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1 Abstract

While intrusion detection systems are the basis of every security aware organi-
zation and in the past have successfully mitigated most network based threats,
the signature based detection has one major drawback: The system is always
one step behind the newest threats. A more abstract analysis is needed to be
able to detect all network based anomalies that could indicate active malware.

Statistical analysis over a larger set of data has the advantage of detecting
time based anomalies and detecting out of the ordinary activity. If this in-
formation is combined with the current real-time detection methods, a better
assumption could be made on the threat of an anomaly.

We have developed a number of detection methods, both real-time and sta-
tistical analysis methods, that can detect all known DNS anomalies. These
methods will be combined with a scoring mechanism that can be tuned to give
the best results in different environments.

2 Introduction

Botnets have been a threat to network and system security for several years.
In the last two or three years the botnet programs have become much more
sophisticated. The conventional methods of detecting a virus with a local virus
scanner or their spreading with Intrusion Detection Systems (IDS) will not
mitigate the complete threat. New detection methods are under heavy research
but there is no single widespread solution yet.

A feature that distinguishes botnets from conventional viruses is their fre-
quent communication with a central server or other bots. The characteristics of
this traffic could be used to detect botnet zombies. Most Internet communica-
tion starts with one or more Domain Name System (DNS) lookups. Command
and Control (C&C) traffic used by malware is no exception to this behavior.
Some types of C&C traffic such as Internet Relay Chat (IRC) is ofter blocked
by internal corporate firewalls making it invisible for border IDS systems. In
these cases infections could probably still be detected by analyzing DNS requests
originating from the corporate network.

We will examine the feasibility of detecting malware infected systems using
DNS log data or captures of DNS traffic and develop a scheme for detecting these
anomalies in DNS traffic. This could include anomalies in the actual content
of the request (e.g. hostnames, RR) and meta-information such as timing and
re-occurrence of specific lookups.



This assignment will be done in cooperation with the company Fox-IT. Fox-
IT offers a managed security monitoring service. The monitoring probes only
monitor and analyze traffic. These systems are not connected to the Internet
and are therefore unable to gather more information than the captured data
itself. We will keep this limitation in mind while developing our methods and
proof of concept.

3 Previous Work

Some research has been done in the field of DNS anomaly detection. Most of this
research is focused on detecting specific kinds of botnets and malware or focuses
on a single method. Since our goal is to combine the most promising methods to
get the best performing DNS anomaly detector we researched a lot of different
methods. This section will describe the most interesting of these methods and
research into techniques needed for a better understanding of botnet operation.

A promising method for identifying infected hosts in a network is detecting
their scans for new vulnerable systems. A malicious program often scans IP
ranges internal and external to the network for possible targets. The scans on
external ranges can be detected on the network border. Nearly all connections
from the internal network to an external destination are initiated by a DNS
request. A scanning worm will skip this step and initiates a large number of
connections without a DNS request. Whyte et al. [L6] and Hamad Binsalleeh and
Amr Youssef [§] have researched this method. Since this method also requires
information on all new initiated sessions, which is not available in the DNS logs,
we will not research this method further.

A popular and relatively new technique used by cyber-criminals to hide
their critical systems is fast-flux. The ICANN Security and Stability Advisory
Committee [I4] released a paper giving a clear explanation of the technique.
Jose Nazario and Thorsten Holz [I3] did some interesting measurements on
known fast-flux domains.

Villamarn-Salomn and Brustoloni [15] focused their detection on abnormally
high or temporally concentrated query rates of dynamic DNS queries. Their
research was ineffective as a single detection mechanism since some legitimate
domains use this technique as well for legitimate purposes. Their methods might
be more successful in combination with other methods we will investigate.

The research by Choi et al. [I0] created an algorithm that checks multiple
botnet characteristics. The detection is based on Dynamic DNS, fixed group
activity and a mechanism for detecting migrating C&C servers. They state their
method works properly but the processing time might be an issue on a large
scale implementation.

