is contradicting which leads us to assume that tcp probe
is erroneous.
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Figure 3.29: Congestion Window and Slow-Start threshold for flow 1

47



Figure 3.30: Congestion Window and Slow-Start threshold for flow 2

In the following figure the overall amount of packets transferred during
this experiment followed by the number of packets transferred for the second
flow.

Figure 3.31: Number of packets second flow - wireshark report
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3.6.7 Link limited to 400Mbps,divided 300-100,with pri-
orities borrowing

The following figures depict how the two flows behave when the bandwidth
is divided in an uneven way using TC. As with the previous experiments
figures 3.33 and 3.34 which were created by using tcp probe appear to be
erroneous.

Figure 3.32: Throughput(bits/sec) vs Time(sec)
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Figure 3.33: Congestion Window and Slow-Start threshold for flow 1
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Figure 3.34: Congestion Window and Slow-Start threshold for flow 2

In figure 3.35 the overall number of packets transferred is indicated as
well as the number of packets transferred for flow 2.

Figure 3.35: Number of packets second flow - wireshark report

51



3.7 Overview of results

Through these experiments, it can be deducted that it is possible to create a
constant flow with limited bandwidth through TC which has high utilization
of the part of the link assigned to it and constant throughput (section 3.5).
Moreover, intermixing flows using TC can be more stable and achieve higher
overall throughput for the link(section section 3.6). In the graphs that were
plotted by using the wireshark packet captures (3.8, 3.12, 3.16, 3.20, 3.24,
3.28, 3.32) it can be seen that when TCP is responsible for sharing/dividing
the bandwidth of the link the overall throughput is less than using TC and
pre-assigning the bandwidth of the link to the flows . However, TC increases
the complexity because of the configuration needed in order to divide traffic
into classes while TC works natively. Hence, it can be used effectively in
limited situations, such as in networks where the number of the TCP flows
is known beforehand. An example of a network which behaves like that is a
database network.

Furthermore, from table 3.1 can be deducted that the overall number of
packets that are transferred is more when TC is used to divide the bandwidth
for both flows, when the full link bandwidth is used and when bandwidth
is divided equally between the flows. This is compared to the experiment
without TC and can be seen in the first column of the table. Figures 3.19
and 3.23 indicate that, as expected, if static bandwidth division is used the
total number of packets transferred is going to be less. This is expected
because in the experiment without static division the first flow is allowed to
borrow the bandwidth of the full link while with static division it can use up
to the assigned bandwidth(800Mbps). However, an increase in the number
of packets transferred for the second flow is indicated. This is probably due
to the fact that when priorities/borrowing is enabled there is a delay caused
by the need to reduce the available bandwidth for flow 1. As a result, flow
2 is able to reach the highest throughput later than when static division is
used(figure 3.20 and figure 3.16).

Lastly, TCP probe reports for all the experiments appear to be erroneous.
Even though according to the wireshark reports packet losses happen the
window size doesn’t change as it should (drop and then rise again). Due to
the limited time of this research why that has happened was not determined.

52



Wireshark results
Full link bandwidth utilized

No traffic Control
Overall Packets Flow 2 Packets Flow 1 Packets(%) Flow 2 Packets(%)

1255719 80265 93,6 6,3
With TC, Divided in half, with priorities and borrowing

1277522 80570 93,6 6,3
Divided 800-200 with priorities-borrowing

1271193 37012 97,1 2,9
Divided 800-200 without priorities-borrowing

1097496 40766 96,3 3,7
Link bandwidth limited to 400Mbps

Divided in half with priorities-borrowing
583193 37803 93,5 6,5

Divided 300-100 with priorities-borrowing
598630 18993 96,9 3,1

Table 3.1: Overview of packets sent during the experiments
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Chapter 4

Conclusions

Through this research we tried to answer the following research questions:

How can we achieve constant throughput and high utilisation of the link,
while intermixing small and large TCP flows?

