
Emulating Network Latency on
High Performance Networks

Berry Hoekstra | Niels Monen

Outline

Introduction

Related research

Approach

Research

Results

Conclusion

Questions?

Introduction

Emergence of high-speed connectivity
How do protocols and applications behave?
New research needed

 Can be tested using:

Proprietary equipment
On a real-world link

Often not available
If available, difficult to realise

High costs and availability can terminate a project

Not if off-the-shelf hardware can be used
Software emulation

Research question

"What are the characteristics of long distance high
performance links and to what extent can they be emulated
with off-the-shelf hardware?"

Sub-questions:

"What solutions are available for this purpose?"

"What is the effect of using different network
parameters?"

"Does it matter if a real-time or regular kernel is used?"

Related research

Li, et al.: Evaluation of TCP on high-speed networks

Former OS3 students: 10 GigE performance
measurements

Yildirim, et al.: Evaluation of different emulation tools

Hemminger: Emulating network characteristics using netem

netem workings and effects
Only "low" speed connections (1 GigE)

Wu, et al.: 10 GigE emulation

Used as reference for test results

Network properties

Network latency
Amount of time it takes for a packet to reach its
destination and back (Round Trip Time)

Network characteristics

Delay (RTT)
Jitter
Jitter distribution

Jitter occurrence

Fast link with long delay = Long Fat Network (elephant :))
High BDP

Bandwidth Delay Product

BDP = Bandwidth (byte) * Delay (s)
Amount of in-flight data

BDP ≈ TCP Window Size

Amount of unacknowledged data on the line

Calculate optimal Window Size
Using known RTT and link speed

Causes of latency

Optical limitations
Light speed limit (~300km/ms)
Amplifiers

Router delay

Congested buffers
Processing and transmission time
Fairness (Quality of Service)

Optimize network parameters

Path MTU
Ethernet frame size
Prevents fragmentation along the path

 TCP parameters (set using sysctl -w net.ipv4.tcp_*)
Congestion algorithm
TCP window size (Receive/Send Buffer)
Remove overhead:

Disable SACK and Timestamps

Set MTU Jumbo frames
ifconfig <NIC> mtu 9000

Set packet transfer queue length

ifconfig <NIC> txqueuelen <queue length>

Existing tools

Emulators
NIST Net
Dummynet
netem
Emulab
Web100

We chose netem

In the kernel by default
Can use other papers as reference

Generate traffic using iPerf 2.0.5

Emulation with netem

Kernel module
Included by default since Kernel 2.6.7

Emulation depends on kernel resolution

Resolution of 1000 Hz (since Kernel 2.6)
Matters to the precision of emulated delay

Higher resolutions for high-speed connections (40 GigE)

More packets per millisecond (theoretical ~5MB/ms)
Achieve more fine-grained emulation (<1ms)
10.000 Hz, but no patch for latest kernel

Hypothesis: Real-Time kernel

netem can apply delay in real-time

Kernels

Kernel ticks
New time slice for processes
Resolution of 1000 Hz = 1 tick/ms

Real-Time Kernel

Guaranteed system response time
Achieve the lowest possible latency at any cost

Tickless kernel

To save energy when idle
Ticks "on demand"

10 GigE Lab setup
3x Dell R210 (1U)

2 nodes (sender/receiver)
1 delaybox / bridge (netem)

Daisychained

No intermediate nodes
No "outside" influences

Connectivity

1 GigE Broadcom (onboard)
10 GigE Mellanox/Chelsio

40 GigE Lab setup

1x Supermicro Twinnode
2 machines in 2U enclosure

Directly connected

Lack of 40 GigE cards
Node + delaybox

Connectivity

40 GigE Mellanox connected back-to-back

Tests

Different NICs
1, 10 and 40 Gigabit Ethernet

Different Kernels

100 Hz, 1000 Hz, Real-Time and Tickless

Different characteristics and window sizes
No delay
delay
delay+jitter
delay+jitter+distribution

Obtaining real-world properties

International link from Amsterdam to San Diego
10 Gbit/s shared link on Netherlight (SURFnet)
No root access (no tweaking!)
Throughput: ~5 Gbit/s UDP and ~1 Gbit/s TCP
See if it is possible to emulate

Capture 24 hours of ping data (characteristics)
Extract RTT properties from ping data
Extract RTT, jitter and jitter distribution table

RTT = 184.000071 ms
Jitter = 0.008450 ms
Dist table = /usr/lib64/tc/sdiego.dist

Results (1)

10 Gigabit Ethernet - 1000Hz kernel

With the optimal window size, we should get ~10Gb/s
throughput
Only get ~4Gb/s
Netem can't emulate on such high speeds
Suspect CPU

 bottleneck
1 core@100%
1 thread

Results (2)

10 Gigabit Ethernet - all kernels

100 Hz and 1000 Hz
Slowly builds up
Congestion control kicks in (HTCP)
100 Hz RTT has

 additional 10ms delay

 RT and Tickless
No performance
CPU busy with

 interrupts

Results (3)

40 Gigabit Ethernet - 1000Hz kernel
Max 19Gb/s without delay

PCI-E bus limit
Max 2Gb/s if only adding delay
Performance drops with delay + jitter

Also with distribution table

Results (4)

40 Gigabit Ethernet - all kernels

No performance at all

Conclusions (1)

Tweak network parameters on high performance links
Optimal performance and less overhead
Optimize throughput by:

Tweaking TCP parameters
Set path MTU
Packet transfer queue length

Default Real-Time Kernel is not suitable for emulation

Too many cycles needed to process network interrupts
Drop in performance

On the 40Gb/s link huge performance drops on all kernels
On the 10Gb/s link we see ~4Gb/s max.
The 100Hz kernel couldn't maintain the correct delay

Conclusions (2)

"What are the characteristics of long distance high performance
links and to what extent can they be emulated with off-the-shelf

hardware?"

10 GigE and 40 GigE don't achieve expected throughput
No mitigation if different kernel resolutions are used

Not even with real-time kernel (too many interrupts)
Suspect netem is not optimised for high throughput links

Unable to cope with the large amount of packets
Even though buffers are large enough

We advise to only use netem if you have a maximum link
speed of 4 to 5 Gbit/s

Future work

Interrupt Coalescence
Limit the NIC interrupts

Real-Time Kernel tweaking
CPU resource distribution

Perform tweaking on the international link

Time delay because of time differences

Re-test when 40 GigE is "production ready"
And when there are 4 cards available

Emulation tool comparison

Questions?

© Google Image Search

