
Forensic DHCP Information Extraction from Home Routers
Memory Forensics on SOHO / Enduser Embedded Routing and Gateway Systems

University of Amsterdam

Tobias Fiebig (tobias.fiebig@os3.nl)

August 6, 2013

Abstract

This document explores the feasibility and
admissibility of a so far unrecognized source for
digital evidence. The extraction of a suspect’s
home router’s main memory to obtain valuable
evidence is proposed and implemented. This
method aims at providing time lines of devices
appearing in a home network, and therefore
possibly in that home, along with their owner.
The technique is implemented and tested on the
standards of modern volatile memory forensics.
The results show that the proposed method is
viable and may be extended to a wide range of
devices.

Keywords: Volatile Memory; Forensics; DHCP;
Home Router;

1 Introduction

At least in the European Union, the consumer
broadband Internet access has seen a huge growth
in recent years. Undoubtedly this growth will con-
tinue within reasonable bounds [25].

To enable an end-user to use multiple de-
vices behind his designated broadband connec-
tion, most Western Internet Service Providers
(ISPs) equip their customers with dedicated de-
vices that handle the broadband connection as
well as the distribution of the connection to the lo-
cal network 1.

This is usually accomplished by employ-
ing a local RFC1918 [21] addressing schema,
which is managed by the provided device us-
ing the Dynamic Host Configuration Protocol
(DHCP) [6]. Connectivity to the Internet is then es-
tablished by performing Network Address Trans-
lation (NAT) [24] on the provided device.

1Called Customer Premise Equipment (CPE) by ISPs

Common protocols for establishing the connec-
tions with local clients include IEEE 802.1(z) [19, 9]
and IEEE 802.11(abgn) [32, 33, 35].

These devices are usually referenced as SOHO
or End-user Routers, or, more fitting to their ac-
tual functionality of providing gateway services
between the protocols used in the local network
and the protocols used on the broadband link, as
gateways. This document will further reference
them just as home routers.

As home routers handle and control the local
network traffic in their associated network seg-
ment, they may be a viable target during a foren-
sic investigation. This document will explore these
possibilities.

1.1 Related Work

Home routers usually employ either a MIPS [18]
or ARM [10] based architecture [8] along with a
dedicatedly tailored firmware. These devices are
generally considered embedded devices.

Due to common challenges for embedded de-
vice development and necessities associated there-
with, the Joint Test Action Group (JTAG) IEEE
1149.1 [16] was developed. Breeuwsma et. al. [4]
investigated in 2006 how this port can be utilized
for the forensic imaging of embedded devices and
whether these ports are sufficiently accessible in
available devices to allow for a common use of
these during forensic investigations. They con-
cluded that this method of access is a viable option
for the acquisition of non volatile internal memory
like for example the flash storage of a device [4].

In 2010, Roeloffs and Van Eijk [31] investigated
the use of JTAG techniques to forensically extract
the Random Access Memory (RAM) of TomTom
GPS navigation systems [31]. Although they were
unable to acquire large amounts of qualitative
data, this is the first attempt of extracting RAM

1

mailto:tobias.fiebig@os3.nl

from an embedded device via JTAG for forensic
purposes known to the author of this document.

This spans the arc to memory forensics on
home routers. While investigations on the ex-
traction of forensic information from penetrated
and abused home routers already have been con-
ducted [28, 29] and a considerable amount of work
has been put into the acquisition of network foren-
sic information from home routers fully controlled
by the investigator [15], a transfer of the tech-
niques presented by Roeloffs and Van Eijk on
TomTom systems to a general approach viable for
home routers has not yet been conducted.

This research will attempt a first step into the
direction of a universal forensic technique, allow-
ing the utilization of volatile memory on home
routers during a forensic investigation aimed at
the owner of said device. To sufficiently scope the
research at hand, the area of research will be lim-
ited to the investigation of the presence of specific
devices within a Local Area Network (LAN) con-
trolled by a single home router.

2 Hypothesis

Due to the known limitations of flash based stor-
age [3] the author of this paper assumes that all rel-
evant state information in regard to the previously
mentioned RFC1918 [21] address propagation via
DHCP [6] are kept in memory.

These state recordings, commonly called lease
files, are necessary for the functionality of the
DHCP. For each device associated with the net-
work, the home router is responsible for they
have to contain at least the Media Access Control
(MAC) address of a client device as well as the
time stamp of the last address assignment oper-
ation and the assigned Internet Protocol (IP) ad-
dress [6].

Hence it is the author’s hypothesis that from
the information extracted from the main memory
of a home router a timeline can be established,
showing the association and disassociation of de-
vices in a forensically viable manner.

Therefore this research will conduct a set of ex-
plorations and experiments allowing the verifica-
tion of said hypothesis.

2.1 Contribution to the Field

If the proposed hypothesis can be validated, pres-
ence of a certain device at a certain place at a cer-
tain time can be established. In the light of recent
developments in the mobile phone sector the pres-
ence of a specific mobile device in a network can
be associated with the presence of the owner in the
vicinity of the network devices.

Investigators may be able to utilize this infor-
mation to indicate association between two per-
sons, one being the owner of a certain identified
device, the other one being the owner of the router
device.

As this technique utilizes the JTAG port of a de-
vice, no cooperation from the legitimate owner of
a home router is necessary.

If the approach succeeds, the door to further
investigations of the memory contents of home
router devices is opened.

3 Forensic Requirements

The restriction of conducting the proposed re-
search in a forensically sound manner imposes
various constraints on the methods that may be
applied. While some are only relevant during
a real criminal investigation and are composed
mostly of procedures that have to be implemented
during the handling of the evidence produced by
and the data the evidence is produced of, some
have to be incorporated into the method itself.

While these aspects will be briefly discussed
here, the following section will cover how each
of the constraints contemplated here has been ad-
dressed in the design process of the developed
methodology.

If the requirements can not be implemented in
the proposed method, this section will cover why
this is not the case, and how a procedure that
would have to be implemented during a real crim-
inal investigation could satisfy the constraints nev-
ertheless.

This summary of requirements is mostly based
on the work of Vömel and Freiling [34], who re-
cently published a detailed analysis of the con-
straints that have to be implemented during a
volatile memory acquisition. Furthermore, an as-
pect of legal proceedings, the reproducibility of the
extraction of evidence, will be covered.

2

3.1 Correctness and Completeness

The first constraint set for a forensically viable
volatile memory image determined by Vömel and
Freiling consists of correctness and completeness.

According to Vömel and Freiling, an acquired
memory image may be considered complete and
correct, if and only if all values set in the physical
memory are conserved as is, that means unmodi-
fied, to the created image [34, p. 131], and if and
only if it holds that all values that were present
in the source physical memory if and only if they
have been present in said source memory [34, p.
131].

Although an image may be partially correct
but not complete, if it does not contain all values
present in the physical memory, but those values it
holds are correct, an image that is not fully correct
can not be complete [34, p. 131].

3.2 Atomicity

The second constraint of Vömel and Freiling is the
atomicity of a memory image. Following their def-
inition [34, Definition 5, p.132] a memory image
may be considered atomic, if and only if the cre-
ated image represents the state of all processes op-
erating on the physical memory at the same point
in time [34, p.132].

More direct, this is only the case if all intrin-
sic processes of the surveyed system are simulta-
neously frozen and no further changes to the state
of all memory regions occurs by those processes
before the memory is read.

Hence, if the first N regions of memory have
been read as they were at time point T , all sub-
sequent memory regions have to be read in the
state they have been during T , i.e. no modifica-
tions to the memory regions may have been per-
formed by concurrently performed operations on
the target [34, p.132].

3.3 Integrity

The third and last constraint introduced by Vömel
and Freiling is the integrity of a memory image. A
created memory image may therefore be consid-
ered to have integrity, if and only if the content of
all memory regions is preserved in the same state
relative to a fixed time point prior to the operations
performed to recover the image [34, Definition 6,
p.132].

Simply put, the memory acquisition process
may not alter the memory of a target. If the mem-
ory of a target is altered, those sections altered by
the acquisition process have to be recognized as
altered by the acquisition utility and hence their
integrity is tainted.

This also implies that a memory image may in
fact provide a partial integrity.

3.4 Reproducibility

Digital Evidence used in a court of law has to have
been produced in a reproducible manner. If infor-
mation is extracted from something, may it be De-
oxyribonucleic acid (DNA) or in this case an In-
formation Technology system, the defendant has
to be able to contract his own independent expert
witness, who can re-evaluate the peoples claims
about a piece of evidence.

Naturally, this is a severe issue in the case
of information extracted from a systems memory,
which according to Farmer and Venema ranges on
their Order of Volatility (OOV) on the second most
volatile rank with an expected life span of around
10 nanoseconds [7, p. 6].

While in general an image of the memory con-
tent is produced during the initial investigation,
which may be permanently archived and used for
the investigation, the reproducibility of the process
is commonly limited.

In their 2006 paper, Sutherland et. al. ap-
proached this issue by recommending following
a procedure proposed in the “Directors and corpo-
rate advisors’ guide to digital investigations and evi-
dence” [23], which recommends that the process of
extraction is documented and observed by an in-
dependent eye-witness [26].

Such a witness may then - according to [23] -
be interrogated in court, allowing the testing of
the witnesses recollections of the evidence extrac-
tion, supporting the claim that the process was not
tainted.

Sutherland et. al. compare this process with
the interrogation of a traffic police officer during a
court case handling a traffic violation observed by
said officer [26, p. 67].

4 Method

As it was not possible to investigate the validity of
the hypothesis on all home routers available in the

3

Figure 1: Equipped eJTAG header on a 1043ND.

market due to the vast amount of different solu-
tions from different vendors, a single devices was
chosen for a proof of concept implementation.

4.1 Investigated Device

The device that was chosen is the TP-Link
1043ND2, a small IEEE 802.1z capable de-
vice, which also allows clients to connect via
IEEE 802.1[abgn].

This device was chosen due to its easy avail-
ability in the laboratory. Furthermore, it uses a
MIPS instruction set based Central Processing Unit
(CPU). The Extended JTAG standard (eJTAG) Ver-
sion 2.6 present in the MIPS architecture allows
easy access to the system’s main memory [18]. The
specific central processing unit used in this model
is the Atheros AR9132-BC1E which is a member of
the AR71xx family.

4.2 Physical Interconnect

The eJTAG interface present on the TP-Link
1043ND was used to extract the system’s running
memory. To interface with the eJTAG port, the ini-
tially not accessible pin-out of the TP-Link 1043ND
was equipped with a 2x7 pin row as shown in Fig-
ure 1.

This port was utilized to connect a standard PC
with the 1043ND via a so called unbuffered Xilinx
DLC5 Cable [36]. This cable is a fully passive con-
nection, hence eliminates possible issues for the
correctness of the obtained memory image as de-
scribed in Section 3.1 due to the performance of

2http://www.tp-link.com/en/products/details/
?model=TL-WR1043ND

Figure 2: A DLC5 Cable is used to connect a TP-
Link 1043ND with a standard PC.

operations in the programmable logic of an more
advanced cable.

