Shortest path forwarding using OpenFlow

Joris Soeurt
Iwan Hoogendoorn

University of Amsterdam

February 13, 2012

Acknowledgement

We would like to thank Ronald van der Pol (SARA) for his guidance and supervision of this research project.

Abstract

The first part of this paper describes the problems the Spanning Tree Protocol causes in some complez,
modern networks (limited load balancing, suboptimal path, long convergence time). It also describes the main
properties and gives a comparison of two possible successor protocols (802.1aq en TRILL). Both protocols
use the IS-1S routing protocol to forward layer 2 frames to their destination along the shortest path available.
The second part consists of a in depth look at OpenFlow and an implementation of shortest path forwarding
using this protocol ("NOX routing module”). Our main conclusion is that although a shortest path forwarding
algorithm can certainly be implemented in OpenFlow, with the current stage of development it can’t compete
with ‘native’ TRILL or 802.1aq in production networks. Because OpenFlow brings the complete control plane
of switches to a programmable server (the controller), one would think that with enough effort, every network
protocol could be implemented. Theoretically even 802.1aq or TRILL could be implemented in OpenFlow.
But exactly the same reason that provides this kind of flexibility to OpenFlow also limits the ability of such
an implementation. Because the control plane is moved to a remote server, the switches can not take a
link failover decision locally and therefore latency of failover is increased. Also notable is that the controller
is a single point of failure. In version 1.2 (expected March 2012) two new features are introduced, namely
failover group and a master slave controller feature. The first feature makes it possible for switches to take
the decision of using an alternative forwarding path on link failure locally, without asking the controller. The
latter eliminates the single point of failure.

During our tests, we found two shortcomings in the NOX routing module, for which we created a improvement
proposal in pseudocode. The two shortcomings are the lack of load balancing and link failover (at all) when
flow entries aren’t timed out.

Contents

1

Introduction

1.1 Introduction to research L

1.2 Research question L

1.3 Related work L

1.4 Approach L

Shortcomings of the Spanning Tree Protocol

2.1 Introduction to Spanning Tree L e

2.2 Shortcomings e

Life beyond spanning tree

3.1 Introduction spanning tree enhancements/successors
3.1.1 Possible spanning tree sucessor protocolso
3.1.2 TRILL and 802.1aq+« v v v vt e e e e

TRILL

4.1 Introduction to TRILL o o

4.2 How TRILL works e e
4.2.1 Learning of MAC addresses e
4.2.2 Forwarding of unicast frames L Lo
4.2.3 Multicast, broadcast and packets with unknown destination
4.2.4 Designated RBridges e
4.2.5 Unique feature L e
426 Load balancing L e
4.2.7 Prosand CONS v i e e e e e

802.1aq (Shortest Path Bridging)

5.1 Introduction to Shortest Path Bridging
5.2 How 802.1aq works L e
5.2.1 Learning of MAC addresses
5.2.2 Forwarding of unicast frames L oL oL o
5.2.3 Forwarding of non unicast frames Lo oo
5.2.4 Packet behaviour throughout the network
5.2.5 Unique features
5.2.6 Load balancing L
527 Prosand cons
5.3 Shortest path bridging or routing? L L oL

Comparison of spanning tree, TRILL and 802.1aq

Introduction to OpenFlow

7.1 What is OpenFlow? e
7.2 How we are going to use OpenFlow
7.3 OpenFlow operation in essence oo
7.4 NOX OpenFlow controller e
7.5 Status of OpenFlow e
7.6 Current vendors supporting OpenFlow L o

(o e =] [INGENET NG NN

o 0o I N

© © oo

11
11
11
11

11
11
12
12
12
12
13
13
13
13
14

15

8 Shortest path forwarding

in OpenFlow

8.1 Imtroduction to NOX modules
8.2 Switch registration to controller oL
8.2.1 Switch registration L

8.2.2 Keep alives . .
8.2.3 Timeout
8.3 Introduction

8.4 Working of pyswitch module o
8.4.1 Sending multicast/broadcast/unknown frames (ARP request)
8.4.2 Sending unicast packets Lo

8.5 Working of the routing module
8.5.1 Discovering topology L L

8.5.2 Spanning tree .

8.5.3 Sending multicast/broadcast/unknown frames (ARP request)
8.5.4 Sending unicast frames (ARP response)
8.5.5 Sending unicast packets L
8.6 Weaknesses in NOX routing module

9 Comparison of NOX routing module with SPB (802.1aq) and TRILL

10 Conclusion

11 Further research

12 Appendix A: Command summary

13 Appendix B: Compilation of OpenWRT image with OpenFlow support

13.1 OpenWRT

13.2 Add OpenFlow extension

14 Appendix C: Description
14.1 Network Overview . .

15 Appendix D: Bugfixes

of test environment

15.1 OpenFlow dissector Wireshark plugin oL

15.2 Routing module

16 Appendix E: Summary of tests and results

16.1 Introduction
16.2 Method
16.2.1 Data collected
16.2.2 Testing
16.2.3 Resetting test .
16.3 Topologies
16.4 Description of tests . .
16.5 Result summary . . .

17 Appendix F: Pseudocode
17.1 Introduction
17.2 Component overview .
17.3 Events
17.4 Library calls.
17.5 Functions

18
18
19
19
19
19
20
21
22
23
23
24
25
26
27
27
28

30

32

33

36

37
37
37

39
40

42
42
42

43
43
43
43
43
44
44
45
47

17.6 Tables

1 Introduction

1.1 Introduction to research

Although Spanning Tree has served well in the past, this protocol can’t live up to expectations of some
complex, modern environments. The most evident weaknesses lie in the lack of control of the active topol-
ogy and topology predictiveness after a link failure. Also the lack of load balancing and inability to use a
redundant infrastructure to its fullest (although somewhat possible when using PVST (Per VLAN Spanning
Tree)) contribute to the demand for a successor in large layer two networks.

In this paper we evaluate in what way OpenFlow can be used to implement shortest path forwarding on a
network as successor to the Spanning Tree Protocol.

1.2 Research question

In what way can shortest path forwarding be implemented in OpenFlow as alternative to the
Spanning Tree Protocol?

1.3 Related work

Will TRILL replace Spanning Tree Protocol in data center networks? (Shamus McGillicuddy) In
this article McGillicuddy describes the limitations of the Spanning Tree Protocol and briefly describes the
likeliness of it being replaced by TRILL.

OpenFlow: Enabling Innovation in Campus Networks (Nick McKeown, Tom Anderson, Hari Balakr-
ishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, Jonathan Turner) This whitepaper
proposes OpenFlow: a way for researchers to run experimental protocols in the networks they use every

day[1].

TRILL and 802.1aq are like apples and oranges (Ivan Pepelnjak) A brief comparison of TRILL and
802.1aq[11].

NOX components / Network apps / Routing This module keeps track of shortest path routes between
two authenticated data paths in the network. It discovers all active MAC addresses in the network and which
switch port they are bound to. It then calculates a path to every destination MAC address and installs a
flow to that destination on each switch along the path. When sending a packet to a yet unknown MAC
address, the packet is flooded[16].

Basic Spanning Tree (NOX module) A basic spanning tree module is currently maintained by Glen
Gibb (grg@stanford.edu). The module attempts to build a spanning tree within an OpenFlow network. It
does not interact with standard spanning tree protocols such as STP, MSTP, RSTP, PVST or R-PVST[17].

1.4 Approach

During this research we took the following approach:

e Enumerate and describe why the Spanning Protocol can’t adhere to the needs of some complex networks
anymore and a successor is needed.

Compare the main competing successor protocols (802.1aq and TRILL) to see how they handle the
problems described in the previous step.

Build an OpenFlow powered test environment and get familiar with the techniques and (in)abilities.

Research the architecture and working of a shortest path forwarding implementation (NOX routing
module.

Create improvement proposal in pseudocode.

Compare successors and draw conclusion.

2 Shortcomings of the Spanning Tree Protocol

2.1 Introduction to Spanning Tree

Although Spanning Tree has served well in the past, this protocol can’t live up to expectations of some
complex, modern environments. Radia Perlman probably didn’t know what impact the protocol would have
and for how many years it would be in use when she created it in 1985. Perlman created the following poem
while working on the protocol.

Algorhyme

I think that I shall never see
a graph more lovely than a tree.

A tree whose crucial property
is loop-free connectivity.

A tree that must be sure to span
so packets can reach every LAN.

First, the root must be selected.
By ID, it is elected.

Least-cost paths from root are traced.
In the tree, these paths are placed.

A mesh is made by folks like me,
then bridges find a spanning tree.

Radia Perlman|[21]

2.2 Shortcomings

The main shortcomings of the Spanning Tree Protocol can be summarized as follows:

Recalculation, interruption & convergence Every time the topology changes, all traffic is blocked
while a recalculation of the spanning tree takes place. With the standard Spanning Tree Protocol and
suboptimal conditions, this can take up to 50 seconds.

Inefficient use of resources The Spanning Tree Protocol works by blocking ports that give access to
redundant paths to avoid network loops. Although the mechanism is perfect for avoiding loops, it also
reduces the available bandwidth on other links.

Suboptimal path The path that traffic between two nodes travels is based on the spanning tree calculated
for the entire network instead of the shortest path between those two nodes.

Example of suboptimal path & inefficient use of resources

Core/Backbone switches

................ Blocked link
Spanning Tree

Distribution
switches

e Selected Path

Access switches

Figure 1: Spanning tree example

All traffic has to forwarded along the precalculated tree. Instead of forwarding traffic along the shortest path
(H1 -F —»D—I) traffic is forwarded over the tree. (H1 -F —C —B —E —I) No load balancing is possible
because all redundant paths are blocked.

3 Life beyond spanning tree

3.1 Introduction spanning tree enhancements/successors

Several enhancements have been made to the protocol to deal with these issues. Some of them made it to
standards, others are proprietary. For example Cisco’s Per-VLAN Spanning Tree to calculate a spanning
tree per VLAN (and therefore load balance the physical network) and extensions like PortFast, BackboneFast
and UplinkFast to reduce the time needed to converge on certain topology changing events. IEEE 802.1w
RSTP (Rapid Spanning Tree) to reduce convergence time and IEEE 802.1s MST (Multiple Spanning
Tree) as extension to rapid spanning tree to scale better, linking multiple VLANS to a spanning tree.

