

Christos Tziortzios

System and Network Engineering

University of Amsterdam


 Introduction

Research Question

Man – in – the – Browser attack

 Solution Proposed: One – time Java Applet

Attack Scenario

Conclusion

Questions

 19 slides

Agenda



Why?



Evolution of attacks

Keyloggers

Man-in-the-Middle

Man-in-the-Browser (MitB)

Countermeasures

 Transaction Authentication Codes

 2 – factor authentication

Introduction: Cat and
Mouse Game


Usability
Marketing
Transaction Cost

e.g. e.dentifier2 Connected – Mode
 Secure device
 See What You Sign
 Users may not find it usable
 Need privileges to install software
 Need for USB port
 What about internet cafés?

Security vs …



Is using one – time Java Applets for Internet
Banking transactions a secure and usable
solution?

What kind of functionality should exist in such an
applet?

Which are the risks, related to implementing and
using the previously mentioned scheme?

Which are the strengths and weaknesses of the
scheme from a security and usability perspective?

Research Question


Malware on customer’s computer

Real – time content manipulation

Man-in-the-Browser
attack (1)


 Content Manipulation attack

 Automated

 Two stages

 Manipulate data input

 Manipulate transaction receipt

 The user will never notice

 Not a Man – in – the – Middle attack

 Nothing “wrong” with the network; bar is green!

 One Time Passwords, Client Certificates etc. cannot help
against the attack

Man-in-the-Browser attack
(2)


 Points of attack
 API hooking

 Browser Helper Objects (Explorer) - Extensions
(Mozilla)

 Java Script injection

 Uses regular expressions to find which content needs
to be altered

 Example malware
 Zeus

 Spy Eye

Man-in-the-browser attack
(3)



One – Time Java Applet

Pros

 No API hooking

 Java Virtual Machine

 No need for administrative
privileges or USB

 Concepts like randomization
against pattern matching

 Encryption within the applet

 Easy to push updates

Cons

 Changes what customers are
used to

 Need for Java Runtime
Environment; not always
installed

 Transactions probably take
longer (compile, sign)

 Not necessarily an answer to
Man-in-the-Middle attacks

 Schemes based only on
software cannot be 100%
secure



What should the applet do?

• What do we need to
protect?
• Login process?

• Transaction Details?

• Challenge?

• Response?

• In a compromised host
all the attacker needs is
the one – time codes


 Keyloggers

 Screenshots

 Rootkits

 Manipulate Input

 Manipulate Memory Entries

 Break a CAPTCHA

 Insert root – certificates to OS; code appears to be legitimate

 Break into Java VM

 Break Java security?

 Update botnets!

Possible threats: What can
Malware do?


Make it as hard as possible

 100% secure is impossible

 Prevent automation of attack

 Make input of fraudulent data harder to automate

 Make receipt manipulation harder to automate

What do we want to achieve?


 Signed code

 SSL/TLS communication

 Automatically check server fingerprint

 Secure on a lower level

 Strings to Characters

 Code Obfuscation: Harder to analyze code

Graphical keyboards

Randomize applet features

Quick server side updates

Secure the applet


Attacker builds overlay applet on victim host
 Attacker tricks the customer into using bogus applet

 Attacker uses legitimate applet in the background

All the attacker needs to do is make the user answer
the challenge for the attacker’s transaction
 Extract challenge from legitimate applet

 Pass it to the customer applet

 Let the customer generate the response

 Use it as input for his transaction

Attack Scenarios (1)


 Sign Code and Hope(!) Java Security does not break

 Hope(!) customers pay attention to Certificates

 Randomize code

 Make it harder to know what messages attacker must
send

 Replace Strings with characters

 Harder to manipulate the transaction receipt

 Graphical keyboards

 Possibly harder to automate fraudulent input

Attack Scenarios (2):
Countermeasures


 Software only schemes cannot be 100% secure
 Connected mode is secure enough; use when possible

One – Time Applet solves the problem, at least for
now
 Easy to update

 Security through obscurity to some extend

Different levels of security – usability; functionality
depends on that

Usability Survey needed

 Penetration testing needed

Conclusion


 Sander Vos

 Steven Raspe

Han Sahin

Acknowledgements



Christos.Tziortzios @ os3.nl

c.Tziortzios @ gmail.com

Questions