A schema of the logical connections for that
cable as described in [36] can be found in Ap-
pendix A.

The cable was then interfaced with the 1043ND
and a standard PC’s parallel port (LTP) as seen in
Figure 2, which was used to perform the data re-
covery tasks.

4.3 Extraction Software

To interface with the 1043ND over the eJTAG port,
a special JTAG software is necessary. Due to
its overall good documentation, the author chose
OpenOCD3 [20] for this project.

The used OpenOCD version, OpenOCD 0.7.0,
was compiled only with support for a DLC5 par-
allel port interface.

In conjunction with the distribution supplied
information and configuration file for AR71xx
based chip-sets, OpenOCD can be utilized to ex-
tract the random access memory of a running de-
vice.

The stock OpenOCD does provide the possibil-
ity of extracting bulk chunks of memory. How-
ever, it does so by instructing the Memory Man-
agement Unit (MMU) of the CPU to deliver the de-
sired memory contents. This is an issue for most
of the constraints defined by Vömel and Freiling.
Hence a method has to be implemented, that al-
lows for the direct extraction of memory content
from the device, without requiring active partici-
pation of any part of the device.

3http://openocd.sourceforge.net/

4

http://www.tp-link.com/en/products/details/?model=TL-WR1043ND
http://www.tp-link.com/en/products/details/?model=TL-WR1043ND
http://openocd.sourceforge.net/

As the eJTAG utilized for MIPS generally sup-
ports this [18], it should be possible to add this
functionality to OpenOCD. In 2010 Timo Juhani
Lindfors published a patch to an earlier version
of OpenOCD4 that allows MMU bypassed mem-
ory access. This patch can also be found in Ap-
pendix B.

As a newer OpenOCD version was utilized for
the development of the method at hand, the patch
had to be adjusted. The adjusted patch can be
found in Appendix C.

4.4 Extraction Process

To extract the memory of the 1043ND the first
step is issuing a halt command to the CPU with
OpenOCD. This command sent via the JTAG in-
terface immediately halts the execution of all in-
structions on the CPU.

In the next step OpenOCD is instructed to ex-
tract the the memory of this device in MMU by-
pass mode. Based on the supplied boot mes-
sages found on a serial console attached to the
1043ND and information obtained from the U-
Boot boot-loader source code5 the logical memory
offset was established to be 0x80000000. The size
of the physical memory in the 1043ND is 32MB
0x2000000, limited by the extends of the built-in
chip.

With the applied physical dump patch
OpenOCD will actually extract from
0xA0000000, the physical memory location [27,
p. 42ff], effectively bypassing the MMU.

Hence the command dump_image phys
img.bin 0x80000000 0x2000000 is send to
OpenOCD. The memory image is extracted and
then saved in the current working directory of
OpenOCD with the filename supplied during the
extraction process, in this case img.bin. The
average speed during this process is around 0.65
KiB per second.

5 Validation

The proposed method has to hold up to the previ-
ously presented fundamentals of volatile memory
forensic to be admissible during a forensic investi-
gation. Hence it will be thoroughly investigated

4http://lists.berlios.de/pipermail/
openocd-development/2010-November/017278.html

5http://www.denx.de/wiki/U-Boot

if the method complies with the presented con-
straints, and if it does not fully comply with those
constraints, in how far the possible issues reduce
the admissibility.

5.1 Correctness

The correctness of the method is highly dependent
on the correctness of the OpenOCD source code.
Although the original intention of OpenOCD
was not forensic soundness, the initial developer
aimed at a tool that “[...] never displays wrong or
inaccurate information” [20, p. 38].

Even if this claim is not evaluated within the
thesis documenting the initial development of
OpenOCD, the author of this document assumes
that this requirement is fulfilled by OpenOCD, as
it would diminish the usability of a debugger if it
was unfulfilled. This assumption has to be made
during this research, as the thorough investigation
of the source code would exceed the scope of this
project.

Another important aspect of correctness, not
mentioned in the 2012 paper of Vömel and Freil-
ing is the question whether what is found in the
physical memory of a device is actually correct.

Extensive research on the impact of cosmic rays
on integrated circuits has been performed in the
last decades [5, 14, 37, 12].

While the flipping of single bits does not nec-
essarily pose an issue in a normal volatile mem-
ory forensic investigation, the proposed method
is highly focused on the correctness of a specific,
small set of bits without additional parity infor-
mation. Although events that may alter those bits
are considerably sparse, they may become an issue
during a forensic investigation.

Specifically, Ibe et. al. could establish in viable
simulations that the process of down-scaling of
chips increases the cosmic ray induced soft-error
frequency. Their simulations found an increase
of factor 6-7 for a migration step from 130nm to
22nm [12]. With the progressing decrease in chip
size these issues hence may become more prob-
lematic.

Furthermore, it has been indicated in the liter-
ature that the altitude of a location has a consider-
able impact on the amount of observed soft errors
due to an increase in the neutron flux [30].

Although these issues can not be denied, they
are not investigated in-depth in the research at
hand, as this would violate the intended scope of

5

http://lists.berlios.de/pipermail/openocd-development/2010-November/017278.html
http://lists.berlios.de/pipermail/openocd-development/2010-November/017278.html
http://www.denx.de/wiki/U-Boot

the project. Further research on this matter will be
advised in a later section of this document.

5.2 Completeness

The memory image created from the running de-
vice is complete, given the method itself is also cor-
rect, if all bytes present in the physical memory are
also written to the memory image.

The memory image is obtained starting from
the previously known offset of the physical mem-
ory. The amount of bytes read exactly equals the
storage capacity in the utilized physical memory
chip6.

Hence, if the previously made assumptions
hold, the proposed method is complete.

5.3 Atomicity

As previously described, the atomicity of an ac-
quired memory snapshot is highly important [34].
Furthermore, the preserving of atomicity in the
memory image acquisition process on full scale
x86 based systems is a considerable challenge [22].

On the MIPS based system at hand however,
this challenge is merely a minor issue. Although
the extraction process is considerably slow - the
extraction of one image of 32MB takes roughly 14
hours - the initial step of interrupting and freezing
all processing performed on the CPU of the sys-
tem ensures that no program running on that CPU
is able to perform any operation on any memory
area.

Therefore, even if atomicity is not ensured by
the image creation process itself, but instead by
a small action prior to the execution process, the
atomicity of the obtained memory snapshot is pre-
served.

5.4 Integrity

The last constraint for a forensically viable volatile
memory image is the integrity of said image. As
previously described, a memory image has in-
tegrity, if and only if each of its subsets have the
same state as exactly prior to the start of the ac-
quisition process, i.e. if and only if the memory
acquisition method does not alter the memory of
the target system in its process.

6For reference: WINBOND W9425G6JH-5

Sadly OpenOCD requires a subset of the targets
memory for its own processes if extended opera-
tions are performed on the system. Although ac-
cording to the OpenOCD manual those operations
do not include the simple memory extraction oper-
ations [1], it can not be finally be debarred, that the
integrity of those memory areas has been tainted.

5.5 Reproducibility

As with most volatile memory forensics tech-
niques, the general reproducibility of this method
is highly limited. Procedural techniques as dis-
cussed in Section 3.4 may provide a sufficient doc-
umentation of the supplied method, so the repro-
ducibility can be disregarded within the same pa-
rameters discussed for traditional volatile memory
forensics methods.

Furthermore, if required in the specific case,
more advanced methods could be implemented.
Due to the small dimensions and the compara-
tively low power consumption of a device, it might
be possible to conserve the device in halted state
for extended time periods, if a constant power sup-
ply can be ensured. To implement such a power
transfer, a utility similar to the one documented in
US Patent 8,076,798 might be used [17].

5.6 Practical Image Verification

Besides the previously performed theoretical val-
idation of the method, two other approaches for
validating an obtained memory image have been
tested.

The first approach is based on the work of In-
oue, Adelstein and Joyce on self similarity in mem-
ory images and aims at the verification of the cor-
rectness of the proposed method. In 2011 Inoue,
Adelstein and Joyce proposed the application of
techniques known from biology to memory im-
ages [13]. They noticed that the presence of large
amounts of self similarities within a memory im-
age may yield that it is tainted. They researched
the applicability of dotplots used in biology to il-
lustrated self similarities to the analysis of mem-
ory images. To create such a dotplot, each page
of a memory image7 is plotted against every other
page of the image. The intersection is marked, if
and only if those two pages are identical and the
corresponding pages do not both consist of known
initialization values of memory. Inoue, Adelstein

74k on MIPS32

6

MAC Address Hostname
52:54:00:40:f8:7b death
52:54:00:c1:02:83 luggage
52:54:00:74:68:4d poons
52:54:00:5c:af:ca ridcully
52:54:00:6f:b0:32 rincewind
52:54:00:90:58:05 stibbons
52:54:00:00:ad:04 twoflower
52:54:00:d5:4e:33 vimmes

Table 1: List of used hosts with their associated
MAC addresses.

and Joyce found that this method from biology
is applicable to memory images and allows for
the detection of tainted image acquisition tech-
niques [13].

This technique proposed by Inoue, Adelstein
and Joyce has been applied to memory images
obtained with the method proposed by the au-
thor. One of the obtained dotplots can be seen
in Figure 3. During the creation of the dotplot,
all pages that contained only values related to
memory initialization have been ignored. In this
case these were pages exclusively containing ei-
ther 0x00, 0xFF , 0x55 or 0xAA.

The presented dotplot clearly shows no sig-
nificant self similarity. This supports the conclu-
sion of the theoretical evaluation that the proposed
method is correct in a forensic context.

The second practical validation approach is re-
lated to the theoretical validation of the integrity of
the proposed method. The higher the integrity of
the method, the more similarity should exist be-
tween two images, subsequently taken from the
same source.

Ideally both images should be identical bitwise.

The author performed those subsequent mem-
ory extractions two times. Both times the two
images extracted within one process were bitwise
identical.

5.7 Summary

After theoretically evaluating the previously pos-
tulated requirements for a forensically sound
memory acquisition technique, the proposed
method may be considered sufficiently viable in a
forensic context.

A short practical evaluation further strengthens
the theoretically obtained conclusions. Hence the

Figure 4: Schematic representation of the setup
used for testing the proposed method.

author assumes the proposed method viable for
a forensic memory extraction of volatile memory
from home routers.

Therefore, the practical testing of the previ-
ously postulated hypothesis regarding the ex-
tractability of DHCP lease file information is the
next step.

6 Empirical Verification

To empirically test the practical feasibility of the
proposed method, the already presented TP-Link
1043ND was incorporated in an automated test
setup. The setup would transparently simu-
late various scenarios and then extract the device
memory with the proposed method. The extracted
memory image can then be investigated.