Although these enhancements have helped the Spanning Tree Protocol survive till today, they also made the

protocol more complex to configure and troubleshoot and less interoperable between vendors. One could
argue that these enhancements have held back the innovation needed. Fortunately several protocols are
being developed to push to real innovation.

3.1.1 Possible spanning tree sucessor protocols

There are several initiatives in the industry that can be used to solve The Spanning Tree shortcomings.
Below a few of them are listed, but the only ones in scope for this research will be TRILL and 802.1aq.

e OTV (Overlay Transport Virtualization)[22].

e Portland[23].

¢ EVPN (Ethernet Virtual Private Network) / VPLS (Virtual Private LAN Service)[24].
e PBB-EVPN (Provider Backbone-Ethernet Virtual Private Network)[25].
o VL2[26].

e Seattle[27].

e Fabric Path[28].

e Moose (Multi-level Origin-Organised Scalable Ethernet)[29].

o 802.1Qbp[30].

e TRILL (Transparent Interconnection of Lots of Links).

e 802.1aq.

3.1.2 TRILL and 802.1aq

The IEEE is in the process of standardising the 802.1aq protocol while the IETF is working on the TRILL
specification.

In both protocols, bridges exchange link state information using a slightly adjusted version of the IS-IS
routing protocol to achieve a global consistent view of all bridges, topology and location of end nodes. The
bridges use this information to efficiently forward layer 2 frames to their destination using the shortest path
available. This combination of using a routing protocol to forward frames on a layer 2 network, helps keep
the ease of configuration of a layer 2 segment while adding the advantages of layer 3. These advantages can
be summarized as multipathing (load balancing), shortest path forwarding and almost instant link failover.
Although both protocols have the same main design goals and similar solutions, both differ on several points
which are elaborated on in the paragraphs below.

4 TRILL
4.1 Introduction to TRILL

With the introduction of a successor of spanning tree, also a successor to Algorhyme was introduced by
Radia’s son. Algorhyme v2 is included in the IETF draft and can be read below.

Algorhyme v2

I hope that we shall one day see
A graph more lovely than a tree.

A graph to boost efficiency
While still configuration-free.

A network where RBridges can
Route packets to their target LAN.

The paths they find, to our elation,
Are least cost paths to destination!

With packet hop counts we now see,
The network need not be loop-free!

RBridges work transparently,
Without a common spanning tree.

Ray Perlner[7]

4.2 How TRILL works
4.2.1 Learning of MAC addresses

TRILL can use 4 different techniques to learn where a specific node is located (in other words where the
MAC address of that node is located).

e Observation of source MAC address of locally received frames as in regular bridging.

e Observation of frames received from other RBridges (TRILL capable bridges) by examining the header
and learning the combination of source RBridge and source MAC.

e Static configuration.

e The ESADI (End System Address Distribution Information) protocol. Using this protocol, RBridges
can exchange end station addresses and associated RBridge with each other.
4.2.2 Forwarding of unicast frames

Forwarding of frames of which the location of the destination MAC address is known, are forwarded over
the shortest path using the topology information gained by IS-IS. This happens much like forwarding layer
3 packets using normal routers.

When forwarding a frame to an end node:

1. The ingress RBridge adds two headers in order to deliver the frame to the egress RBridge to which the
end node is connected to.

e An inner TRILL header (containing ingress and egress RBridge, hop count and multi-destination
flag).

e An outer ethernet header (with as source the MAC address of the sending/transmitting RBridge

and as destination the MAC of the next hop RBridge).

2. The next hop RBridge is derived from the link state database acquired through IS-IS.

3. The frame is then forwarded to this next hop RBridge.

4. The next hop uses the information in the TRILL header (egress RBridge) and the IS-IS link state

database to make a forwarding decision for yet another next hop.

5. The RBridge changes the outer ethernet header source address to it’s own address and destination
address to the chosen next hop. It also decrements the hop count by 1 and recalculates the FCS. It

doesn’t alter the TRILL header.

6. This process continues all the way till the frame is received by the egress RBridge, which strips both
the outer ethernet header and TRILL header, leaving the original packet, which is then delivered to

the destination host.

7. Because of this outer (regular) ethernet header, the frames appears to intermediate bridges just as a
regular frame, which can be forwarded by looking at the destination MAC address.

CooB

BOOA

A00B
BOOC

A001

MAC =

MAC
i
MAC
MAC
MAC

H1
:‘i
RBridge = RS
TRILL nickname = TRS

RBridge A

|ch+->

payload

RBridge B

1
1
|

———>

TRS | TRD

outher-eth TRILL inner-eth outher-eth TRILL inner-eth payload

2221

MAC

RBridge C

outher-eth TRILL inner-eth payload outher-eth

Figure 2: TRILL forwarding

4.2.3 Multicast, broadcast and packets with unknown destination

TRILL

RBridge = RD

TRILL nickname = TRD

| I——

inner-eth

e i

payload

All packets which cannot be routed to one specific known MAC address should still be flooded through
the network. To achieve this without creating loops, distribution trees are calculated. Multiple trees are
calculated to achieve multipathing. The different trees are rooted at different RBridges. When an RBridge
needs to flood a packet, it is first forwarded to the nearest distribution tree root (an RBridge) and then
subsequently flooded through the network. These trees are individually calculated by all RBridges on basis
of several parameters, priority and tiebreakers in a deterministic way, such that every RBridge calculates

the same trees.

10

4.2.4 Designated RBridges

If multiple RBridges are present on a segment, a Designated RBridge (appointed forwarder) is selected.
Frames on that specific segment are forwarded to their destination only by this RBridge. Without this
mechanism, two RBridges on a segment could lead to a frame being delivered twice.

4.2.5 Unique feature

Addition of a hop count which can avoid loops in exception situations where somehow an error in the control
plane occurs.

4.2.6 Load balancing

Redundant paths used using multiple spanning trees and equal cost load balancing.

4.2.7 Pros and cons

Pros

e Because the protocol has been designed without keeping current standards and formats too much in
mind, the designers have been able to keep it fairly simple to understand.

e Intermediate bridges can be regular bridges and still forward frames between Rbridges in a regular way
because the frames are encapsulated on the outside with a normal ethernet header.

Cons
e Because of the extra encapsulation, new ASICs have to be designed to forward the frames in hardware.

e Because unicast and non-unicast frames are sent using a different technique, they might get delivered
out of order, when the MAC state transitions from unknown to known.

e TRILL forwarding is done a hop-by-hop basis. Because there is no simple way to determine the selected
path for a particular flow, troubleshooting must be done hopby-hop at each node. [10]

5 802.1aq (Shortest Path Bridging)

5.1 Introduction to Shortest Path Bridging

The standard created by the IEEE is called 802.1aq. Two different versions are defined, SPB-V and SPB-M.
Both versions use a different encapsulation and have different properties, but share the same main design
principles.

Shortest Path Backbone Bridging (SPB-M) is aimed to be deployed in PBB (Provider Backbone) networks
where all addresses are managed.

Shortest Path Bridging (SPB-V) is applicable in customer, enterprise or storage area networks.

11

SPB

SPB-M

(MAC-in-MAC)

Metro Core Network
*Reliability
*Auto-discovery
eLoad sharing
*Managed addresses

Enterprise Network
*Plug & Play

*Easy to operate
eUnknown addresses

MAC learning
in data plane

MAC learning
in control plane

Figure 3: SPB-V and SPB-M charasteristics.

A huge benefit of SPB-M is that it protects all of the switches in the infrastructure (edge and core) from
being seen by any end hosts due to the way of encapsulation. This was an important feature of the protocol
design for many different environments, especially the campus and datacenter environments due to the fact
that from the providers point of view they don’t have all the MAC addresses stored in their switches.
SPB-M is aimed to be deployed in METRO and WAN (Wide Area Networks).

5.2 How 802.1aq works
5.2.1 Learning of MAC addresses

In SPB-M, MAC addresses are learned via the control plane; they are distributed between the bridges using
an extension of IS-IS.
In SPV-V MAC addresses are learned via the data plane; by looking at the contents of incoming frames.

5.2.2 Forwarding of unicast frames

In comparison to TRILL. 802.1aq uses a different approach compared to TRILL for forwarding frames.
After IS-IS has determined the topology, all edge bridges calculate at least one spanning tree to reach every
destination. Meaning, the source bridge can be the root of the tree for every frame it sends and the complete
end to end path is calculated and known before any frame has been forwarded. The calculation of these
trees is deterministic in such a way that all intermediate bridges have identical views of each other’s trees.
Therefore, a frame only needs to be marked with the source and the destination bridge, and all intermediate
bridges can forward the frame along the intended path without making hop by hop routing decisions. This
path is calculated based on the information received by the IS-IS process. These trees are created in such
a way that traffic between two bridges always takes the same path in both directions (traffic between two
hosts is always symmetrical)

5.2.3 Forwarding of non unicast frames

Non unicast frames are forwarded over the exact same tree as unicast frames are forwarded over. This means
the path of non-unicast traffic is congruent to unicast traffic. The difference is that unicast frames are only
forwarded over a subset of the tree (the shortest path from source to destination) and non-unicast frames
are forwarded over the complete tree to all leaf nodes.

12

5.2.4 Packet behaviour throughout the network

SPBA

’ FCS ‘ -SPBA|SPBE+>

payload inner-eth Eth

Figure 4: 802.1aq forwarding

1. The ingress SPB device adds two headers in order to deliver the frame to the SPB device to which the
end node is connected to.

2. Based on the SPB type (V or M) the frame is encapsulated in a specific way.

3. One header contains the MAC addresses of the source and destination hosts and the other header
contains the MAC addresses of the source SPB device and the destination of the SPB device.

4. The frame will remain unchanged until its delivered to the destination host. The complete path is
known in advance and not determined hop-by-hop.