During this research project Linux TC was evaluated in comparison with
the native bandwidth division for multiple flows from the TCP protocol. It
can be deducted from the results that in specific occasions such as when the
full link is used and we have 2 flows on the link, TC can provide a more stable
division of the bandwidth, sustain high throughput(3.7) and high utilization
of the link.

However, using TC demands complicated configuration and complete
knowledge of the flows that exist in the network which does not scale well
for much more than two flows. This limits the potential usage and counters
some of the advantages of using TC instead of the native bandwidth division
algorithm from TCP protocol.

What changes should be made in the configuration of the Linux TCP
network stack to achieve the highest throughput?

In order to achieve the highest possible throughput we have to change
the memory settings buffer for the TCP/IP network stack, change the length
of the processor’s input queue and configure the Network Card Interface to
allow the kernel to perform the segmentation and to alter the sending queue
size. These are depicted in section 3.3 with more details.

What effect does packet loss have on throughput?
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From figure 3.4 in section 3.4 can be noticed that throughout the exper-
iment the measured throughput in our experiment is higher that the theo-
retical throughput according to Mathis’ formula. Furthermore, the rate with
which throughput is decreasing is substantially less in our experimental setup
compared to the theoretical throughput.

How can already existing traffic shaping techniques be used in order to
provide a better throughput on the link with less packet loss?

From section 3.6 we can deduct that :

• By using TC better utilisation of the link is achieved when full link is
used.

• There is a small deviation on the bandwidth allocation when using TC.

• The throughput of the intermixed flows is more stable when TC was
used, instead of leaving only the mechanisms of TCP take care of the
division of the bandwidth.

4.1 Discussion

This research project’s purpose was to evaluate if queue management mech-
anisms such as the Linux embedded TC could be used in order to lower the
number of packet lost during a connection between two hosts. This is done
through assigning pre-defined bandwidth to different flows, measuring the
number of packets transferred and drawing our conclusions. However, this
configuration demands complete knowledge of the traffic that goes through
the network and familiarisation with the already existing mechanisms that
TCP offers in order to be able to do a comparison.

Furthermore, we tried to configure the network so that we could achieve
as high utilization as possible. This was done according to various references
and was based on our experimental setup. With these configuration we could
achieve high stable throughput with or without TC in use. It is reasonable,
however, that these configuration choices were for our experimental setup
and should change in case end hosts’ hardware or link is different than ours.

The throughput versus packet loss was evaluated in this research. It
was noticed that throughput did not decrease as rapidly as Mathis’ formula
would suggest and that the overall throughput was always higher. However,
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this could be because Mathis’ formula was created with an older version of
TCP implementation in mind. However, we can see the effect of the various
enhancements from older versions of TCP to HTCP that was used in our
experimental setup and which is suggested by our references as the optimal
one for LFNs.

Moreover, in all the experiments tcp probe was used in order to get the
congestion window. In all the cases, it appeared to not be working as it
should. There are various cases where even though packet captures show that
throughput is not stable. In these cases, we were expecting that a packet loss
occured and therefore the congestion window should drop. However, this is
not the case and we cannot provide an answer why it happens.

Despite the limitations of TC, it can be a powerful tool in certain oc-
casions such as a Database network where all the flows are controlled and
scheduled. It would provide the same , if not better overall throughput than
the native TCP bandwidth division mechanism and would add the flexibility
to manually assign the desired bandwidth to specific flows or even to give
them priority.

4.2 Further research

Using TC is a very interesting way of distributing the overall bandwidth
to multiple flows. However, it is open to much more research in order to
completely evaluate if it is a viable solution in order to avoid packet loss or
variation in the overall throughput achieved especially when more than two
flows are intermixed in a link. Further research could be performed by:

• Creating an Openflow monitored testbed and the forwarding rules needed
in order utilise the links fully

• Intermixing more than two flows

• Changing the TCP implementation instead of only altering parameters
in order for it to cooperate better with the Traffic Control policies or
even avoid them altogether.
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