As the simulated scenario is known prior to the
investigation of the extracted memory images, the
results of the investigation can be compared to the
actual events, providing a metric of efficiency for
this method.

6.1 Experiment Setup

The setup consisted of four main elements as
shown in Figure 4. The core of the setup was
the TP-Link 1043ND. A virtual machine server
was connected to the internal network ports of the
router, providing the virtual machines mimicking
the network clients of the home router. A sec-
ondary system was connected to the JTAG port of
the 1043ND and finally a Racktivity Remote Power
Switch Unit8 provided the capability of remotely
switching the 1043ND on and off, i.e. resetting it
to the initial state.

8http://www.racktivity.com/

7

Figure 3: Dotplot showing self-similarity between pages in a memory image obtained by the author.
The axis show the index of the corresponding pages.

The initial state in this case means that every-
thing is powered off.

6.2 Data Acquisition

The experiments were then conducted using the
Python script supplied in Appendix D. For each it-
eration of a simulated scenario, the whole setup
would first be reset. This means that all virtual
machines are stopped, and the home router was
powered off for 120 seconds to erase all possible
artifacts in memory that may survive a short cold
or even hot reset of the device. The time-frame of
120 seconds was chosen, as research on cold boot
attacks by Halderman et. al. suggests that the
bits stored in modern SRAM chips decay to a state
where non of the initial data is left after 50 seconds
on standard operation temperature9 [11]. Hence
the power-off time of 120 seconds should ensure
that no patterns are left in the memory after a reset
of the device.

After the initial setup reset, the 1043ND would
be powered on. Based on the settings for each sce-

925.5◦C to 44.1◦C in the experiments of Halderman et. al.

nario the virtual machines would then be powered
on and off at will.

In total eight different scenarios were created
for the purpose of this experiment. The timelines
of the actual events can be found in Appendix E.
These timelines are all relative to the initial power-
on of the device. A rough outline of the conducted
experiments can be found in Table 2

7 Results

During the investigation of the memory images
from the 1043ND, it was discovered that the de-
vice seems to hold the lease file not on a memory
filesystem as expected, but instead directly in the
DHCP process’ memory.

An example excerpt can be found in Ap-
pendix I. The first 48bit on line 0x01f691f0 e.g.
show the beginning of the entry for one host, start-
ing with the recognizable vendor id part of KVM
hosts’ MAC addresses, 52:54:00:XX:XX:XX.

When compared with the MAC addresses used
in the experiment as listed in Table 1, it becomes

8

Scenario Description
adv-test-1-4 boot 1 host, shutdown, wait 4h, dump memory
adv-test-1-8 boot 1 host, shutdown, wait 8h, dump memory
adv-test-8-4 boot 8 hosts, shutdown, wait 4h, dump memory
adv-test-8-8 boot 8 hosts, shutdown, wait 8h, dump memory
plain-test-4 boot 4 hosts, dump memory
plain-test-8 boot 8 hosts, dump memory

complex boot 3 hosts, wait 1.25h, boot 3 hosts, shutdown 2 hosts, wait 12h, dump memory

Table 2: Overview of the simulated scenarios.

even more obvious, it can be observed that the
data found in the presented excerpt actually cor-
responds to the MAC addresses of hosts used in
the experiments.

Although an extraction of the information
would be possible, another angle of approach was
found. The 1043ND firmware also logs the DHCP
server related events to the system console. The
content of said console can be found as plain ASCII
values within the created memory dumps. An
example of those loglines can be found in Ap-
pendix H.

As plain strings can be handled more easily, the
syslog information was used for the timeline esti-
mation.

Furthermore, issues with the global time corre-
lation of the events taking place on the device were
discovered. The model at hand seems to be unable
to synchronize its local time with sources from the
Internet. Hence no relation between real time and
device relative time is easily possible.

Although tools like e.g. volatility10 support the
extraction of the uptime, which could be used to
establish a connection between the real and the de-
vice time, support for MIPS based memory dumps
is not present.

To preserve the scope of this project, a different
approach was taken, to estimate the overall device
run time. As previously mentioned, the device
system log information can be found in memory.
To estimate the uptime, the oldest as well as the
newest entry in the extracted syslog are used. The
difference between the two points in time is then
considered to be the uptime of the device. In con-
junction with the known external time of the de-
vice, halt events with known device relative time
can then be correlated to real times.

The extraction of information was conducted
with a Python script designed specifically for this

10http://code.google.com/p/volatility/

purpose. This script can be found in Appendix G.
The script creates visual and textual representa-
tions of the extracted timelines. Tables showing
those timelines can be found in Appendix F.

From the created timelines, four different met-
rics were extracted.

1. Correctly detected clients.
2. Correctly detected join-time.
3. Amount of MACs in DHCPD memory.
4. Amount of false positives.

The detection rate of all clients is the count of all
hosts that were used in a scenario and have been
detected in the image.

The detection accuracy of device join-time is
the amount of hosts where the detected network
join-time corresponds to the host’s boot time. Due
to the boot process, a timeframe of 120 seconds is
accepted as slack.

The amount of false positives consists of all
hosts that have been determined to be present
from the memory dump, although they have not
been present, and the list of host in memory are all
hosts for which MAC addresses have been found
in the memory region suspected to hold the DHCP
lease file. The latter operation has been performed
manually.

7.1 Extracted Information

The two simple scenarios show a very good detec-
tion rate of the connected hosts. All hosts used in
the experiment could also be identified in the asso-
ciated memory dump using the developed tooling.

The four advanced scenarios show far more dif-
ferent results. While the presence of a single host
with only one active host overall was reliably de-
tected even after four and seven hours, the detec-
tion rate in the case of seven hosts being present
was considerably low.

9

http://code.google.com/p/volatility/

Scenario Detection Rate Accuracy Hosts In-Memory False Positives Total Hosts
adv-test-1-4 1 1 1 0 1
adv-test-1-8 1 1 1 0 1
adv-test-8-4 2 2 8 0 8
adv-test-8-8 2 2 8 0 8
plain-test-4 4 4 4 0 4
plain-test-8 8 8 8 0 8
complex 6 3 6 0 6

Table 3: Results for the seven scenarios in the three different metrics.

This may however be related to the choice of
the system log messages as data-source. A manual
investigation of the corresponding memory im-
ages could produce the MAC addresses of all hosts
utilized in this experiment from the memory. As
expected, based on the previous observation all
of them resided in coherent block of the memory
dump, which is therefore assumed to belong to the
DHCP server process on the home router.

The complex test, in which a more complicated
set of events was created, could be identified in so
far, that there was no occurrence of a host being de-
termined to be present during a timeframe when
it was in fact not present, i.e. no false positives oc-
curred.

Furthermore, an estimate of when a host was
present could be established.

To summarize the results, it can be held up that
timelines could be created for various scenarios.
Although some weaknesses exist on older data,
these may be avoidable by utilizing more aspects
of the memory resource.

8 Conclusion

The obtained results show that the proposed
method is viable. The method did not - very im-
portantly - show false positives. In all cases all
relevant hosts could be identified, either with the
implemented method or with easily possible ex-
tensions. Further more the data extracted from the
memory dumps allows the creation of admissible
timelines within reasonable bounds.

Hence the initially postulated hypothesis, that
information extracted from the main memory of a
home router should allow the creation of a time-
line showing the association and disassociation of
devices in a forensically viable manner, can be con-
sidered to be confirmed.

The proposed method is viable and should be

implementable for all available home routing de-
vices that have an accessible eJTAG or JTAG port.

Although the base hypothesis has been con-
firmed, further research and engineering work is
necessary to produce a market ready solution that
allows the collection of forensically sound evi-
dence from home routers.

8.1 Further Work

Many different chip-sets and firmware versions
exist on the market. The investigation of these
devices, how to interface with their specific JTAG
ports - ideally in a soldering free manner11 - and
the creation of dedicated, tailored extraction util-
ities for all of these devices is probably the most
important step.

This creation process also includes the investi-
gation of different lease file formats and their ex-
tractability and informational value. As indicated
in the results section, an additional incorporation
of the actual lease file in the DHCP servers mem-
ory may have significantly increased the reliability
and accuracy of the proposed method.

Furthermore, different angles of extractable in-
formation should be the matter of further research,
as the overall impact of home router memory
forensics could be highly increased by incorporat-
ing additional sources of information.

Home routing devices conduct various opera-
tions that may be of forensic interest and might al-
low a significant leap during the investigation of a
case. Many devices do not only provide network-
ing capabilities, but also further operations like
Dynamic Name System (DNS) caching-resolver
services or printing services.

These devices also handle all network traffic of
a specific network segment. Due to the implemen-

11A technique discussed on the Internet in 2009 may be viable
here: http://www.usbjtag.com/vbforum/showpost.
php?p=18571

10

http://www.usbjtag.com/vbforum/showpost.php?p=18571
http://www.usbjtag.com/vbforum/showpost.php?p=18571

tation specifics of NAT, the devices have to keep
state for all connections performed via them [24].
In their 2011 paper, Beverly et. al. provided ev-
idence that those network structures may be ex-
tracted from memory images, even hours after
they actually happened [2].

An investigation like this could allow the deter-
mination of connections performed by devices that
already have been shut down or removed from the
vicinity before the investigation.

8.2 Defense Mechanisms

The matter of defending against this method is im-
portant, as this method might also be used by un-
lawful regimes against legitimate interests.

A defense against the presented methods is
complicated. The DHCP lease information has
to be stored somewhere. While dedicated sys-
tems with strict on-disk lease files and sophisti-
cated measures against key extraction from mem-
ory via cold-boot attacks as described by Halder-
man et. al. [11] might be viable for a very small set
of technologically advanced subjects, this does not
help against this issue for most average customers.

A defense system for the masses could most
probably only be implemented, if version 6 of the
Internet Protocol, which allows a stateless address
auto configuration, is used in conjunction with
IPv6 privacy extensions, which masks the specific
device identifier of a certain system.

That way no state has to be kept on a device,
hence the target for possibly extractable informa-
tion is highly reduced.

The most promising defense method is, how-
ever, the physical removal of JTAG access or dis-
abling thereoff in the chip.

Acknowledgments

Thomas Roth - For his support on Architectures.
Andreas Schuster - For feedback and supervision.

References

[1] OpenOCD User’s Guide 0.8.0-dev,
Section 11.3, 2013.
http://openocd.sourceforge.net/
doc/html/CPU-Configuration.html,
accessed: Tue Jun 25 19:17:33 CEST 2013.

[2] Robert Beverly, Simson Garfinkel, and Greg
Cardwell. Forensic carving of network pack-
ets and associated data structures. Digital In-
vestigation, 8:S78–S89, 2011.

[3] Roberto Bez, Emilio Camerlenghi, Alberto
Modelli, and Angelo Visconti. Introduction
to flash memory. Proceedings of the IEEE,
91(4):489–502, 2003.