5.2.5 Unique features

e Use of I-SID identifiers to logically separate different ”services” in a physical network. These services
can be seen like VLANS, but without the max of 4k VLAN restriction.

e The 802.1aq standard is based as much as possible on existing standards (for example 802.1ah, 802.1Q,
802.1ad).

5.2.6 Load balancing

The redundant path selection is determined based on various ECMT algorithms[31].

5.2.7 Pros and cons

Pros
e Existing ASICs can be used for forwarding in hardware.

e Complete path of frames is deterministic, known in advance and can be calculated offline. This makes
debugging less hard.

e Unicast and non-unicast traffic is send over the same tree following a congruent path.
Cons

e Protocol is complex because compatibility with existing technology is maintained.

13

5.3 Shortest path bridging or routing?

Although both methods seem like routing on layer 2, using the term layer 2 routing is debatable. This is
because both protocols have very specific layer 2 and specific layer 3 elements.

Layer 2 elements
e Unmodified layer 2 frames are delivered to end stations.
e No IP addresses have to be configured on the bridges to be able to communicate with each other.
e MAC addresses are (partly) learned from the data-plane.

Layer 3 elements

e TRILL uses a hop by hop lookup and forward mechanism for frames, just like routers use their routing
table.

e The IS-IS routing protocol is used instead of the Spanning Tree Protocol to forward frames.

e MAC addresses can be learned by communication with other switches, using the control plane.

14

6 Comparison of spanning tree, TRILL and 802.1aq

Spanning tree (802.1d)

| SPB (802.1aq)

| TRILL

Organization

IEEE

| IETF

Load balancing

Redundant paths blocked

Redundant path selection deter-
mined based on various ECMT
algorithms[31]

Redundant paths used using mul-
tiple spanning trees and equal
cost load balancing.

Calculation of shortest path for unicast frames with known destination

Uses spanning tree algorithm to
calculate path with the use of
BPDUs (Bridge Protocol Data
Units).

Use IS-IS protocol to calculate shortest path.

Hardware

Current ASICs can be used

New ASICs required in order
to rewrite MAC addresses and
change hop count (TTL). Inter-
mediate bridges can handle these
frame as there is no need to
change hop count or MAC ad-
dresses.

Extra loop prevention checks !

No extra mechanism to pre-
vent loops; redundant ports are
blocked

RPFC (Reverse Path Forwarding
Check) to prevent loops

RPFC (Reverse Path Forwarding
Check) & TTL (hop) field to pre-
vent loops

Forwarding of unicast packets

Forwarded over the tree using lo-
cal switch MAC tables.

7 After IS-IS builds the network
topology, SPB creates the short-
est paths based on link met-
rics and then assigns the traffic
(Unicast and Multicast) to that
path. Traffic with same source
and destination combination is
forwarded through path that is
calculated in advance. There-
fore it is very easy to predict the
traffic flows through the meshed
network since they are calculated
once for the entire path. Forward
and reverse path symmetric.” [10]

Unicast traffic is forward along
the most optimal path from
source to destination RBridge.
The forwarding decisions are
made hop by hop, locally on
each router. Forward and reverse
paths are not symmetric.

1These checks are built-in to prevent loops in in certain exceptional situations, such as an error in the control plane.

15

Spanning tree (802.1d) ‘ SPB (802.1aq) TRILL

Forwarding of packets other than unicast

Broadcasted over the (single) tree | Broadcasted, multiple trees pos- | Broadcasted, multiple trees pos-
sible. Paths of unicast and non- | sible.
unicast traffic congruent.

Encapsulation
No extra frame encapsulation SPB-M - MAC-in-MAC | TRILL header & extra ethernet
(802.1ah) / SPB-V - Q-in-Q | header
(802.1ad)

16

7 Introduction to OpenFlow

7.1 What is OpenFlow?

OpenFlow is a recent technology developed at Stanford University. This protocol strictly divides the control
and data plane of all network equipment and moves the control plane to a centralised controller. Forwarding
decisions are no longer made by network equipment (data-paths) itself, but by a server (controller) which
subsequently passes these forwarding decisions on to the data-path (by means of the OpenFlow API) as a
OpenFlow flow. This controller isn’t bound to any network hardware limitations and vendor’s closed software
platforms. Because of this and because the controller communicates with all OpenFlow enabled devices (and
therefore is aware of the network topology), this architecture supplies a very powerful means to program the
data-flows in a network the most optimal way.

7.2 How we are going to use OpenFlow

Because all switches register to the OpenFlow controller, the controller can create a complete overview of
all switches and links between the switches. Because of this overview the controller has, it can calculate the
shortest path between nodes and instruct the switches to create flows that adhere to this shortest path. The
major difference in this approach compared to TRILL and 802.1aq is that instead of letting all switches work
together to decide the optimal path, all switches communicate to the controller where all the calculations
are being done and actions are sent to the switches.

7.3 OpenFlow operation in essence

As the name suggests, OpenFlow is all about flows. OpenFlow switches cannot forward any frame without
a flow entry and switches cannot create flows entries on their own. For the creation of these flow entries,
a controller is needed. Whenever an OpenFlow switch receives a frame, it encapsulates this frame/packet
into an OpenFlow packet and sends this to the controller. The controller responds to the switch with a flow
entry. This switch installs this flow entry locally and uses it to forward frames that adhere to the criteria of
this flow entry.

Such a flow entry can be divided in two parts; a match part and an action. The main properties of the
match part are:

e Source and destination MAC address

e Source and destination IP4 address

e Protocol (apply action only if frame/packet is of this protocol)

e In port (apply action only if frame/packet is received on this interface)

The main actions are to output the frame to a specific interface or flood to all interfaces.

7.4 NOX OpenFlow controller

Our research is done using the NOX OpenFlow controller. This choice is based on the fact that this controller
is fully open source and the modules (which dictate the behaviour of the controller) can be programmed in
Python.

17

7.5 Status of OpenFlow
OpenFlow is currently used for testing and research purposes. This due to the fact that OpenFlow is imma-

ture, emerging, and still trying to sort out what direction its heading in[2].

Current production implementations are running on 1.0 and not on 1.1 for the simple reason 1.1 is a no-
starter for vendors due to several issues that are solved in version 1.2. The specs that where introduced by
several speakers where categorised as simplistic, but it could still be used for testing interesting things with
it’s limited functionality. Different features and bug-fixes are being introduced and integrated in upcoming
releases 1.3, 1.4 and so on...[2]

7.6 Current vendors supporting OpenFlow

Several large, well known vendors have released OpenFlow hardware. The list of vendors consists of, but is
not limited to:

e Broadcom
o NetFPGA

Pronto

e HP
e NEC
e IBM

8 Shortest path forwarding in OpenFlow

8.1 Introduction to NOX modules

To research how a network can be programmed using OpenFlow as successor to Spanning Tree, we started
by researching successor protocols (TRILL and 802.1aq). In this chapter we want to explain the architec-
ture and working of a shortest path forwarding algorithm provided by the NOX OpenFlow controller (NOX
routing module). Note that the name of the module is somewhat deceiving in the sense that it doesn’t do
layer 3 routing, but shortest path forwarding for layer 2 frames and layer 3 packets.

Unfortunately the documentation is very limited[16] and outdated (26-02-2010) and the source code (C) is
not annoted. Therefore, we took another approach to understand this module. We set up different tests in
our test-environment and treated the routing module as a black box. By monitoring every aspect (tcpdump
on the hosts, Wireshark with OpenFlow dissector plugin on our controller, current flows on the switches and
console output of the hosts and NOX controller) we both thoroughly tested the operation and gathered the
information needed to understand the inner working.

To make the operation of the routing module more clear, we start by explaining the registration of the
switches. Next we explain the working of the pyswitch module, which behaves just like a regular learning
switch. Then we explain the behaviour of the routing module and end with a comparison, highlighting the
main characteristics. We end with a complete overview of the inner-working and features of the routing
module.

The tests we executed and the results can be found in appendix E.

18

8.2 Switch registration to controller

This part is independent of the NOX module currently active. It is repeated by every switch in order to
set up a communication channel with the NOX controller. SM is a symmetric message while CSM is
non-symmetric message (Control switch communication)

8.2.1 Switch registration

Switches Controller (NOX)
Hello (SM) —
+ | Hello (SM)

Using the Hello packets, the switch identifies the controller of its existence and both agree
on version number of the OpenFlow protocol they are going the speak.

’ ‘ — ‘ Features Request (CSM) ‘

The controller sends a features request to see which ports are available.

| | | Set Config (CSM) |

In this case, the controller asks the switch to use specific parameters.

‘ Features Reply (CSM) ‘ — ‘ ‘

The switch replies with its physical ports, port capabilites, supported actions, buffer sizes.

+ | Vendor (CSM)
Error (Vendor request not understood) (CSM) —

The controller sends the Vendor command to the switch, this command supported by our
OpenFlow test switches.

’ ‘ — ‘ Flow Mod (delete all current flows) (CSM) ‘

The controller asks the switch to delete all current flows to start with a clean slate.

8.2.2 Keep alives

Switches Controller (NOX)
+ | Echo request (SM)
Echo reply (SM) —
Echo request (SM) -
+ | Echo reply (SM)

Both switch as controller send each other a Hello request with a random transaction ID,
and reply to each others request, repeating the transaction ID of the request. This process
is repeated every 15 seconds.

8.2.3 Timeout

For completeness, the following table is included. Every flow in an OpenFlow device has a timeout value.
If no traffic has been matched against a rule before the specified idle-timeout value, the OpenFlow device
removes the flow and notifies the controller.

19

Flow removal, controller notification

Switches

Controller (NOX)

Flow removed

._)

The switch notifies to the controller which flow it has removed after the timeout has expired.

8.3 Introduction

The working of the pyswitch and the routing module is explained by showing how the data and control
frames/packets are sent between each host/device. This is done by sending an ARP request/response and
ICMP echo request /response between H1 and H2.

Note that while we use this simple 2 switch topology for explaining the protocol communication, our tests
were performed using a redudant 6 switch topology.

Figure 5: Topology used for explaing the NOX modules.
The tables below can be read in the following way:

If marked with
a,b,c.. this means
it is the same
frame/packet, but
in a different stage
of forwarding.

and controller.