Kenton Born and David Gustafson [9] researched a method for detecting
covert channels in DNS using character frequency analysis. This method could
detect patterns that do not seem to represent a language and are therefore
anomalous.

We used a list of one million most frequent used domain names from Alexa
[6] to compare our results to relatively normal requests. The list is based on the
data gathered from users using the Alexa.com toolbar and other sources which
are not specified. The method used can not be verified but we are reasonably
certain the domains are all legitimate and the list gives a good overview of



frequently used domains.

4 Methods

We identified two groups of detection methods. The first group of methods
analyzes the packets for anomalies in the data they contain. These detection
methods can be performed as soon as the packets arrive. We will call them the
online or real-time methods. The second group of methods perform statistical
analysis on a large set of data. This allows us to detect anomalies in the volumes
of queries or the query responses over time. These analysis methods will be
performed off-line.

4.1 DNS Anomaly Detection

We researched a number of analysis methods that are relatively easy to imple-
ment and can be performed online, on a small set of data, as soon as the data is
available. We focus on the data send to or from TCP or UDP port 53. The very
first analysis method is to detect if we can find DNS data in the packet. Any
packet without DNS data is suspicious since we found no good reason for non-
DNS packets to use port 53. This will trigger an immediate alert and further
checks will be skipped since there is no DNS data available.

Most LANS use internal mail servers or a mail server hosted by their ISP to
send e-mails. These mail servers will deliver the e-mails on behalf of the client
to the destination domain. A client PC has therefore no reason to query MX
records for domains. An MX query could therefore indicate the client is infected
with a mass-mailer worm. This method will also trigger an immediate alert and
further checks will be skipped.

Once we identified a proper DNS query or response the data strings will be
checked against a pre-configured list of keywords. This method is very similar to
a domain blacklist but is not limited to a list of known malicious domains. This
method will probably identify mostly human trigger anomalous DNS traffic, e.g.
an network administrator could filter all requests with the word ”casino” in the
domain.

4.2 Blacklisting

In general a blacklist is used to deny access to certain hosts because they are
known to be malicious. By combining different popular blacklists [12], 111 [, [5] 3]
we created a large blacklist to check the DNS queries against. This blacklist
checking mechanism is based on the principle: If its on the list, it is malicious.
We use this method to indicate a first level of malicious traffic. With the use
of multiple blacklists and combining them, a broader blacklist can be generated
against multiple threats. We include this method in our analyze program be-
cause it is an easy method to implement and a method not worth forgetting in
our project.

Since this combined blacklist contained about 10.000 entries, which seemed
to be a lot, we wondered if all these domains still existed. With a simple
bash script we started our first resolving round. After 6 hours the script was
finally done resolving and we had our results. In those results where a lot of



weird entries, under them: 127.0.0.1, 127.0.0.2, 8.8.8.8 and 4.4.4.4 for example.
Not just those strange IP addresses but also the domains with more than five
assigned ip-addresses triggered our attention.

Looking closer to the domains with a lot of IP addresses we also noticed
that the domain had very short Time To Live (TTL) value’s for their domain
names. Searching for further documentation it brought us to the term fast-flux,
this will be explained in section

4.3 Tunnel DNS Detection

DNS packets can be used to create a hidden data channel (covert channel).
There are a number of ways to hide data in seemingly legitimate DNS packets.
They all require a modified DNS client and server but are designed to work with
legitimate, unmodified recursive DNS servers. The covert channel can be used to
smuggle secret information past the firewalls designed to block the information
from being spread. Since DNS data is often poorly monitored and often allowed
to pass through the firewall, it is an ideal candidate for a covert channel.

The client will be configured with a domain that the modified name server
is the authoritative name server for. The client encodes the upstream data in a
new Lowest Level Domain (LLD) added to the configured domain and sends the
query. The name server has multiple options for hiding the downstream data.
It can encode the data in all the different record types with different available
bandwidth, in order from high to low:

e NULL

o TXT

e SRV

o MX

e CNAME
o A

The detection of a covert channel in DNS is based on two analysis methods.
The first method analyzes the packet characteristics and the second method
analyzes the data. The latter will be explained in section 4], we will now focus
on the former.