[4] Ing Breeuwsma et al. Forensic imaging of
embedded systems using JTAG (boundary-
scan). Digital Investigation, 3(1):32–42, 2006.

[5] V Degalahal, R Ramanarayanan, N Vijaykr-
ishnan, Y Xie, and MJ Irwin. The effect
of threshold voltages on the soft error rate
[memory and logic circuits]. In 5th Interna-
tional Symposium on Quality Electronic Design,
2004. Proceedings., pages 503–508. IEEE, 2004.

[6] R. Droms. Dynamic Host Configuration Pro-
tocol. RFC 2131 (Draft Standard), March 1997.
Updated by RFCs 3396, 4361, 5494, 6842.

[7] Dan Farmer and Wietse Venema. Forensic Dis-
covery. Addison-Wesley Reading, 2005.

[8] Robert Swope Fleming. The end of the Intel age.
PhD thesis, Massachusetts Institute of Tech-
nology, 2011.

[9] Howard Frazier. The 802.3z gigabit Ethernet
standard. IEEE Network, 12(3):6–7, 1998.

[10] Steve B Furber. ARM system Architecture.
Addison-Wesley Longman Publishing Co.,
Inc., 1996.

[11] J Alex Halderman, Seth D Schoen, Nadia
Heninger, William Clarkson, William Paul,
Joseph A Calandrino, Ariel J Feldman, Jacob
Appelbaum, and Edward W Felten. Lest we
remember: cold-boot attacks on encryption
keys. Communications of the ACM, 52(5):91–98,
2009.

[12] Eishi Ibe, Hitoshi Taniguchi, Yasuo Yahagi, K-
i Shimbo, and Tadanobu Toba. Impact of scal-
ing on neutron-induced soft error in SRAMs
from a 250 nm to a 22 nm design rule. IEEE
Transactions on Electron Devices, 57(7):1527–
1538, 2010.

[13] Hajime Inoue, Frank Adelstein, and Robert A
Joyce. Visualization in testing a volatile mem-
ory forensic tool. Digital Investigation, 8:S42–
S51, 2011.

11

http://openocd.sourceforge.net/doc/html/CPU-Configuration.html
http://openocd.sourceforge.net/doc/html/CPU-Configuration.html

[14] Tanay Karnik and Peter Hazucha. Character-
ization of soft errors caused by single event
upsets in CMOS processes. IEEE Transactions
on Dependable and Secure Computing, 1(2):128–
143, 2004.

[15] Zhongli Liu, Yinjie Chen, Wei Yu, and Xinwen
Fu. Generic network forensic data acquisition
from household and small business wireless
routers. In 2010 IEEE International Symposium
on a World of Wireless Mobile and Multimedia
Networks (WoWMoM), pages 1–6. IEEE, 2010.

[16] Colin M Maunder and Rodham E Tulloss.
The test access port and boundary-scan architec-
ture. IEEE Computer Society Press Los Alami-
tos/Washington, DC, 1990.

[17] Dean L Mehler and James P Wiebe. Uninter-
ruptible a/c power supply transfer unit, De-
cember 13, 2011. US Patent 8,076,798.

[18] MIPS Technologies Inc. MIPS32
4KE™Processor Core Family Software User’s
Manual. MIPS Technologies Inc., 2002.

[19] Jon Postel and Joyce K Reynolds. Standard
for the transmission of IP datagrams over
IEEE 802 networks. 1988.

[20] Dominic Rath. Open On-Chip Debugger,
2008.

[21] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J.
de Groot, and E. Lear. Address Allocation
for Private Internets. RFC 1918 (Best Current
Practice), February 1996. Updated by RFC
6761.

[22] Bradley Schatz. BodySnatcher: Towards reli-
able volatile memory acquisition by software.
Digital Investigation, 4:126–134, 2007.

[23] Peter Sommer. Directors and corporate advi-
sors’ guide to Digital Investigations and evi-
dence. 2005.

[24] P. Srisuresh and M. Holdrege. IP Network
Address Translator (NAT) Terminology and
Considerations. RFC 2663 (Informational),
August 1999.

[25] Ryszard Struzak. Broadband internet in EU
countries: limits to growth. IEEE Communica-
tions Magazine, 48(4):52–57, 2010.

[26] Iain Sutherland, Jon Evans, Theodore Try-
fonas, and Andrew Blyth. Acquiring
volatile operating system data tools and tech-
niques. ACM SIGOPS Operating Systems Re-
view, 42(3):65–73, 2008.

[27] Dominic Sweetman. See MIPS run. Morgan
Kaufmann, 2010.

[28] Patryk Szewczyk. ADSL Router Forensics
Part 1: An introduction to a new source
of electronic evidence. In Australian Digital
Forensics Conference, page 13, 2007.

[29] Patryk Szewczyk. ADSL Router Forensics
Part 2: Acquiring Evidence. 2009.

[30] Yoshiharu Tosaka, Ryozo Takasu, Taiki Ue-
mura, Hideo Ehara, Hideya Matsuyama, Shi-
geo Satoh, Atsushi Kawai, and Masahiko
Hayashi. Simultaneous measurement of soft
error rate of 90 nm cmos sram and cosmic ray
neutron spectra at the summit of mauna kea.
In IEEE International Reliability Physics Sympo-
sium, 2008. IRPS 2008., pages 727–728. IEEE,
2008.

[31] Onno Van Eijk and Mark Roeloffs. Forensic
acquisition and analysis of the Random Ac-
cess Memory of TomTom GPS navigation sys-
tems. Digital Investigation, 6(3):179–188, 2010.

[32] Richard Van Nee, Geert Awater, Masahiro
Morikura, Hitoshi Takanashi, Mark Webster,
and Karen W Halford. New high-rate wire-
less LAN standards. IEEE Communications
Magazine, 37(12):82–88, 1999.

[33] Dimitris Vassis, George Kormentzas, Angelos
Rouskas, and Ilias Maglogiannis. The IEEE
802.11g standard for high data rate WLANs.
IEEE Network, 19(3):21–26, 2005.

[34] Stefan Vömel and Felix C Freiling. Correct-
ness, atomicity, and integrity: Defining cri-
teria for forensically-sound memory acquisi-
tion. Digital Investigation, 9(2):125–137, 2012.

[35] Yang Xiao. IEEE 802.11 n: enhancements for
higher throughput in wireless LANs. IEEE
Wireless Communications, 12(6):82–91, 2005.

[36] Xilinx Inc. JTAG Programmer Guide, Ap-
pendix B, 1999.

[37] James F Ziegler, HW Curtis, HP Muhlfeld,
CJ Montrose, B Chin, M Nicewicz, CA Rus-
sell, WY Wang, LB Freeman, P Hosier, et al.
IBM experiments in soft fails in computer
electronics (1978–1994). IBM journal of research
and development, 40(1):3–18, 1996.

12

A DLC5 Xilinx Cable Simple Version

Figure 5: Schematics of the used simplified DLC5 Cable. The graphic is based on an image by
the user “RealOpty” in the OpenWRT Wiki (http://wiki.openwrt.org/doc/hardware/port.
jtag.cable.unbuffered) viewed on Mon Jul 1 21:15:41 CEST 2013.

13

http://wiki.openwrt.org/doc/hardware/port.jtag.cable.unbuffered
http://wiki.openwrt.org/doc/hardware/port.jtag.cable.unbuffered

B Unmodified Version of the OpenOCD DMA Patch

1 diff --git a/doc/openocd.texi b/doc/openocd.texi
2 index 70d789a..1b75f94 100644
3 --- a/doc/openocd.texi
4 +++ b/doc/openocd.texi
5 @@ -5731,9 +5731,12 @@ Otherwise, or if the optional @var{phys} flag is specified,
6 @cindex image dumping
7
8 @anchor{dump_image}
9 - at deffn Command {dump_image} filename address size

10 -Dump @var{size} bytes of target memory starting at @var{address} to the
11 -binary file named @var{filename}.
12 + at deffn Command {dump_image} [phys] filename address size
13 +Dump @var{size} bytes of target memory starting at @var{address} to
14 +the binary file named @var{filename}. When the current target has an
15 +MMU which is present and active, @var{addr} is interpreted as a
16 +virtual address. Otherwise, or if the optional @var{phys} flag is
17 +specified, @var{addr} is interpreted as a physical address.
18 @end deffn
19
20 @deffn Command {fast_load}
21 diff --git a/src/target/target.c b/src/target/target.c
22 index 93efa76..5cc1e6a 100644
23 --- a/src/target/target.c
24 +++ b/src/target/target.c
25 @@ -1393,12 +1393,22 @@ int target_write_buffer(struct target *target, uint32_t address,

uint32_t size,
26 * mode respectively, otherwise data is handled as quickly as
27 * possible
28 */
29 -int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t

*buffer)
30 +static int target_read_buffer2(struct target *target, uint32_t address, uint32_t size,

uint8_t *buffer, bool physical)
31 {
32 int retval;
33 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
34 (int)size, (unsigned)address);
35
36 + int (*read_fn)(struct target *target,
37 + uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
38 + if (physical)
39 + {
40 + read_fn=target_read_phys_memory;
41 + } else
42 + {
43 + read_fn=target_read_memory;
44 + }
45 +
46 if (!target_was_examined(target))
47 {
48 LOG_ERROR("Target not examined yet");
49 @@ -1420,7 +1430,7 @@ int target_read_buffer(struct target *target, uint32_t address, uint32_t

size, u
50
51 if (((address % 2) == 0) && (size == 2))
52 {
53 - return target_read_memory(target, address, 2, 1, buffer);
54 + return read_fn(target, address, 2, 1, buffer);
55 }
56
57 /* handle unaligned head bytes */
58 @@ -1431,7 +1441,7 @@ int target_read_buffer(struct target *target, uint32_t address, uint32_t

size, u
59 if (unaligned > size)
60 unaligned = size;
61
62 - if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)

14

63 + if ((retval = read_fn(target, address, 1, unaligned, buffer)) != ERROR_OK)
64 return retval;
65
66 buffer += unaligned;
67 @@ -1444,7 +1454,7 @@ int target_read_buffer(struct target *target, uint32_t address, uint32_t

size, u
68 {
69 int aligned = size - (size % 4);
70
71 - if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
72 + if ((retval = read_fn(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
73 return retval;
74
75 buffer += aligned;
76 @@ -1456,7 +1466,7 @@ int target_read_buffer(struct target *target, uint32_t address, uint32_t

size, u
77 if(size >=2)
78 {
79 int aligned = size - (size%2);
80 - retval = target_read_memory(target, address, 2, aligned / 2, buffer);
81 + retval = read_fn(target, address, 2, aligned / 2, buffer);
82 if (retval != ERROR_OK)
83 return retval;
84
85 @@ -1467,13 +1477,18 @@ int target_read_buffer(struct target *target, uint32_t address,

uint32_t size, u
86 /* handle tail writes of less than 4 bytes */
87 if (size > 0)
88 {
89 - if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
90 + if ((retval = read_fn(target, address, 1, size, buffer)) != ERROR_OK)
91 return retval;
92 }
93
94 return ERROR_OK;
95 }
96
97 +int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t