Data Ctrl Src. Dest. Content
Sequence number | Sequence number | Source of frame/- | Destination of | Description of
of data frame/- | control packets, | packet frame/packet content of frame/
packet, sent be- | sent between packet.

tween end-hosts. | OpenFlow switch

20

8.4 Working of pyswitch module

Description The pyswitch module behaves just like a normal learning switch. It learns the MAC address
to port binding by examine incoming packets and looking at the source address. It uses this information to
forward incoming frames. If the destination is unknown, the packet is flooded. It is not possible to have
redundant links because this would result in a loop.

Traffic flows The source host sends frames/packets to destination host. The switch asks the NOX con-
troller how to handle these frames. This is decided by the pyswitch module.

NOX controller
host
I A
| |
| 1
control | la
pyswitch 44— T, Swich 9
© | | @
1 |
I I
4 |
host

Figure 6: Component interaction of pyswitch module

21

8.4.1 Sending multicast/broadcast/unknown frames (ARP request)

ARP request

Data | Ctrl

Src.

Dest.

Content

la

Host 1

Broadcast

ARP: Who has 10.10.10.2 ?

Host 1 sends out ARP request to the broadcast MAC address.

‘ 1 ‘ Switch 1 ‘ Controller ‘ OFP encoded frame 1 (ARP request)

The switch has no flows yet and does not know how to forward this frame. It encapsulates
the frame in a OpenFlow packet and sends it to the controller.

‘ 2 ‘ Controller ‘ Switch 1 ‘ Flood frame out all ports (except originating)

The controller orders the switch to send the frame out of all ports (except for the orginating)

b |

| Switch 1

| Flood

| ARP: Who has 10.10.10.2 ?

The switch indeed floods the frame. When switch 2 receives the frame, this process repeats

the same way:

3

Switch 2

Controller

OFP encoded frame 1 (ARP request)

4

Controller

Switch 2

Flood frame out all ports (except originating)

As switch 2 floods the frame, it is received by host 2.

e | | Switch 2 | Flood | ARP: Who has 10.10.10.2 ?
ARP response
| 2a | | Host2 | Host 1 | ARP: I'm 10.10.10.2, my MAC is 52:54:00:D5:4F:0D

Host 2 (now aware of the MAC' address of host 1) replies back.

‘ 5 ‘ Switch 2 ‘ Controller ‘ OFP encoded frame 2 (ARP response)

The switch does not know what to do with the frame and asks the controller using an
OpenFlow control packet.

6

Controller

Switch 2

Create flow: Prot:
52:54:00:D5:4F:0D —IN = 3, OUT =1

ARP, SRC 52:54:00:34:FA:2C, DST

The controller knows where the destination MAC address exists on the network and orders
the switch to create a flow. This flow can be used by the switch if any subsequent frames
with the same properties should arrive.

|

2b |

| Switch 2 | Switch 1 | ARP: I'm 10.10.10.2, my MAC is 52:54:00:D5:4F:0D

Switch 2 forwards the frame to switch 1.

|

‘ 7 ‘ Switch 1 ‘ Controller ‘ OFP encoded frame 2 (ARP response)

The process repeats; the controller knows where the destination MAC address exists on the
network and orders the switch to create a flow. This flow can be used by the switch if any
subsequent frames with the same properties should arrive.

8

Controller

Switch 2

Create flow: ARP reply from 52:54:00:D5:4F:0D
52:54:00:34:FA:2C —inport = 3 outport = 1

to

Finally the frame is deliverd to host 1.

|

QC‘

| Switch 1

Host 1

ARP: I'n£10.10.10.2, my MAC is 52:54:00:D5:4F:0D

8.4.2 Sending unicast packets

ICMP echo request

Data | Ctrl

Src.

Dest.

Content

la

Host 1

Host 2

ICMP echo request

Now that host 1 knows the MAC address of host 2, it can send a ICMP echo request.

| | 1 [Switch 1

Controller ‘ OFP encoded packet 1 (ICMP echo request)

Again, the switch doesn’t know what to do with the packet, so it encodes it in a OpenFlow
packet and asks the controller.

2

Controller

Switch 1

Create flow: Prot: ICMP, SRC 10.10.10.1, DST 10.10.10.2 —IN
=3,0UT =1

During the ARP session, the controller has learned the location of the destination host and
can now instruct the switch to create a flow for this specific traffic.

[|

‘ Switch 1 ‘ Switch 2 ‘ ICMP echo request

Switch 1 forwards the frame to switch 2

’ ‘ 3 ‘ Switch 2 ‘ Controller ‘ OFP encoded packet 1 (ICMP echo request)

Switch 2 also ask the controller what to do with the incoming packet.

4 Controller | Switch 2 Create flow: Prot: ICMP, SRC 10.10.10.1, DST 10.10.10.2 —IN
=3,0UT=1
lc Switch 2 Host 2 ICMP echo request

Again, the controller instructs the switch to create a flow for traffic forwarding.

ICMP echo response

The sending of the ICMP echo response happens in the same way as the REQUEST packet

is forwarded:

2a Host 2 Host 1 ICMP echo reply
Switch 2 Controller | OFP encoded packet 2 (ICMP echo reply)
Controller | Switch 2 Create flow: Prot: ICMP, SRC 10.10.10.2, DST 10.10.10.1 —IN
=1,0U0T =3
2b Switch 2 Switch 1 ICMP echo reply
Switch 1 Controller | OFP encoded packet 2 (ICMP echo reply)
Controller | Switch 1 Create flow: Prot: ICMP, SRC 10.10.10.2, DST 10.10.10.1 —IN
=1,0U0T =3
2c Switch 1 Host 1 ICMP echo reply

8.5 Working of the routing module

Description The routing module provides shortest path forwarding within the OpenFlow network. The
module depends on several other modules, of which the most important ones are the discovery module and
the spanning tree module. The spanning tree module is used to flood traffic with an unknown or unspecified
destination throughout the network. The routing module is used to forward traffic along the shortest path

23

between source and destination. This can only be done for unicast traffic of which the location of the
destination host is known.

Traffic flows When the hosts send traffic to each other, the switch asks the NOX controller how to handle
this traffic. The discovery module discovers the topology and gives input to the routing module (for known
destinations traffic) and spanning tree module (for unknown destination traffic).

NOX controller

routing host

>

control

discovery —p

switch

data

ejep

spanning tree host

Figure 7: Component interaction in routing module

8.5.1 Discovering topology

Discovery of the topology is needed for the spanning tree module to be able to calculate a spanning tree of
the network. The module works by instructing every registered switch to send LLDP frames out of every
interface. These frames originate at the controller and are transported to the switch using the OpenFlow
protocol. Subsequently, when an outgoing frame of an arbitrary switch has been received by another arbi-
trary switch, that frame is routed back to the controller, using the OpenFlow protocol. By extracting the
frame from the OpenFlow packet, and examining its content, the controller knows which two switches are
connected and with what interfaces. It can therefore build up a complete topology overview.

24

LLDP (iterated every 10 seconds

Data | Control | Source Destination | Content
1 Controller | Switch 1 Send LLDP frame out port 1
1 Switch 1 Port 1 LLDP frame
2 Controller | Switch 1 Send LLDP frame out port 2
2 Switch 1 Port 2 LLDP frame
3 Controller | Switch 1 Send LLDP frame out port 3
3 Switch 1 Port 3 LLDP frame
4 Switch 2 Controller Received this LLDP frame at port 1
Controller | Switch 1 Send LLDP frame out port 4
4 Switch 1 Port 4 LLDP frame

Of the 4 LLDP frames switch 1 has send out, one has reached switch 2. Switch 2 sub-
sequently send the frame back to the controller indicating the interface it has received the

frame on (port 1).

6 Controller | Switch 2 Send LLDP frame out port 1
5 Switch 2 Port 1 LLDP frame
7 Switch 1 Controller Received this LLDP frame at port 3
8 Controller | Switch 2 Send LLDP frame out port 2
6 Switch 2 Port 2 LLDP frame
9 Controller | Switch 2 Send LLDP frame out port 3
7 Switch 2 Port 3 LLDP frame
10 Controller | Switch 2 Send LLDP frame out port 4
8 Switch 2 Port 4 LLDP frame

Of the 4 LLDP frames switch 2 has send out, one has reached switch 1. Switch 1 sub-
sequently send the frame back to the controller indicating the interface it has received the
frame on (port 3). The controller now knows switch 1 and 2 are connected by a single link
between port 1 and 3.

8.5.2 Spanning tree

Now that the topology is known, a the spanning tree can be calculated. The spanning tree is not (only) kept
in memory, but programmed to the active switches. This is done by using portmod commands, indicating
which ports should and which ports shouldn’t output a packet defined with ”output action” flood. This
means that even if a switch received the command to flood a packet/frame, the packet/frame is only sent

out on specific interfaces, thereby eliminating loops.

25

Flood deactivation
Switches Controller (NOX)
Port Mod (port 1)
Port Mod (port 2)
Port Mod (port 3)
+ | Port Mod (port 4)

On activation, the controller immediately sends a portmod command to every switch for
every interface the switch has. In the portmod command, the "Do not include this port
when flooding” -flag is set to "active”

TIT|T

Partial flood reactivation to build spanning tree
+ | Port Mod (port X)
+ | Port Mod (port Y)

After the "spanning tree module” has received the topology information from the “topology
module”, it reactivates some ports for flooding by de-activating the "active” flag using the
portmod command.

8.5.3 Sending multicast/broadcast/unknown frames (ARP request)
The mechanism of sending packets with an unspecific destination is illustrated by the process of an ARP

request.

ARP request
Data | Ctrl | Source Destination | Content
la Host 1 Broadcast ARP: Who has 10.10.10.2 7

Host 1 broadcast a normal ARP request.

’ ‘ 1 ‘ Switch 1 ‘ Controller OFP encoded frame 1 (ARP request)

Switch 1 wraps the frame into an OpenFlow packet, sends it to the controller and asks
what to do with it.