*buffer)
98 +{
99 + target_read_buffer2(target, address, size, buffer, false);

100 +}
101 +
102 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t*

crc)
103 {
104 uint8_t *buffer;
105 @@ -2605,6 +2620,12 @@ COMMAND_HANDLER(handle_dump_image_command)
106 struct duration bench;
107 struct target *target = get_current_target(CMD_CTX);
108
109 + bool physical=strcmp(CMD_ARGV[0], "phys")==0;
110 + if (physical)
111 + {
112 + CMD_ARGC--;
113 + CMD_ARGV++;
114 + }
115 if (CMD_ARGC != 3)
116 return ERROR_COMMAND_SYNTAX_ERROR;
117
118 @@ -2622,7 +2643,7 @@ COMMAND_HANDLER(handle_dump_image_command)
119 {
120 size_t size_written;
121 uint32_t this_run_size = (size > 560) ? 560 : size;
122 - retval = target_read_buffer(target, address, this_run_size, buffer);
123 + retval = target_read_buffer2(target, address, this_run_size, buffer, physical);
124 if (retval != ERROR_OK)
125 {
126 break;

15

127 @@ -5305,7 +5326,7 @@ static const struct command_registration target_exec_command_handlers[]
= {

128 .name = "dump_image",
129 .handler = handle_dump_image_command,
130 .mode = COMMAND_EXEC,
131 - .usage = "filename address size",
132 + .usage = "[’phys’] filename address size",
133 },
134 {
135 .name = "verify_image",
136 --
137 1.7.2.3

16

C Modified Version of the OpenOCD DMA Patch

1 diff --git a/openocd-0.7.0/src/target/target.c b/openocd-0.7.0/src/target/target.c
2 index ed1a2cc..870d757 100644
3 --- a/openocd-0.7.0/src/target/target.c
4 +++ b/openocd-0.7.0/src/target/target.c
5 @@ -1758,11 +1758,22 @@ static int target_write_buffer_default(struct target *target, uint32_t

address,
6 * mode respectively, otherwise data is handled as quickly as
7 * possible
8 */
9 -int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t

*buffer)
10 +static int target_read_buffer2(struct target *target, uint32_t address, uint32_t size,

uint8_t *buffer, bool physical)
11 {
12 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
13 (int)size, (unsigned)address);
14
15 +// int (*read_fn)(struct target *target,
16 +// uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
17 + if (physical)
18 + {
19 + read_fn=target_read_phys_memory;
20 + } else
21 + {
22 + read_fn=target_read_memory;
23 + }
24 +
25 +
26 if (!target_was_examined(target)) {
27 LOG_ERROR("Target not examined yet");
28 return ERROR_FAIL;
29 @@ -1787,7 +1798,7 @@ static int target_read_buffer_default(struct target *target, uint32_t

address, u
30 int retval = ERROR_OK;
31
32 if (((address % 2) == 0) && (size == 2))
33 - return target_read_memory(target, address, 2, 1, buffer);
34 + return read_fn(target, address, 2, 1, buffer);
35
36 /* handle unaligned head bytes */
37 if (address % 4) {
38 @@ -1796,7 +1807,7 @@ static int target_read_buffer_default(struct target *target, uint32_t

address, u
39 if (unaligned > size)
40 unaligned = size;
41
42 - retval = target_read_memory(target, address, 1, unaligned, buffer);
43 + retval = read_fn(target, address, 1, unaligned, buffer);
44 if (retval != ERROR_OK)
45 return retval;
46
47 @@ -1810,6 +1821,7 @@ static int target_read_buffer_default(struct target *target, uint32_t

address, u
48 int aligned = size - (size % 4);
49
50 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
51 + retval = read_fn(target, address, 4, aligned / 4, buffer);
52 if (retval != ERROR_OK)
53 return retval;
54
55 @@ -1821,7 +1833,8 @@ static int target_read_buffer_default(struct target *target, uint32_t

address, u
56 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
57 if (size >= 2) {
58 int aligned = size - (size % 2);
59 - retval = target_read_memory(target, address, 2, aligned / 2, buffer);
60 + retval = read_fn(target, address, 2, aligned / 2, buffer);

17

61 +
62 if (retval != ERROR_OK)
63 return retval;
64
65 @@ -1831,7 +1844,7 @@ static int target_read_buffer_default(struct target *target, uint32_t

address, u
66 }
67 /* handle tail writes of less than 4 bytes */
68 if (size > 0) {
69 - retval = target_read_memory(target, address, 1, size, buffer);
70 + retval = read_fn(target, address, 1, size, buffer);
71 if (retval != ERROR_OK)
72 return retval;
73 }
74 @@ -1839,6 +1852,11 @@ static int target_read_buffer_default(struct target *target, uint32_t

address, u
75 return ERROR_OK;
76 }
77
78 +int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t

*buffer)
79 +{
80 + return target_read_buffer2(target, address, size, buffer, false);
81 +}
82 +
83 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t*

crc)
84 {
85 uint8_t *buffer;
86 @@ -2888,6 +2906,14 @@ COMMAND_HANDLER(handle_dump_image_command)
87 struct duration bench;
88 struct target *target = get_current_target(CMD_CTX);
89
90 + bool physical=strcmp(CMD_ARGV[0], "phys")==0;
91 + if (physical)
92 + {
93 + CMD_ARGC--;
94 + CMD_ARGV++;
95 + }
96 +
97 +
98 if (CMD_ARGC != 3)
99 return ERROR_COMMAND_SYNTAX_ERROR;

100
101 @@ -2910,7 +2936,7 @@ COMMAND_HANDLER(handle_dump_image_command)
102 while (size > 0) {
103 size_t size_written;
104 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
105 - retval = target_read_buffer(target, address, this_run_size, buffer);
106 + retval = target_read_buffer2(target, address, this_run_size, buffer, physical);
107 if (retval != ERROR_OK)
108 break;
109
110 @@ -5650,7 +5676,7 @@ static const struct command_registration target_exec_command_handlers[]

= {
111 .name = "dump_image",
112 .handler = handle_dump_image_command,
113 .mode = COMMAND_EXEC,
114 - .usage = "filename address size",
115 + .usage = "[’phys’] filename address size",
116 },
117 {
118 .name = "verify_image",
119 diff --git a/openocd-0.7.0/src/target/target.h b/openocd-0.7.0/src/target/target.h
120 index e6b931d..00d6925 100644
121 --- a/openocd-0.7.0/src/target/target.h
122 +++ b/openocd-0.7.0/src/target/target.h
123 @@ -587,4 +587,8 @@ void target_handle_event(struct target *t, enum target_event e);
124
125 extern bool get_target_reset_nag(void);

18

126
127 +/* adding definition for read_fn */
128 +int (*read_fn)(struct target *target, uint32_t address, uint32_t size, uint32_t count,

uint8_t *buffer);
129 +
130 +
131 #endif /* TARGET_H */

19

D Utility for Automated Method Tests

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 import warnings
5 warnings.filterwarnings("ignore")
6
7 import sys
8 import os
9 import re

10 import telnetlib
11 import libvirt
12 import time
13 import datetime
14 import subprocess
15 #import tempfile
16 #from optparse import OptionParser
17
18 libvirt_domains = [’ridcully’, ’vimmes’, ’death’, ’rincewind’, ’poons’, ’luggage’,

’twoflower’, ’stibbons’]
19 ram_offset = 0x80000000
20 ram_size = 0x2000000
21 #ram_size = 0x2000
22 debug = False
23
24 # global log directive
25 def log(str_f, line):
26 now = datetime.datetime.now()
27 f = open(’./logs/’+str_f, "a+")
28 f.write(str(now) + ": " + line + "\n")
29 print str_f+": " + str(now) + ": " + line
30
31 def print_percent(str_file):
32 f_max = float(ram_size / 1024)
33 f_cur = 0
34 cur_pref = 0
35 stale_counter = 0
36
37 print "processing "+str_file+" : "
38 while f_cur < f_max:
39 proc = subprocess.Popen(["du ~/ocd/"+str_file], stdout=subprocess.PIPE, shell=True)
40 (out, err) = proc.communicate()
41
42 f_cur = float(out.strip().split()[0])
43
44 f_per = (f_cur/f_max * 100)
45
46 sys.stdout.flush()
47 sys.stdout.write("["+"#"*int(f_per * 0.78)+" "*int((100-int(f_per-1))*0.78) +"]

"+str(round(f_per,2))+"%\r")
48 sys.stdout.flush()
49 time.sleep(1)
50 if cur_pref == f_cur:
51 stale_counter = stale_counter + 1
52 elif cur_pref < f_cur:
53 stale_counter = 0
54 if stale_counter > 60:
55 f_cur = f_max
56 print ""
57
58 def print_percent_sleep(s_time):
59 f_max = float(s_time)
60 f_cur = 0.0
61 while f_cur <= f_max:
62 f_per = (f_cur/f_max * 100)
63 sys.stdout.flush()
64 sys.stdout.write("["+"#"*int(f_per * 0.78)+" "*int((100-int(f_per-1))*0.78) +"] cur:

"+str(f_cur)+"s ("+str(round(f_per,2))+"%)\r")

20

65 sys.stdout.flush()
66 time.sleep(1)
67 f_cur = f_cur + 1
68 print ""
69
70
71 # racktivity controll section
72 def set_port(str_host, str_port, str_user, str_pass, str_unit, int_port, int_state):
73 ret = "Port "+str(int_port)+" on "+str_unit+" set to "+str(int_state)+": "
74 tn = telnetlib.Telnet(str_host, str_port)
75 tn.read_until("Login: ")
76 tn.write(str_user + "\n")
77 tn.read_until("Password: ")
78 tn.write(str_pass + "\n")
79
80 tn.read_until("Login successful.")
81
82 tn.write("\n")
83 tn.read_until("Login: ")
84 tn.write(str_user + "\n")
85 tn.read_until("Password: ")
86 tn.write(str_pass + "\n")
87
88 tn.read_until("PROMPT>")
89
90
91 tn.write("SET "+str(str_unit)+" PORTSTAT "+str(int_port)+" "+str(int_state)+"\n")
92 tn.read_until("\n")
93 ret += tn.read_until("\n").strip()
94 tn.read_until("PROMPT>")
95 tn.write("LOGOUT\n")
96
97 tn.read_until("Command OK:")
98 tn.close()
99 return ret