2 Controller | Switch 1 Create flow: Prot: ARP, SRC 52:54:00:34:FA:2C, DST
FF:FF:FF:FF:FF.FF —IN = 3, OUT = Flood
3 Controller | Switch 1 Flood frame out all ports (except originating)
1b Switch 1 Flood ARP: Who has 10.10.10.2 7

The controller responds by instructing the switch to add a flow for this specific traffic.
It then gives the command to flood this specific frame out of all ports. (Except the ones
with the no flooding flag set by the spanning tree module). This process is now repeated
identically for switch 2, until the frame reaches it’s destination (host 2)

Switch 2 Controller OFP encoded frame 1 (ARP request)
5 Controller | Switch 2 Create flow: Prot: ARP, SRC 52:54:00:34:FA:2C, DST
FF:.FF:FF:FF:FF.FF —IN = 3, OUT = Flood
6 Controller | Switch 2 Flood frame out all ports (except originating)
lc Switch 2 Flood ARP: Who has 10.10.10.2 ?

26

8.5.4 Sending unicast frames (ARP response)

Now that the controller knows where both sender and receiver are located on the network and the replying
host knows the MAC address of the receiver, the ARP response can be forwarded in a much more efficient
way. For unicast frames with known destination, the complete end to end path is calculated and subsequently
programmed to all switches along the path.

ARP response
[2a | | Host2 | Host 1 | ARP: I'm 10.10.10.2, my MAC is 52:54:00:D5:4F:0D |
Host 2 sends out the ARP response

’ ‘ 7 ‘ Switch 2 ‘ Controller ‘ OFP encoded frame 2 (ARP response) ‘

Switch 2 asks the controller what to do with the frame.

8 Controller | Switch 2 Create flow: Prot: ARP, SRC 52:54:00:D5:4F:0D, 10.10.10.2,
DST 52:54:00:34:FA:2C, 10.10.10.1 -IN =3, OUT =1

9 Controller | Switch 2 Create flow: Prot: ARP, SRC 52:54:00:D5:4F:0D, 10.10.10.2,
DST 52:54:00:34:FA:2C, 10.10.10.1 -IN =3, OUT =1

The controller creates a flow on both switches simulteanously.

’ ‘ ‘ Controller ‘ Switch 2 Perform action in flow table for frame 2

The controller tells switch 2 what to do with this specific frame.

2b Switch 2 Switch 1 ARP: I'm 10.10.10.2, my MAC is 52:54:00:D5:4F:0D
2c Switch 1 Host 1 ARP: I'm 10.10.10.2, my MAC is 52:54:00:D5:4F:0D

The frame can be delivered to host 1 with the earlier created flow.

8.5.5 Sending unicast packets

To explain the forwarding of unicast packets, we chose to use ICMP echo because of it’s triviality and
widespread familiarity. We chose not to annote the entries in this table because all individual steps have
been annoted in previous tables and this improves the readability.

27

ICMP echo

Data | Ctrl | Source Destination | Content
1 Host 1 Host 2 ICMP echo request
1 Switch 1 Controller OFP encoded packet 1 (ICMP echo request)
2 Controller | Switch 1 Create flow: Prot: ICMP, SRC 10.10.10.1, DST 10.10.10.2
—=IN=3,0UT =1
3 Controller | Switch 2 Create flow: Prot: ICMP, SRC 10.10.10.1, DST 10.10.10.2
—-IN=3,0UT =1
4 Controller | Switch 1 Perform action in flow table for packet 1
Switch 1 Switch 2 ICMP echo request
Switch 2 Host 2 ICMP echo request
Host 2 Host 1 ICMP echo reply
Switch 2 Controller OFP encoded packet 1 (ICMP echo reply)
Controller | Switch 2 Create flow: Prot: ICMP, SRC 10.10.10.1, DST 10.10.10.2
—=IN=3,0UT=1
7 Controller | Switch 1 Create flow: Prot: ICMP, SRC 10.10.10.1, DST 10.10.10.2
—IN=3,0UT =1
8 Controller | Switch 2 Perform action in flow table for packet 4
Switch 2 Switch 1 ICMP echo reply
Switch 1 Host 1 ICMP echo reply

8.6 Weaknesses in NOX routing module

By testing the routing module, we found the following shortcomings:

No immediate link failover During the testing we found out that when a change in topology occurs,
for example a link that is removed, all active flows using that link are not rerouted. The flow is not removed
from the data-path and as long as packets keep coming in, the flow idle-timeout is reset and not removed.
Only when the packet stream is stopped, the flow times out. When the packet stream is started again, the
route through the network is reprogrammed along another path. This can probably be solved relatively easy
using OpenFlow protocol version 1.1. Unfortunately, we only found this out at the end of our research. Also,
version 1.1 has not been implemented for our test hardware. In version 1.1 the concept of failover groups is
introduced in which the switch can take a failover decision to another interface without having to wait for
the controller.

We created a implementation proposal that solves this issue in the current version by keeping a local cache of
all installed flows. When a topology change is detected, all effected flows are remove from the active switches.
Because after removal no flow is available for subsequent frames, a recalcuation is triggered yielding a new
active path. This proposal can be found in Appendix F.

No extra loop prevention The module contains a bug that makes hosts authenticate to different data-
paths. This authentication is a registration of which hosts can be reached through which data-path. In
exceptional cases, the sender of a broadcast packet that is flooded through the network can get associated
with multiple switches. This means that all these switches think they are the best data-path to reach that
host. This results in loops. A mechanism such as a TTL field which is used in TRILL could prevent the
packets from going into an endless loop when there is a problem in the control plane such as this one.
However, modifying or adding headers is not possible using the OpenFlow protocol. [20]

28

Controller is single point of failure When the controller goes down the network can no longer be
controlled, in the OpenFlow versions 1.0 & 1.1 the controller high availability feature is not present. This
feature is planned however in OpenFlow version 1.2[3].

No load sharing During the test we found that no load sharing is used, all traffic follows one specific

shortest path. This is both the case when traffic is flooded (because only one tree is used) as with traffic
that is forwarded along the shortest path from source to destination.

29

9 Comparison of NOX routing module with SPB (802.1aq) and

TRILL

NOX routing module

| SPB (802.1aq)

| TRILL

Organization

No specific organization pushing
the implementation, because it
is not a standard. OpenFlow
is maintained by the Open Net-
working Foundation.

IEEE

IETF

Load balancing

None

Redundant path selection deter-
mined based on various ECMT
algorithms[31]

Redundant paths used using mul-
tiple spanning trees and equal
cost load balancing.

Calculation of short

est path for unicast frames with known destination

Based on hop count, with weight
of each hop being 1. The algo-
rithm is based on the paper ”A
New Approach to Dynamic All
Pairs Shortest Paths” by Deme-
trescu et. al. [18][19]

Use IS-IS protocol to calculate shortest path.

Hardware

New hardware is needed. All
intermediate switches between
source and destination need to
have OpenFlow support.

Current ASICs can be used

New ASICs required because of
new frame format. Intermediate
bridges can handle these frame
as if normal ethernet frames (un-
aware of extra TRILL header)

Extra loop prevention checks 2

By calculating flood ports using
spanning tree and programming
into network. No extra built-in
securities to prevent loops in ”ex-
ception” cases.

RPFC to prevent loops

RPFC & TTL field to prevent
loops

Forwarding of unicast packets

Frames and packets of which the
controller has learned the loca-
tion of destination node are for-
warded over the shortest path.
This path is programmed in ad-
vance to all switches along the
path.

” After IS-IS builds the network
topology, SPB creates the short-
est paths based on link met-
rics and then assigns the traffic
(Unicast and Multicast) to that
path. Traffic with same source
and destination combination is
forwarded through path that is
calculated in advance. There-
fore it is very easy to predict the
traffic flows through the meshed
network since they are calculated
once for the entire path. Forward
and reverse path symmetric.” [10]

Unicast traffic is forward along
the most optimal path from
source to destination RBridge.
The forwarding decisions are
made hop by hop, locally on
each router. Forward and reverse
paths are not symmetric.

2These checks are built-in to prevent loops in in certain exceptional situations, such as an error in the control plane.

30

Shortest path forwarding us-
ing OpenFlow

SPB (802.1aq)

TRILL

Forwarding of packets other than unicast

Frames of which the destination
is unknown are flooded to all
OpenFlow switches using the pre-
computed & programmed span-
ning tree.

Broadcasted, multiple trees pos-
sible. Paths of unicast and non-
unicast traffic congruent.

Broadcasted, multiple trees pos-
sible.

Encapsulation

No extra encapsulation for data
frames. Frames sent to con-
troller encapsulated with Open-
Flow header.

SPB-M - MAC-in-MAC
(802.1ah) / SPB-V - Q-in-Q
(802.1ad)

TRILL header & extra ethernet
header

31

10 Conclusion

This paper has explained both the problems the Spanning Tree Protocol faces as well as different successor
protocols to solve these problems. During our research we tested a shortest path forwarding algorithm sup-
plied with the NOX OpenFlow controller (NOX routing module). This has given us a good understanding
of the OpenFlow architecture and how a shortest path forwarding algorithm can be implemented leveraging
this protocol.

All three methods (SPB; 802.1aq, TRILL and the NOX routing module) are designed around their own
design principles and therefore have their own advantages and disadvantages for deployment in specific sit-
uations. SPB (802.1aq) is strongly designed around reusing existing standards and specifications to make
implementation more smoothly. TRILL on the other hand has been designed more pragmatic and has fo-
cussed on a solution which keeps things simple.

OpenFlow is not a protocol for shortest path forwarding per se but a very powerful protocol to program
networks in virtually any way one would want to. Decisions are not made distributed (in agreement of
all switches to each other), but centralized, with a (single) controller instructing all switches what to do.
OpenFlow is designed as a means to implement and test new protocols. It is therefore also relatively easy to
implement a shortest path forwarding algorithm such as the NOX routing module described in this paper.
Because OpenFlow brings the complete control plane of switches to a programmable server (the controller),
with enough effort, every network protocol could be implemented. Theoretically even 802.1aq or TRILL
could be implemented in OpenFlow. But, in the current state we don’t think such an implementation can
compete with 'native’ SPB (802.1aq) and TRILL. OpenFlow is still in development and while version 1.1 is
the current stable version, work is being done on version 1.2 with lots of added and changed features. More-
over, because of the centralized architecture, overhead and latency will always be worse than with native,
specialized, one purpose protocols.

One of these new features, failover group, is needed to implement a sub second path failover on link failure.
With this feature an alternative path can be programmed to the switch in advance. When the switch notices
a link failure, it can forward frames using an alternative path without waiting for the controller. The other
protocols don’t have this issue because of their use of the IS-IS routing protocol and ability to calculate
alternative paths locally. Another feature introduced in version 1.2 is the ability to register a switch to both
a master as slave controller to eliminate the single point of failure of the controller.

For now we must conclude that although OpenFlow is very promising and most certainly will be deployed
more and more the coming years, in the current state it doesn’t provide an Spanning Tree alternative such
as ‘native’ TRILL and 802.1aq. The two main reasons for this being the heavy development still going on
and the same reason that gives this protocol its flexiblity; the control plane being located on a remote server.

32

11 Further research

Further research can be divided into two main parts:
Leveraging new features Implementation of the group failover and master slave features.

Optimization of algorithm The routing module lacks support for load balancing. Adding support to
this module would be a great improvement.

33

References

[1] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, Jonathan Turner, OpenFlow: Enabling Innovation in Campus Networks
http://www.openflow.org/documents/openflow-wp-latest.pdf
14 March 2008

[2] Ethan Banks, OpenFlow State of the Union: Reflections on the OpenFlow Symposium
http://packetpushers.net/OpenFlow-state-of-the-union-reflections-on-the-OpenFlow-symposium
27 October 2011

[3] Jean Tourrilhes OpenFlow 1.2 proposals
http://www.0OpenFlow.org/wk/index.php/OpenFlow_1_2_proposal

[4] Yiannis Yiakoumis, Julius Schulz-Zander, Jiang Zhu OpenFlow for Open WRT
http://www.OpenFlow.org/wk/index.php/Pantou_:_OpenFlow_1.0_for_OpenWRT

[5] Interworking Task Group of IEEE 802.1, IEEE P802.1aq Draft Standard for Local and Metropolitan
Area Networks - Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks
13 December 2011

[6] J. Touch, R. Perlman, Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability

Statement
http://tools.ietf.org/html/rfc5556
May 2009
[7] D. Eastlake 3rd, D. Dutt, S. Gai, A. Ghanwani, Routing Bridges (RBridges): Base Protocol Specifica-
tion
http://tools.ietf.org/html/rfc6325
July 2011
[8] A.Banerjee, D. Dutt, R. Perlman, A. Ghanwani, Transparent Interconnection of Lots of Links (TRILL)
Use of 1S-1S
http://tools.ietf.org/html/rfc6326
July 2011

[9] R. Perlman, A. Ghanwani, D. Dutt, V. Manral, Routing Bridges (RBridges): Adjacency
http://tools.ietf.org/html/rfc6327
July 2011

[10] Avaya, Compare and Contrast SPB and TRILL
http://www.avaya.com/uk/resource/assets/whitepapers/SPB-TRILL_Compare_
Contrast-DN4634.pdf 2011

[11] Ivan Pepelnjak, TRILL and 802.1aq are like apples and oranges.
http://blog.ioshints.info/2010/08/trill-and-8021ag-are-like-apples—and.html
02 August 2010

[12] John Herbert, Layer 2 Routing (sort of) and TRILL
http://lamejournal.com/2011/05/16/1layer-2-routing-sort-of-and-trill
16 May 2011

[13] Greg Ferro, Network Fabric:TRILL for Server and Network People. Welcome RBridges http://
etherealmind.com/trill-introduction-review-overview-why-what-how 30 March 2009

34

[14] Jose Miguel Huertas, TRILL: The end of Spanning-Tree?
http://blog.initialdraft.com/archives/1412
9 March 2011

[15] NANOG 50, The Great Debate: TRILL Versus 802.1aq (SPB)
http://www.nanog.org/meetings/nanog50/presentations/Monday/NANOG50.Talk63 . NANOG50_
TRILL-SPB-Debate-Roisman.pdf
4 October 2010

[16] NOX routing module main Wiki page
http://noxrepo.org/noxwiki/index.php/Routing

[17] Glen Gibb, NOX Spanning Tree module
http://www.openflow.org/wk/index.php/Basic_Spanning Tree

[18] Camil Demetrescu, Giuseppe F. Italiano,A New Approach to Dynamic All Pairs Shortest Paths
http://www.dis.uniromal.it/~demetres/docs/dapsp-full.pdf 2003

[19] NOX repo, How does the routing module calculate shortest path?
http://noxrepo.org/pipermail/nox-dev/2010-December/007039.html

[20] NOX repo, One MAC might get authenticated to more than one datapath
http://noxrepo.org/pipermail/nox-dev/2010-March/006063.html

[21] Radia Perlman, Algorhyme
http://www.csua.berkeley.edu/~ranga/humor/algorhyme. txt

[22] H. Grover, D. Rao, D. Farinacci, V. Moreno, emphOTV (Overlay Transport Virtualization)
http://tools.ietf.org/id/draft-hasmit-otv-03.txt
08 Juli 2011

[23] Portland
http://cseweb.ucsd.edu/~vahdat/papers/portland-sigcomm09.pdf

[24] EVPN (Ethernet Virtual Private Network) / VPLS (Virtual Private LAN Service)
http://tools.ietf.org/html/rfc4761/http://tools.ietf.org/html/rfc4762

[25] PBB-EVPN (Provider Backbone-Ethernet Virtual Private Network
http://tools.ietf.org/html/draft-sajassi-12vpn-pbb-evpn-00

[26] VL2
http://research.microsoft.com/apps/pubs/default.aspx?id=80693

[27] Seattle
http://www.cs.princeton.edu/~chkim/Research/SEATTLE/seattle.pdf

[28] Fabric Path
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9402/white_paper_
c11-605488.html

[29] Moose (Multi-level Origin-Organised Scalable Ethernet)
http://www.cl.cam.ac.uk/~mas90/MOOSE

[30] 802.1Qbp
http://www.ieee802.0rg/1/pages/802.1bp.html

[31] Equal Cost Multi Tree
http://en.wikipedia.org/wiki/IEEE_802.1aq#Equal_Cost_Multi_Tree_-_ECMT

35

12 Appendix A: Command summary

dpctl

dpctl dump-flows tcp:localhost

Display current flows.

dpctl dump-desc tep:localhost

Display vendor + version information.

dpctl show tep:localhost

Display switch port state & capabilities.

dpctl show-protostat tcp:localhost

Display traffic statistics.

dpctl add-flow tcp:localhost in_port=in_port,actions=action | Create forwarding flow on switch.

dpctl del-flows tep:localhost

Remove all current flows from switch.

tcpdump

tepdump -enngti any \(arp or icmp \) ‘ Display summary of all received ICMP and ARP packets.

NOX controller

sudo ./nox_core -v -v -i ptcp:6633 routing

Start NOX controller with routing module in verbose mode.
Listen on port TCP 6633

36

13 Appendix B: Compilation of OpenWRT image with OpenFlow
support

The OpenWRT image available on the OpenFlow wiki[4] did not function correctly on our hardware (TP-
Link WR1043ND v1.8). Although the image booted correctly and didn’t output any errors, the creation
of flows did not lead to the forwarding of traffic. The problem is most probably related to the hardware
version of our equipment. The wiki states that version 1.7 had been tested, while we had received switches
of hardware version 1.8. We solved this problem by compiling our own OpenWRT image from the latest
SVN / GIT branches.

This appendix is based on the instructions available on: http://www.OpenFlow.org/wk/index.php/OpenFlow_
1.0_for_OpenWRT Some steps, are removed, others are made more clear. Several errors have been corrected.

13.1 OpenWRT

Create a working directory for the compilation process.
mkdir ~/openwrt
Install all dependencies needed for the compilation process:

apt-get quilt git install build-essential binutils flex bison autoconf gettext texinfo
sharutils subversion libncursesb-dev ncurses-term zliblg-dev gawk

Create a working directory, checkout latest SVN source for Open WRT and and prepare source code.

cd ~/openwrt

svn co svn://svn.openwrt.org/openwrt/branches/backfire
cd ~/openwrt/backfire

./scripts/feeds update -a

./scripts/feeds install -a

Select platform specific parameters:

Select ” Atheros AR71xx/AR7240/AR913x” under ” Target System”.
Select ”TP-LINK TL-WR1043ND v1” under ” Target profile”
Save and exit

make menuconfig
Check if you have all prerequisites installed with:

make prereq

13.2 Add OpenFlow extension

Go to your working directory and download the OpenFlow extension.

cd ~/openwrt/
git clone git://gitosis.stanford.edu/OpenFlow-openwrt

Move to the TP-Link specific branch.

cd ~/0OpenFlow_openwrt
git checkout -b OpenFlow-1.0/tplink origin/OpenFlow-1.0/tplink

37

Add the OpenFlow extensions to the backfire directory.

cd ~/openwrt/backfire/package/
1n -s ~/openwrt/OpenFlow-openwrt/OpenFlow-1.0/

Add basic configuration files for Open WRT

cd ~/openwrt/backfire/
1n -s “/openwrt/OpenFlow-openwrt/OpenFlow-1.0/files/

Add the related package to your configuration:

Select ”OpenFlow” under ”Network”.

Select "tc” under ” Network”.

Select ”kmod-tun” under ”Kernel Modules, Network Support”.
Save and Exit

make menuconfig

Add support for queueing;:

Select ”Hierarchical Token Bucket (HTB)” under ”Networking Support, Networking options, QoS and/or
fair queueing”
Save and Exit
make kernel menuconfig
Build the image

make

Load the image (~/openwrt/backfire/bin/ar71xx/openwrt-ar71xx-tl-wr1043nd-v1-squashfs- [sysupgrade/[factory/.bin)
to the device. For instructions on how to load the image, see the OpenWRT wiki (http://wiki.openwrt.
org/toh/tp-link/tl-wr1043nd

38

14 Appendix C: Description of test environment

Summary of hard- and software used in test environment.