100
101 def port_on(int_port):
102 return set_port(’192.168.23.2’, ’2001’, ’USERNAME’, ’PASSWORD’, ’P1’, int_port, 1)
103
104 def port_off(int_port):
105 return set_port(’192.168.23.2’, ’2001’, ’USERNAME’, ’PASSWORD’, ’P1’, int_port, 0)
106
107 # memory aquisition
108 def get_mem_generic(str_host, str_port, str_file_prfx, hex_offset, hex_size):
109 ret = ""
110
111 str_file =

str_file_prfx+"-"+str(hex(hex_offset)).strip(’L’)+"-"+str(hex(hex_size)).strip(’L’)+".bin"
112
113 tn = telnetlib.Telnet(str_host, str_port)
114 tn.read_until(">")
115 tn.write("reset\n")
116 tn.read_until(">")
117 tn.write("halt\n")
118 tn.read_until(">")
119 tn.write("dump_image phys "+str_file+" "+str(hex(hex_offset)).strip(’L’)+"

"+str(hex(hex_size)).strip(’L’)+"\n")
120 print_percent(str_file)
121 tn.read_until("\n")
122 ret = tn.read_until("\n")
123 tn.read_until(">")
124 tn.write("exit\n")
125 tn.close()
126
127 return ret.strip() + " to: "+str_file
128
129 def get_mem(str_file_prfx, hex_offset, hex_size):
130 return get_mem_generic(’127.0.0.1’, ’4444’, str_file_prfx, hex_offset, hex_size)
131
132 # libvirt controlls

21

133 def libvirt_test():
134 conn=libvirt.open("qemu+tcp://192.168.23.1/system")
135 print conn.numOfDomains()
136 print conn.listDefinedDomains()
137 print conn.listDomainsID()
138 conn.close()
139
140 def lv_start_n(number):
141 conn=libvirt.open("qemu+tcp://192.168.23.1/system")
142 vms = conn.listDefinedDomains()
143 ret = []
144 for idx in range(0,number):
145 d = conn.lookupByName(vms[idx])
146 ret.append(vms[idx])
147 d.create()
148 return ret
149
150 def lv_stop_all():
151 conn=libvirt.open("qemu+tcp://192.168.23.1/system")
152 ret = "Stopped "+str(conn.numOfDomains())+" domains."
153 ids = conn.listDomainsID()
154 for dom in ids:
155 d = conn.lookupByID(dom)
156 d.destroy()
157 conn.close()
158 return ret
159
160 def lv_stop_host(host):
161 conn=libvirt.open("qemu+tcp://192.168.23.1/system")
162 ret = "Stopped "+host
163 d = conn.lookupByName(host)
164 d.destroy()
165 conn.close()
166 return ret
167
168 # utility functions
169 def reset():
170 ll = "reseting setup"
171 log("generic.txt", ll)
172 ll = port_off(1)
173 log("generic.txt", ll)
174 ll = lv_stop_all()
175 log("generic.txt", ll)
176 if not debug:
177 log("generic.txt", "Sleeping for 120s")
178 print_percent_sleep(120)
179 else:
180 log("generic.txt", "Sleeping for 10s")
181 print_percent_sleep(10)
182
183 def test_plain(int_hosts):
184 ll = port_on(1)
185 log("plain-test-"+str(int_hosts)+"-hosts.txt", ll)
186
187 if not debug:
188 hosts = lv_start_n(int_hosts)
189 ll = "started: "+str(hosts)
190 log("plain-test-"+str(int_hosts)+"-hosts.txt", ll)
191
192 log("plain-test-"+str(int_hosts)+"-hosts.txt", "Sleeping for 460s")
193 print_percent_sleep(460)
194 else:
195 log("plain-test-"+str(int_hosts)+"-hosts.txt", "Sleeping for 20s")
196 print_percent_sleep(20)
197
198 ll = get_mem("plain-test-"+str(int_hosts)+"-hosts", ram_offset, ram_size)
199 log("plain-test-"+str(int_hosts)+"-hosts.txt", ll)
200
201 def test_adv(int_hosts, int_dist):
202 ll = port_on(1)

22

203 log("adv-test-"+str(int_hosts)+"-"+str(int_dist)+"-hosts.txt", ll)
204
205 if not debug:
206 hosts = lv_start_n(int_hosts)
207 ll = "started: "+str(hosts)
208 log("adv-test-"+str(int_hosts)+"-"+str(int_dist)+"-hosts.txt", ll)
209
210 log("adv-test-"+str(int_hosts)+"-"+str(int_dist)+"-hosts.txt", "Sleeping for 460s")
211 print_percent_sleep(460)
212
213 ll = lv_stop_all()
214 log("adv-test-"+str(int_hosts)+"-"+str(int_dist)+"-hosts.txt", ll)
215
216 sleep = int_dist * 3600
217 log("adv-test-"+str(int_hosts)+"-"+str(int_dist)+"-hosts.txt", "Sleeping for

"+str(sleep)+"s")
218 print_percent_sleep(sleep)
219 else:
220 log("plain-test-"+str(int_hosts)+"-hosts.txt", "Sleeping for 20s")
221 print_percent_sleep(20)
222
223 ll = get_mem("adv-test-"+str(int_hosts)+"-"+str(int_dist)+"-hosts", ram_offset, ram_size)
224 log("adv-test-"+str(int_hosts)+"-"+str(int_dist)+"-hosts.txt", ll)
225
226 def test_complex():
227 ll = port_on(1)
228 log("complex-test.txt", ll)
229
230 hosts = lv_start_n(3)
231 ll = "started: "+str(hosts)
232 log("complex-test.txt", ll)
233
234 log("complex-test.txt", "Sleeping for 4600s")
235 print_percent_sleep(4600)
236
237 hosts2 = lv_start_n(3)
238 ll = "started: "+str(hosts2)
239 log("complex-test.txt", ll)
240
241 ll = lv_stop_host(hosts[1])
242 log("complex-test.txt", ll)
243
244 ll = lv_stop_host(hosts[2])
245 log("complex-test.txt", ll)
246
247 log("complex-test.txt", "Sleeping for 43200s")
248 print_percent_sleep(43200)
249
250 ll = get_mem("complex-test", ram_offset, ram_size)
251 log("complex-test.txt", ll)
252
253 ## main method of experiment
254 def main():
255 # reset everything. Shutdown all vms, unpower the device.
256 reset()
257
258 for cnt in range(1,9):
259 test_plain(cnt)
260 reset()
261
262 for cnt in range(1,9):
263 for cnt2 in range(1,9):
264 test_adv(cnt,cnt2)
265 reset()
266
267 if not debug:
268 test_complex()
269 reset()
270
271 main()

23

E Real Event Timelines Extracted from Logs

E.1 adv-test-1-4

Time 52:54:00:5C:AF:CA
1 up

462 down
14879 memory dump

Table 4: Experiment Setting: One host is powered up and runs for approximately 460 seconds. Four
hours later a memory dump is created.

E.2 adv-test-1-8

Time 52:54:00:5C:AF:CA
0 up

462 down
29293 memory dump

Table 5: Experiment Setting: One host is powered up and runs for approximately 460 seconds. Eight
hours later a memory dump is created.

E.3 plain-test-4

Time 52:54:00:40:f8:7B 52:54:00:5C:AF:CA 52:54:00:6F:B0:32 52:54:00:D5:4E:33
2 up up up up

463 memory dump

Table 6: Experiment Setting: Four hosts are booted. Approximately eight minutes later a memory dump
is created.

24

E.4 adv-test-8-4

Time 52:54:00:00:AD:04 52:54:00:40:f8:7B 52:54:00:5C:AF:CA 52:54:00:6F:B0:32 52:54:00:74:68:4D 52:54:00:90:58:05 52:54:00:C1:02:83 52:54:00:D5:4E:33
5 up up up up up up up up

469 down down down down down down down down
14884 memory dump

Table 7: Experiment Setting: Eight hosts are powered up and runs for approximately 460 seconds. Four hours later a memory dump is created.

E.5 adv-test-8-8

Time 52:54:00:00:AD:04 52:54:00:40:f8:7B 52:54:00:5C:AF:CA 52:54:00:6F:B0:32 52:54:00:74:68:4D 52:54:00:90:58:05 52:54:00:C1:02:83 52:54:00:D5:4E:33
5 up up up up up up up up

468 down down down down down down down down
29299 memory dump

Table 8: Experiment Setting: Eight hosts are powered up and runs for approximately 460 seconds. Eight hours later a memory dump is created.

25

E.6 complex

Time 52:54:00:40:f8:7B 52:54:00:5C:AF:CA 52:54:00:6F:B0:32 52:54:00:74:68:4D 52:54:00:C1:02:83 52:54:00:D5:4E:33
1 up up up

4609 up up up down
4610 down

47855 memory dump

Table 9: Experiment Setting: Three hosts are initially powered up. Approximately 1.25 hours later two of them are powered down and three new hosts
are booted.

E.7 plain-test-8

Time 52:54:00:00:AD:04 52:54:00:40:f8:7B 52:54:00:5C:AF:CA 52:54:00:6F:B0:32 52:54:00:74:68:4D 52:54:00:90:58:05 52:54:00:C1:02:83 52:54:00:D5:4E:33
5 up up up up up up up up

466 memory dump

Table 10: Experiment Setting: Eight hosts are booted. Approximately eight minutes later a memory dump is created.

26

F Event Timelines as Extracted from Memory dumps

F.1 adv-test-1-4

Time 52:54:00:5C:AF:CA
45 DISCOVER
46 REQUEST

14883 memory dump

Table 11: Experiment Setting: One host is powered up and runs for approximately 460 seconds. Four
hours later a memory dump is created.

F.2 adv-test-1-8

Time 52:54:00:5C:AF:CA
52 DISCOVER
53 REQUEST

29283 memory dump

Table 12: Experiment Setting: One host is powered up and runs for approximately 460 seconds. Eight
hours later a memory dump is created.

F.3 plain-test-4

Time 52:54:00:D5:4E:33 52:54:00:5C:AF:CA 52:54:00:6F:B0:32 52:54:00:40:F8:7B
39 DISCOVER
40 REQUEST
43 DISCOVER
44 DISCOVER
45 REQUEST DISCOVER REQUEST
46 REQUEST
482 memory dump

Table 13: Experiment Setting: Four hosts are booted. Approximately eight minutes later a memory
dump is created.

27

F.4 adv-test-8-4

Time 52:54:00:5C:AF:CA 52:54:00:6F:B0:32
52 DISCOVER
53 REQUEST
63 DISCOVER

14883 memory dump

Table 14: Experiment Setting: Eight hosts are powered up and runs for approximately 460 seconds.
Four hours later a memory dump is created.

F.5 adv-test-8-8

Time 52:54:00:D5:4E:33 52:54:00:5C:AF:CA
51 DISCOVER
52 REQUEST
56 DISCOVER

29282 memory dump

Table 15: Experiment Setting: Eight hosts are powered up and runs for approximately 460 seconds.
Eight hours later a memory dump is created.

28

F.6 complex

Time 52:54:00:6F:B0:32 52:54:00:40:F8:7B 52:54:00:C1:02:83 52:54:00:D5:4E:33 52:54:00:74:68:4D 52:54:00:5C:AF:CA
47 DISCOVER
48 DISCOVER
49 REQUEST

38567 REQUEST
38669 REQUEST
38735 REQUEST
40143 REQUEST
41528 REQUEST
41743 REQUEST
42243 REQUEST
43646 REQUEST
44512 REQUEST
45463 REQUEST
45083 REQUEST
46785 REQUEST
47439 REQUEST
47882 memory dump

Table 16: Experiment Setting: Three hosts are initially powered up. Approximately 1.25 hours later two of them are powered down and three new hosts
are booted.

29

F.7 plain-test-8

Time 52:54:00:00:AD:04 52:54:00:6F:B0:32 52:54:00:40:F8:7B 52:54:00:90:58:05 52:54:00:C1:02:83 52:54:00:D5:4E:33 52:54:00:74:68:4D 52:54:00:5C:AF:CA
54 DISCOVER
55 REQUEST
63 DISCOVER
64 DISCOVER
65 DISCOVER REQUEST
66 DISCOVER
67 DISCOVER REQUEST REQUEST REQUEST
68 REQUEST DISCOVER
69 REQUEST
70 REQUEST

483 memory dump

Table 17: Experiment Setting: Eight hosts are booted. Approximately eight minutes later a memory dump is created.

30

G Utility for Lease Information Extraction

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 import warnings
5 warnings.filterwarnings("ignore")
6
7 import sys
8 import os
9 import re

10
11 import time
12 import datetime
13 import subprocess
14
15 import svgwrite
16 from svgwrite import cm, mm, rgb, deg
17
18 def parse_date(str_date):
19 re_non_space = re.compile(r’[^]+’)
20 lst_date = re_non_space.findall(str_date)
21
22 dict_offsets = {’Jan’:0, ’Feb’:2678400, ’Mar’:5097600, ’Apr’:7776000, ’May’:10368000,

’Jun’:13046400, ’Jul’:15638400, ’Aug’:18316800, ’Sep’:20995200, ’Oct’:23587200,
’Nov’:26265600, ’Dec’:28857600}

23 lst_hms = lst_date[2].split(’:’)
24
25 return int(dict_offsets[lst_date[0]]) + 24 * 60 * 60 * (int(lst_date[1]) - 1) +

int(lst_hms[0]) * 60 * 60 + int(lst_hms[1])* 60 + int(lst_hms[2])
26
27
28 def get_strings(str_file):
29 proc = subprocess.Popen(["strings "+str_file], stdout=subprocess.PIPE, shell=True)
30 (out, err) = proc.communicate()
31 return out
32
33 def get_dates(str_mem):
34 dict_ret = {}
35 re_mem = re.compile(r’^([JFMASOND][aepuco][nbrylgptvc].*)\ \(none\)\ kern.notice\

<25>DHCPS.*(DISCOVER\ from\
([0-9a-fA-F]{2}[:.-][0-9a-fA-F]{2}[:.-][0-9a-fA-F]{2}[:.-][0-9a-fA-F]{2}
[:.-][0-9a-fA-F]{2}[:.-][0-9a-fA-F]{2})|REQUEST\ from\
([0-9a-fA-F]{2}[:.-][0-9a-fA-F]{2}[:.-][0-9a-fA-F]{2}
[:.-][0-9a-fA-F]{2}[:.-][0-9a-fA-F]{2}[:.-][0-9a-fA-F]{2}))’)

36 for str_line in str_mem.split(’\n’):
37 if re_mem.match(str_line):
38 lst_data = re_mem.findall(str_line)
39 str_date = lst_data[0][0]
40 date = parse_date(str_date)
41 str_type = ""
42 str_obj = ""
43 if lst_data[0][3]:
44 str_type = "REQUEST"
45 str_obj = lst_data[0][3]
46 else:
47 str_type = "DISCOVER"
48 str_obj = lst_data[0][2]
49
50 dict_data = {"date":date, "type":str_type, "object":str_obj}
51 if dict_ret.has_key(date):
52 dict_ret[date].append(dict_data)
53 else:
54 dict_ret[date] = [dict_data]
55 return dict_ret
56
57 def create_timeline(str_file):
58 str_mem = get_strings(str_file)
59

31

60 dict_date = get_dates(str_mem)
61
62 lst_keys = dict_date.keys()
63 lst_keys.sort()
64
65 int_max_time = get_max_time(str_mem)
66
67 create_svg(dict_date, str_file.split(’/’)[7],int_max_time)
68
69
70 def get_uniq_macs(dict_times):
71 dict_macs = {}
72 lst_macs = []
73 counter = 0
74 for key in dict_times.keys():
75 for item in dict_times[key]:
76 lst_macs.append(item[’object’])
77 lst_macs = list(set(lst_macs))
78 lst_macs.sort()
79
80 for mac in lst_macs:
81 dict_macs[mac] = counter
82 counter = counter + 1
83 return dict_macs
84
85 def get_max_time(str_mem):
86 max_time = 0
87 re_mem = re.compile(r’^([JFMASOND][aepuco][nbrylgptvc].*)\ \(none\)\ kern.notice’)
88 for str_line in str_mem.split(’\n’):
89 if re_mem.match(str_line):
90 lst_data = re_mem.findall(str_line)
91 str_date = lst_data[0]
92 date = parse_date(str_date)
93 if max_time < date:
94 max_time = date
95 return max_time + 100
96
97 def scale_int(in_min, in_max, out_min, out_max, to_scl):
98 range_in = float(in_max - in_min)
99 range_out = float(out_max - out_min)

100
101 factor = range_out / range_in
102 return int(((to_scl - in_min) * range_out) / range_in + out_min)
103
104
105 def create_svg(dict_times, str_image, int_max_time):
106 dict_macs = get_uniq_macs(dict_times)
107
108 print str_image
109
110 dwg = svgwrite.Drawing(filename=’/tmp/svg/’+str_image.split(’.’)[0]+’.svg’,

size=(1280,(10+len(dict_macs.keys()))*10))
111 shapes = dwg.add(dwg.g(id=’shapes’, fill=’red’))
112
113 # add base labels
114 for mac in dict_macs.keys():
115 shapes.add(dwg.text(mac, insert=(10 , 10 * int(dict_macs[mac]) + 10), fill=’black’,

class_=’text’,font_size=9))
116
117 # add timeline
118 shapes.add(dwg.rect(insert=(100,10 * len(dict_macs.keys())), size=(1000,1), fill=’black’))
119 shapes.add(dwg.text("Rel. Time t since device boot (in seconds)", insert=(550, 80 + 10 *

len(dict_macs.keys())), fill=’black’, class_=’text’,font_size=9))
120 shapes.add(dwg.text("Black/Gray: Handed out leases, darkness determines certainty of

presence Red: Requests Only", insert=(550, 90 + 10 * len(dict_macs.keys())), fill=’black’,
class_=’text’,font_size=9))

121 for i in range(0,1500,500):
122 shapes.add(dwg.rect(insert=(100 + i ,10 * len(dict_macs.keys())), size=(2,10),

fill=’black’))
123 int_tmp_counter = 0

32

124 for j in str(scale_int(0, 1000, 0, int_max_time, i)):
125 shapes.add(dwg.text(j, insert=(99 + i , 20 + 10 * len(dict_macs.keys()) +

int_tmp_counter * 10), fill=’black’, class_=’text’,font_size=9))
126 int_tmp_counter = int_tmp_counter + 1
127 for i in range(0,1250,250):
128 shapes.add(dwg.rect(insert=(100 + i ,10 * len(dict_macs.keys())), size=(1,8),

fill=’black’))
129 int_tmp_counter = 0
130 for j in str(scale_int(0, 1000, 0, int_max_time, i)):
131 shapes.add(dwg.text(j, insert=(99 + i , 20 + 10 * len(dict_macs.keys()) +

int_tmp_counter * 10), fill=’black’, class_=’text’,font_size=9))
132 int_tmp_counter = int_tmp_counter + 1
133 for i in range(0,1050,50):
134 shapes.add(dwg.rect(insert=(100 + i ,10 * len(dict_macs.keys())), size=(1,4),

fill=’black’))
135 int_tmp_counter = 0
136 for j in str(scale_int(0, 1000, 0, int_max_time, i)):
137 shapes.add(dwg.text(j, insert=(99 + i , 20 + 10 * len(dict_macs.keys()) +

int_tmp_counter * 10), fill=’black’, class_=’text’,font_size=9))
138 int_tmp_counter = int_tmp_counter + 1
139
140 str_prt = "Time "
141 for mac in dict_macs.keys():
142 str_prt = str_prt + " & " + mac
143 print str_prt + "\\\\"
144 for timeslot in dict_times.keys():
145 for item in dict_times[timeslot]:
146 if item[’type’] == "DISCOVER":
147 offset = 100 + scale_int(0, int_max_time, 0, 1000, timeslot)
148 hour = 4
149 mac = item[’object’]
150 if offset + hour > 1100:
151 hour = hour - (offset + hour - 1100)
152 shapes.add(dwg.rect(insert=(offset , 10 * int(dict_macs[mac])), size=(hour,9),

fill=’red’))
153 for item in dict_times[timeslot]:
154 if item[’type’] == "REQUEST":
155 offset = 100 + scale_int(0, int_max_time, 0, 1000, timeslot)
156 hour = scale_int(0, int_max_time, 0, 1000, 3600)
157 mac = item[’object’]
158 if offset + hour > 1100:
159 hour = hour - (offset + hour - 1100)
160 shapes.add(dwg.rect(insert=(offset , 10 * int(dict_macs[mac])), size=(4,9),

fill=’black’))
161 shapes.add(dwg.rect(insert=(offset , 10 * int(dict_macs[mac])), size=(hour,4),

fill=’black’))
162 offset = offset + hour
163 if offset + hour > 1100:
164 hour = hour - (offset + hour - 1100)
165 shapes.add(dwg.rect(insert=(offset , 10 * int(dict_macs[mac])), size=(hour,4),

fill=’grey’))
166 offset = offset + hour
167 if offset + hour > 1100:
168 hour = hour - (offset + hour - 1100)
169 shapes.add(dwg.rect(insert=(offset , 10 * int(dict_macs[mac])), size=(hour,4),

fill=’lightgrey’))
170
171 str_prt = str(item[’date’]) + " & "
172 #print timeslot
173 #print dict_times[timeslot]
174 for mac in dict_macs.keys():
175 last = ""
176 for item in dict_times[timeslot]:
177 if item[’object’] == mac and not last == item[’object’]+item[’type’]:
178 last = item[’object’]+item[’type’]
179 str_prt = str_prt + item[’type’]
180 str_prt = str_prt + " & "
181 print str_prt[0:-2] + "\\\\"
182 print "\hline"