Servers
Hostname | IP address Description Hardware Software | Version
C1 145.100.37.185/27 NOX controller N/A Ubuntu 10.04
NOX 0.9.1
H1 145.100.37.186/27 Test host 1 Virtual Ubuntu 10.04
10.10.10.1/24
H2 145.100.37.187/27 Test host 2 Virtual Ubuntu 10.04
10.10.10.2/24
H3 145.100.37.188/27 Test host 3 Virtual Ubuntu 10.04
10.10.10.3/24
H4 145.100.37.189/27 Test host 4 Virtual Ubuntu 10.04
10.10.10.4/24
OpenFlow switches
Hostname | IP address Descrip. | Hardware Software | Version
SW1 145.100.37.163/27| Switch 1 | TP-LINK OpenWRT | Backfire, 10.03.1, r29685
TL-WR1043ND
OpenFlow | v1.0 latest (13-05-11)
SW2 145.100.37.164/27| Switch 2 | TP-LINK Ubuntu 10.04
TL-WR1043ND
OpenFlow | v1.0 latest (13-05-11)
SW3 145.100.37.165/27| Switch 3 | TP-LINK Ubuntu 10.04
TL-WR1043ND
OpenFlow | v1.0 latest (13-05-11)
SW4 145.100.37.166/27| Switch 4 | TP-LINK Ubuntu 10.04
TL-WR1043ND
OpenFlow | v1.0 latest (13-05-11)
SW5 145.100.37.167/27| Switch 5 | TP-LINK Ubuntu 10.04
TL-WR1043ND
OpenFlow | v1.0 latest (13-05-11)
SW6 145.100.37.168/27| Switch 6 | TP-LINK Ubuntu 10.04
TL-WR1043ND
OpenFlow | v1.0 latest (13-05-11)
Management switch
Hostname | IP address Description Hardware Software | Version
VLAN-SW | 145.100.37.162/27 | Management TP-LINK TL- | Cisco IOS | 12.1(22)EA14
switch WR1043ND

39

Choice for TP-Link TL-WR1043ND equipment[4]

We choose to use TP-Link TL-WR1043ND switches because of their low price and the ability to run custom
firmware. Because of these properties, work has been done to implement a Open WRT image with OpenFlow
support. Although performance is low, it is a very attractive choice to build a testing network with.

14.1 Network Overview

H1 H2

Figure 8: Logical network diagram

40

L — VLAN 2001, 2002, 2003, 2004 / 10.10.10.0/24
—— VLAN 437/ 145.100.37.160/27

Figure 9: Physical network diagram

41

15 Appendix D: Bugfixes

15.1 OpenFlow dissector Wireshark plugin

To use the OpenFlow dissector Wireshark plugin (version 1.0) with Wireshark (version 1.6.4) we had to
change line 769 of packet-OpenFlow.c from:

dissector_add(TCP_PORT_FILTER, global_OpenFlow_proto, OpenFlow_handle);

to:

dissector_add_uint (TCP_PORT_FILTER, global_OpenFlow_proto, OpenFlow_handle) ;

Based on http://www.mail-archive.com/OpenFlow-discuss@lists.stanford.edu/msg00969.html

15.2 Routing module

The dependency of the routing module on the spanning tree module is not correctly configured in the cor-
responding meta. json file. Without fixing this problem, loops are created and the module doesn’t function
at all.

Change:

"name": "routing"

"library": "sprouting" ,

"dependencies": [
"routing_module",
"authenticator",

To:

"name": "routing"

"library": "sprouting"

"dependencies": [
"routing_module",
"authenticator",
"spanning_tree"

42

16 Appendix E: Summary of tests and results

16.1 Introduction

During the research we performed a number of tests. The aim of these tests was to understand the OpenFlow
protocol and bridges, working of and interaction with the NOX controller and innerworking of the routing
module.

16.2 Method

16.2.1 Data collected

For the tests, we collected the following data (where applicable).
e tcpdump log of ICMP and ARP packets/frames on hosts.
e Wireshark logging on NOX controller (with help of OpenFlow dissector plugin.
e Console output of NOX controller.

e Current flows on OpenFlow switches.

To capture the flow table on different switches in specific point in time, we created a script. This
script uses a private-public key construction to automatically login to all 6 OpenFlow switches at the
same time, dump the current flows, and save them to a non-volatile location.

16.2.2 Testing
The steps we iterated for each test (where applicable):
Test 1a & 1b:

e Start tcpdump on hosts.

e Create manual flows on switch.

e Start data stream from source to destination host.

Other tests (with NOX controller):

e Start Wireshark logging.

Start tcpdump on hosts.

Start controller with specific module.

Wait for 1 minute till controller is fully started.

Send PING request from source to destination host.

Collect current flows snapshot from all relevant router using collect script.

43

16.2.3 Resetting test

Between each test, we resetted the test environment using the following steps (where applicable):
e Clear ARP entries on hosts.
e Restart NOX controller
e Delete all current flows from switches

e Reset Wireshark and tcpdump

16.3 Topologies

Topology A Topology B

44

16.4 Description of tests

Manual flow creation

Create flows manual through CLI, verify connectivity using PING from host 1 to host 2.
Ezecute test for connectivity both ways (source and destination host swapped)

Flows test 1a (identical for both switches)
dpctl add-flow tcp:localhost in_port=1,actions=output:3
dpctl add-flow tcp:localkhost in_port=3,actions=output:1

Flows test 1b (switch 1)
dpctl add-flow tcp:localhost in_port=1,actions=output:3,4
dpctl add-flow tcp:localhost in_port=3,4,actions=output:1
Flows test 1b (switch 2)
dpctl add-flow tcp:localhost in_port=3,actions=output:1,4
dpctl add-flow tcp:localhost in_port=1,4,actions=output:3

Purpose Topology
Test 1a | Verify setup and understanding of technology. Topology A
Test 1b | Verify setup and understanding of technology. Topology B

pyswitch module

Load pyswitch module in NOX controller, verify connectivity using PING from host 1 to
host 2. Execute test for connectivity both ways (source and destination host swapped)

Command: sudo ./nox_core -v -v -i ptcp:6633 pyswitch

Purpose Topology
Test 2a | Verify setup and understanding of technology. Topology A
Test 2b | Verify setup and understanding of technology. Topology B

routing module

Load routing module in NOX controller, verify connectivity using PING from host 1 to
host 2. Execute test for connectivity both ways (source and destination host swapped)

Command: sudo ./nox_core -v -v -i ptcp:6633 routing

Purpose Topology
Test 3a | Understand and verify working of routing module Topology A
Test 3b | Understand and verify working of routing module Topology B

45

Load routing module in NOX controller, send PING from host 1 to host 4. Monitor
which path is actually being used. Execute test for both ways (source and destination host
swapped). Iterate 10 times to determine actual path taken.

Command: sudo ./nox_core -v -v -i ptcp:6633 routing

’ Test 4 ‘ Determine path determination algorithm Topology C

Load routing module in NOX controller, send PING from host 1 to host 4. Remowve active
ethernet link to verify link failover algorithm.

Command: sudo ./nox_core -v -v -i ptcp:6633 routing

’ Test 5 ‘ Determine link failover algorithm ‘ Topology C

Load routing module in NOX controller, start multiple TCP streams (using iperf) from
host 1 to host 4. Monitor which path are actually being used and if traffic is load balanced
across network.

Command: sudo ./nox_core -v -v -i ptcp:6633 routing

‘ Test 6 ‘ Determine load balancing capability Topology C

46

16.5 Result summary

Manual flow creation

Result
Test 1a | Success
Test 1b | Success, traffic was delivered twice;
H1-SW1-1 -SW2-1 —H2
—SW1-2 -SW2-2 -H2
Pyswitch
Result
Test 2a | Success
Test 2b | Success
Routing
Result
Test 3a | Success
Test 3b | Success
Test 4 Success
Host 1 —host 2
Path taken:

(1) H1—»(SW1-1 -SW1-2) -»(SW3-1 -SW3-4) -+ (SW6-1 -SW6-4) —H2
Path taken:

(2) H1—»(SW1-1 -SW1-2) —»(SW3-1 -SW3-4) -(SW6-1 -SW6-4) —H2
Path taken:

(3) H1—»(SW1-1 -SW1-2) »(SW3-1 -SW3-4) —»(SW6-1 -SW6-4) -H2
Path taken:

(4) H1—-(SW1-1 -SW1-2) —»(SW3-1 -SW3-4) -(SW6-1 -SW6-4) —H2
Path taken:

(5) H1—-(SW1-1 -SW1-2) —»(SW3-1 -SW3-4) - (SW6-1 -SW6-4) —H2
Path taken:

(6) H1—-(SW1-1 -SW1-2) —»(SW3-1 -SW3-4) -(SW6-1 -SW6-4) —H2
Path taken:

(7) H1—-(SW1-1 -SW1-2) -»(SW3-1 -SW3-4) = (SW6-1 -SW6-4) —H2
Path taken:

(8) H1—+(SW1-1 -SW1-2) —»(SW3-1 -SW3-4) - (SW6-1 -SW6-4) —H2
Path taken:

(9) H1—»(SW1-1 -SW1-2) —»(SW3-1 -SW3-4) - (SW6-1 -SW6-4) —H2
Path taken:

(10) H1—-(SW1-1 -SW1-2) - (SW3-1 -SW3-4) —(SW6-1 -SW6-4) -H2

47

Host 2 —host 1

Path taken:

(1) H2—(SW6-4 -SW6-1) —»(SW3-4 -SW3-1) »(SW1-2 -SW1-1) -H1
Path taken:

(2) H2—(SW6-4 -SW6-1) —»(SW3-4 -SW3-1) - (SW1-2 -SW1-1) —-H1
Path taken:

(3) H2—(SW6-4 -SW6-1) —(SW3-4 -SW3-1) —»(SW1-2 -SWI1-1) -H1
Path taken:

(4) H2—(SW6-4 -SW6-1) —»(SW4-4 -SW4-1) -(SW1-2 -SW1-1) —-H1
Path taken:

(5) H2—(SW6-4 -SW6-1) —»(SW3-4 -SW3-1) - (SW1-2 -SW1-1) —-H1
Path taken:

(6) H2—(SW6-4 »SW6-1) —(SW4-4 »SW4-1) —»(SW1-4 »SWI-1) »H1
Path taken:

(7) H2—(SW6-4 -SW6-1) -»(SW3-4 -SW3-1) - (SW1-2 -SW1-1) —-H1
Path taken:

(8) H2—(SW6-4 -SW6-1) —»(SW4-4 -SW4-1) - (SW1-4 -SW1-1) —-H1
Path taken:

(9) H2—(SW6-4 -SW6-1) —»(SW3-4 -SW3-1) - (SW1-2 -SW1-1) —-H1
Path taken:

(10) H2—(SW6-4 —-SW6-1) - (SW3-4 -SW3-1) »(SW1-2 -SW1-1) -H1

Test 5

Traffic path before link removal:

H1—-(SW1-1 -SW1-2) -(SW3-1 -»SW3-4) —»(SW6-1 -SW6-4) -H2

After removal of the link between switch 1 and 3, the traffic was interrupted and not (auto-
matically) resumed. After removal of the link between switch 3 and 6, the traffic was resume
after the current flows (in switch 3 and 6) had timed out. The flow on switch 1 (towards
to removed link) did not timeout, because packets kept coming in from host 1. If the traffic
flow was stopped until the failing flow had timed out, or the flow was removed manually, the
controller reinstalled a new flow forwarding traffic along another path. In other words, traffic
was only send along a new path after the current flows where removed from the switch by
timeout or manual action. The controller itself didn’t notify the switch to remove the failing
flow rule.

Test 6

During this test, all traffic flows took the same path (H1—(SW1-1 -SW1-2) —(SW3-1
—SW3-4) —(SW6-1 »SW6-4) —H2)

No load balancing of traffic between the hosts occurred.

Notes

While working with the routing module, we noticed sometimes traffic did get stuck in a loop.
This most probable reason for this is when a host gets authenticated (associated to) multiple
datapaths (switches) in looped topology[20].

48

17 Appendix F: Pseudocode

17.1 Introduction

This proposal tries to solve the issue of non effective failover on link failure as described in this paper. It
does this by keeping a local cache of all flows installed on the switches in the network. Whenever a topology

change occurs, all effected flows are removed. This in turn triggers a recalculation of the active path.

17.2 Component overview

Function interaction

dispatcher
known_destination?

yes

No

v

spanning_tree Dijkstra > route_packet . flood_packet host_table
|
v 3 ‘
. Y | A 1
. | |
3 |
link_timeout_watch |«------------------ topology_table ‘
A !
registered_
datapaths
. receive_topology_
topology_packet_in packet
v
Flow expired fl T2 IR —— 1l tabl
ow_expire ow_table send_topology_packet

Legend

function Iterated function

Get data from object

Function call

Set data to object

49

17.3 Events

Event

Handler

Receival of data packet

dispatcher(dpid_src, in_port, packet)

Receival of topology discovery packet

receive_topology_packet(dpid,packet)

Notification of switch that flow has expired and
been removed from local flow table

update_flow_table(dpid, flow)

17.4 Library calls

Method Description

create_flow API call to create a flow on a datapath
delete_flow API call to remove a flow from a datapath
dijkstra Library call to calculate shortest path between two

nodes

spanning_tree

Library call to calculate a spanning tree and pro-
gram to the datapath ports using portmod packets

send_packet

API call to send packet to datapath

17.5 Functions
function dispatcher(dpid_src, in_port, packet)

When a data packet is received, the dispatcher function is called. This function first insert the source MAC
and port into the MAC to port mapping table. Then it determines whether the frame should be flooded or

routed to its destination.

Gets data from

Description

host_table

To determine if host is already known.

Calls to other functions

Description

route_packet

To forward packet if destination is known.

flood_packet

To forward packet if destination is unknown.

#Called on data_packet_in event,
flooded or routed.

#Learn src MAC and store into

determines whether packet should be should be

local MAC to port mapping table.

host_table[dpid_src,in_port] = packet.src

#Check
if packet.dst in host_table

call route_packet (dpid_src,

if DST mac has already been learned in

local MAC to port mapping table.

in_port , packet)

#I1f DST mac is unknown; flood packet through tree:

else:

call flood_packet (dpid_src,

in_port , packet)

function route_packet(dpid_src, in_port, packet)

If the destination of the packet is known, it can be routed to its destination. This function gets the destination
datapath and port from the host_table and calls the dijkstra function to calculate the shortest path. It then
programs an appropriate flow to all intermediate datapaths between source and destination. It also stores the
newly created flows in a local table, needed to determine which routes should be recalculated in a topology
change.

Gets data from Description

host_table Get location of destination host.

Sets data to Description

flow_table Store newly created flow in local table.
Calls to other functions Description

dijkstra Function to calculate shortest path.
create_flow Function to program flow to datapaths.

#Get destination switch from host_table
destination = host_table [packet.dst]

#Split destination into destination datapath and outport.
dpid_dst = destination [1]
action = destination [2]

#Get shortest path from source to destination. Function returns array with all
flow entries that should be programmed. The source datapath is needed
because this is the switch where the complete path should originate.

best_-route = call dijkstra(dpid_src,in_port ,dpid_dst ,out_port)

#Program route to switches
for each (dpid, in_port, action) in best_route do:
call create_flow (dpid, in_port, action, packet.src, packet.dst
, packet.prot)

#Update flow_table with newly created flow
for each (dpid, in_port, action) in best_route do:
flow_table.add(dpid, in_port, action, packet.src, packet.dst,
packet . prot)

function flood_packet(dpid_src, in_port, packet)

Because the location of the destination address is unknown this function is called to flood the frame through
the network.

Gets data from Description

registered_datapaths To get a list of all active datapaths, itering through
and create flow with flood action.

Calls to other functions Description

create_flow Function to program the flow with action FLOOD

to all datapaths.

51

#Program flood route to switches
action = FLOOD

#Create flood flow for all registered switches
for each dpid in registered_datapaths do:
call create_flow (dpid, in_port, action, packet.src, packet.dst
, packet.prot)

function send_topology_packet

Send topology discovery packet out every port of every registered datapath. Packet contents: source datap-
ath, source_port. Function is iterated every 1 second.

Gets data from Description

registered_datapaths Get a list of all registered datapaths, iterate
through and ask switch to send topology packet.

Calls to other functions Description

send_packet Function to ask switch to send topology packet.

#Iterate through all datapaths and send out topology discovery packets for
each port.
for each(id,dpid,port,speed) in registered_datapaths do:
send_packet (dpid [dpid, portid])

function receive_topology_packet(dpid,packet)

For any incoming topology_packet evaluate link and update topology_table to reflect actual topology. For
links that already have been discovered, update the last received timer value. This is needed to discard
outdated link information.

Sets data to Description

topology_table When a new link is discovered, use information in
packet to update this table.

Gets data from Description

topology_table When a known link is rediscovered, update timer

value in table.

#Set data into variables
dpid_src = packet.src
dpid_dst = dpid
outport = packet.outport
inport = packet.inport

#Check if the link has already been discovered. If so, only update last_update
timer wvalue.

52

if (dpid.src ,outport,dpid_-dst,inport) in topology_table do:
topology_table (id ,dpid_src ,outport ,dpid_dst ,inport).update(
last_update) = 707
else
#Flse add link to topology table.
topology_table.add(dpid-src ,outport ,dpid.-dst ,inport ,”0”)

function flow_expired(packet.src,packet.dst,dpid,in_port,action,packet.prot)

When a datapaths notifies the controller of the expiration of a flow, this function is called. It is used to keep
the local flow table up to date.

Sets data to Description

flow_table Update the flowtable when a datapath notifies the
controller that is has removed a certain flow.

#Remove expired flow from local flow table
flow_table.remove(id, packet.src,packet.dst,dpid,in_port ,action ,packet.
prot)

function link_timeout_watch

If any link in the topology table has not been discovered for more than 3 seconds, delete link from topology
table. Then check in flow_table if this link is used in current, active flows and if so, delete flow from flow_table
and datapaths.

Gets data from Description

flow_table Check if timed out link is used in current flows.

topology_table Check if link is timed out.

Sets data to Description

topology_table If link is timed out, remove from table.

flow_table If timed out link is used in a any current flows,
remove flows from this table.

for each (id,dpid_src,src_port ,dpid_.dst,dst_port,last_update) in
topology_table do:
if last_update > 3
topology_table.remove(id)

#Check if link is wused in current flows, if so, delete flow local table and
switches.
for each (id,src,dst,dpid,in_port ,6action,prot) in flow_table
do:
if ((dpid = dpid_src) and (in_port = src_port) and (
action=dst_port))

53

#Remove flow from local table
flow_table .remove(id)

#Remove flow from switch
delete_flow (dpid,src,dst,in_port ,action ,prot)

17.6 Tables

These tables represent examples of the variables in use.

topology_table
id dpid_src src_port dpid_dst dst_port last_update

1 1 2 3 1 1
2 1 3 2 1 2
3 1 4 4 1 3
4 2 1 1 3 4
5 2 2 3 3 2
6 2 4 4 3 1
7 3 1 1 2 3
8 3 2 5 1 1
9 3 3 5 2 3
10 3 4 6 3 1
11 4 1 1 4 3
12 4 2 5 3 2
13 4 3 2 4 2
14 4 4 6 3 3
host_table
id MAC dpid, port
1 00:00:00:00:00:00:01 1,1
2 00:00:00:00:00:00:02 2,3
3 00:00:00:00:00:00:03 5,2
4 00:00:00:00:00:00:04 6,4
flow_table
id src dst dpid in_port out_port prot
1 00:00:00:00:00:00:01 00:00:00:00:00:00:04 1 1 2 arp

54

registered_datapaths

=

= © 00 O UL Wi+

dpid port
1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2

speed
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

55