33

183 print str(int_max_time)+" & \\multicolumn{"+str(len(dict_macs.keys()))+"}{c|}{memory dump}
\\\\"

184 dwg.save()
185
186 print ""
187
188
189 if __name__ == "__main__":
190 create_timeline(sys.argv[1])

34

H Example System Log Messages from Memory Dump

1 Jan 1 13:06:22 (none) kern.notice <25>DHCPC:GET ip:9164665a mask:ffffffe0 gateway:91646641
dns1:9164600b dns2:91646016 static route:0 140

2 Jan 1 13:06:22 (none) kern.notice <25>Dynamic IP(DHCP Client) obtained an IP successfully 96
3 Jan 1 13:10:39 (none) kern.notice <25>DHCPS:Recv REQUEST from 52:54:00:6F:B0:32 86
4 Jan 1 13:10:39 (none) kern.notice <25>DHCPS:Send ACK to 192.168.1.103 76
5 Jan 1 13:11:21 (none) kern.notice <25>DHCPC Send REQUEST to server 9164602a with request ip
9164665a 107

6 Jan 1 13:11:22 (none) kern.notice <25>DHCPC Recv ACK from server 9164602a with ip 9164665a
lease time 600 112

7 Jan 1 13:11:22 (none) kern.notice <25>DHCPC:GET ip:9164665a mask:ffffffe0 gateway:91646641
dns1:9164600b dns2:91646016 static route:0 140

8 Jan 1 13:11:22 (none) kern.notice <25>Dynamic IP(DHCP Client) obtained an IP successfully 96
9 Jan 1 13:16:21 (none) kern.notice <25>DHCPC Send REQUEST to server 9164602a with request ip
9164665a 107

10 Jan 1 13:16:22 (none) kern.notice <25>DHCPC Recv ACK from server 9164602a with ip 9164665a
lease time 600 112

11 Jan 1 13:16:22 (none) kern.notice <25>DHCPC:GET ip:9164665a mask:ffffffe0 gateway:91646641
dns1:9164600b dns2:91646016 static route:0 140

12 Jan 1 13:16:22 (none) kern.notice <25>Dynamic IP(DHCP Client) obtained an IP successfully 96
13 Jan 1 10:41:22 (none) kern.notice <25>Dynamic IP(DHCP Client) obtained an IP successfully 96
14 Jan 1 10:42:47 (none) kern.notice <25>DHCPS:Recv REQUEST from 52:54:00:6F:B0:32 86
15 Jan 1 00:00:47 (none) kern.notice <25>DHCPS:Recv DISCOVER from 52:54:00:40:F8:7B 87
16 Jan 1 00:00:48 (none) kern.notice <25>DHCPS:Send OFFER with ip 192.168.1.105 83
17 Jan 1 00:00:48 (none) kern.notice <25>DHCPS:Recv DISCOVER from 52:54:00:D5:4E:33 87
18 Jan 1 00:00:49 (none) kern.notice <25>DHCPS:Send OFFER with ip 192.168.1.101 83
19 Jan 1 00:00:49 (none) kern.notice <25>DHCPS:Recv REQUEST from 52:54:00:40:F8:7B 86
20 Jan 1 00:00:49 (none) kern.notice <25>DHCPS:Send ACK to 192.168.1.105 76
21 Jan 1 00:00:49 (none) kern.notice Jan 1 00:00:49
22 Jan 1 12:01:22 (none) kern.notice <25>Dynamic IP(DHCP Client) obtained an IP successfully 96
23 Jan 1 12:06:21 (none) kern.notice <25>DHCPC Send REQUEST to server 9164602a with request ip

9164665a 107
24 Jan 1 12:06:22 (none) kern.notice <25>DHCPC Recv ACK from server 9164602a with ip 9164665a

lease time 600 112
25 Jan 1 12:06:22 (none) kern.notice <25>DHCPC:GET ip:9164665a mask:ffffffe0 gateway:91646641

dns1:9164600b dns2:91646016 static route:0 140
26 Jan 1 12:06:22 (none) kern.notice <25>Dynamic IP(DHCP Client) obtained an IP successfully 96
27 Jan 1 12:07:26 (none) kern.notice <25>DHCPS:Recv REQUEST from 52:54:00:74:68:4D 86
28 Jan 1 12:07:26 (none) kern.notice <25>DHCPS:Send ACK to 192.168.1.104 76
29 Jan 1 12:11:21 (none) kern.notice <25>DHCPC Send REQUEST to server 9164602a with request ip

9164665a 107
30 Jan 1 12:11:22 (none) kern.notice <25>DHCPC Recv ACK from server 9164602a with ip 9164665a

lease time 600 112
31 Jan 1 12:11:22 (none) kern.notice <25>DHCPC:GET ip:9164665a mask:ffffffe0 gateway:91646641

dns1:9164600b dns2:91646016 static route:0 140
32 Jan 1 12:11:22 (none) kern.notice <25>Dynamic IP(DHCP Client) obtained an IP successfully 96
33 Jan 1 12:16:21 (none) kern.notice <25>DHCPC Send REQUEST to server 9164602a with request ip

9164665a 107
34 Jan 1 12:16:22 (none) kern.notice <25>DHCPC Recv ACK from server 9164602a with ip 9164665a

lease time 600 112
35 Jan 1 12:16:22 (none) kern.notice <25>DHCPC:GET ip:9164665a mask:ffffffe0 gateway:91646641

dns1:9164600b dns2:91646016 static route:0 140
36 Jan 1 12:16:22 (none) kern.notice <25>Dynamic IP(DHCP Client) obtained an IP successfully 96
37 Jan 1 12:21:21 (none) kern.notice <25>DHCPC Send REQUEST to server 9164602a with request ip

9164665a 107
38 Jan 1 12:21:22 (none) kern.notice <25>DHCPC Recv ACK from server 9164602a with ip 9164665a

lease time 600 112
39 Jan 1 12:21:22 (none) kern.notice <25>DHCPC:GET ip:9164665a mask:ffffffe0 gateway:91646641

dns1:9164600b dns2:91646016 static route:0 140
40 Jan 1 12:21:22 (none) kern.notice <25>Dynamic IP(DHCP Client) obtained an IP successfully 96
41 Jan 1 12:21:52 (none) kern.notice <25>DHCPS:Recv REQUEST from 52:54:00:6F:B0:32 86
42 Jan 1 12:21:52 (none) kern.notice <25>DHCPS:Send ACK to 192.168.1.103 76
43 Jan 1 12:26:21 (none) kern.notice <25>DHCPC Send REQUEST to server 9164602a with request ip

9164665a 107
44 Jan 1 12:26:22 (none) kern.notice <25>DHCPC Recv ACK from server 9164602a with ip 9164665a

lease time 600 112

35

I Possible DHCPD in-memory Lease file

1 01d4f4c0 00 00 00 01 52 54 00 90 58 05 00 00 00 00 00 00 |....RT..X.......|
2 01d4f540 00 00 00 01 52 54 00 00 ad 04 00 00 00 00 00 00 |....RT..........|
3 01d4f5c0 00 00 00 01 52 54 00 c1 02 83 00 00 00 00 00 00 |....RT..........|
4 01d4f640 00 00 00 01 52 54 00 74 68 4d 00 00 00 00 00 00 |....RT.thM......|
5 01d4f6c0 00 00 00 01 52 54 00 40 f8 7b 00 00 00 00 00 00 |....RT.@.{......|
6 01d4f740 00 00 00 01 52 54 00 d5 4e 33 00 00 00 00 00 00 |....RT..N3......|
7 01d4f940 00 00 00 01 52 54 00 5c af ca 00 00 00 00 00 00 |....RT.\........|
8 01d4f9c0 00 00 00 01 52 54 00 6f b0 32 00 00 00 00 00 00 |....RT.o.2......|
9 01e05af0 81 d9 52 54 00 00 00 00 00 00 00 00 81 e0 58 94 |..RT..........X.|

10 01edbf80 5f 50 4f 52 54 00 00 00 00 00 00 00 00 00 00 00 |_PORT...........|
11 01f50f90 00 00 00 06 52 54 00 90 58 05 00 00 00 00 00 08 |....RT..X.......|
12 01f50fd0 00 00 00 00 00 00 00 00 52 54 00 90 58 05 00 00 |........RT..X...|
13 01f58b30 50 4f 52 54 00 00 00 00 32 32 37 20 00 00 00 00 |PORT....227|
14 01f58b40 45 50 52 54 00 00 00 00 32 32 39 20 00 00 00 00 |EPRT....229|
15 01f5c8e0 81 e0 52 54 00 00 00 00 00 00 00 00 81 15 59 00 |..RT..........Y.|
16 01f66430 00 00 00 00 52 54 00 90 58 05 00 00 00 00 00 00 |....RT..X.......|
17 01f66910 00 00 00 00 52 54 00 90 58 05 00 00 00 00 00 00 |....RT..X.......|
18 01f691b0 00 00 00 00 52 54 00 5c af ca 00 00 00 00 00 00 |....RT.\........|
19 01f691f0 52 54 00 6f b0 32 00 00 00 00 00 00 00 00 00 00 |RT.o.2..........|
20 01f69260 00 00 00 00 00 00 00 00 52 54 00 40 f8 7b 00 00 |........RT.@.{..|
21 01f692a0 00 00 00 00 52 54 00 74 68 4d 00 00 00 00 00 00 |....RT.thM......|
22 01f692e0 52 54 00 c1 02 83 00 00 00 00 00 00 00 00 00 00 |RT..............|
23 01f69350 00 00 00 00 00 00 00 00 52 54 00 90 58 05 00 00 |........RT..X...|

36

	Introduction
	Related Work

	Hypothesis
	Contribution to the Field

	Forensic Requirements
	Correctness and Completeness
	Atomicity
	Integrity
	Reproducibility

	Method
	Investigated Device
	Physical Interconnect
	Extraction Software
	Extraction Process

	Validation
	Correctness
	Completeness
	Atomicity
	Integrity
	Reproducibility
	Practical Image Verification
	Summary

	Empirical Verification
	Experiment Setup
	Data Acquisition

	Results
	Extracted Information

	Conclusion
	Further Work
	Defense Mechanisms

	DLC5 Xilinx Cable Simple Version
	Unmodified Version of the OpenOCD DMA Patch
	Modified Version of the OpenOCD DMA Patch
	Utility for Automated Method Tests
	Real Event Timelines Extracted from Logs
	adv-test-1-4
	adv-test-1-8
	plain-test-4
	adv-test-8-4
	adv-test-8-8
	complex
	plain-test-8

	Event Timelines as Extracted from Memory dumps
	adv-test-1-4
	adv-test-1-8
	plain-test-4
	adv-test-8-4
	adv-test-8-8
	complex
	plain-test-8

	Utility for Lease Information Extraction
	Example System Log Messages from Memory Dump
	Possible DHCPD in-memory Lease file