There are a few characteristics of the DNS packet that could distinguish a
packet used in a covert channel. If the channel is used to transport reasonable
amounts of data, the length of the LLD in the query or the size of the response
record can easily be checked. The average length of the one million most used
domains is ten characters, where the average query length of a DNS tunnel
used to copy a random file is well over 30 characters. If this method is used in
combination with timing analysis, a high volume stream with large DNS packets
can be identified.

Anomalies in the record types of the response packets can also easily be
identified. The NULL record is an experimental record and should not be used
in production environments and as described in section .1l most client systems
have no reason to query an MX record.



Listing 1: Tunnel DNS packet example

a.b.c.d e.f.g.h DNS Standard query A
lacOgqdynbjsibrdgbiaopbgtOngok4cq . moscow.nexuz. net

e.f.g.h a.b.c.d DNS Standard query response CNAME
hgeyc2mbogaxdcljrgaxdalrqfyzcOmjrgmycOmrx . we

4.4 Character Frequency

The character frequency analysis method is a very promising method for detect-
ing generated data where a natural language would be expected. The method
has successfully been used in cryptography for detecting language characteris-
tics in a cipher text. We used the method much in the same way. Domain names
are strings mostly chosen by humans and should be recognizable by humans.
Therefore the domain names consist of one or more words and therefore closely
follow the natural language characteristics. If the language of the users can be
predicted, the characteristics of the language can be compared with the domain
names the users system requests and an assumption can be made if the domain
name is generated by the system or chosen by the user.

This method was initially investigated for a reliable covert channel detection
but we think it should be able to detect more anomalous data. We have covered
DNS tunnel detection in section 3l The data hidden in DNS is often normal
text and therefore follows the natural language characteristics. It is however
very likely the adversary would compress and encrypt the data to optimize
the bandwidth and hide the smuggled data. The encryption will by definition
obfuscate the natural language characteristics and this could be exploited by
our detection method.

A different implementation could be the detection of anomalous domain
names. Botnets C&C servers often change domain names and therefore use
random strings. This could be detected but will be a challenge. The data of
a single domain is very limited and would probably not contain all possible
characters. If this data is stored and we can analyze a number of domains, the
detection could be a lot more certain. The obvious trade off is the time it takes
before the anomaly is detected.

4.4.1 Top Domain N-gram analysis

The method has been researched by Kenton Born and David Gustafson [9]. We
used the results and conclusions from this paper after verifying them. Character
frequency analysis in languages and cryptography has been studied for centuries.
We used the English frequency table published by Henry Beker and Fred Piper
[7.

Kenton Born and David Gustafson compared the letter frequency table for
the English language with a list of one million most frequent used domains [6].
We reproduced this test and verified the results.

It can be clearly seen in the unigram table in figure[I] that the domain letter
frequencies are not equal but very similar to the English language. Most letters
are on similar places in the table with the biggest anomalies being the letters
"H” and "T”. This can be explained by the lack of the word "the” in most
domain names.



Figure 1: English Domains Unigram

English Unigrams Domain Unigrams
LETTER | FREQUENCY LETTER | FREQUENCY
e 012702 ——| e 0.10139
t 0.09056 a 0.08935
a 0.08167 >(/ i 0.07346
0 0.07507 0 0.07105
i 0.06966 s 0.06804
n 0.06749 r 0.06524
s 0.06327 t 0.06263
h 0.06094 n 0.06094
r 0.05987 I 0.04849
d 0.04253 c 0.03861
I 0.04025 m 0.03249
c 0.02758 d 0.03247
u 0.02758 u 0.03105
m 0.02406 P 0.02689

Source: Detecting DNS Tunnels Using Character Frequency Analysis [9]

Figure 2: English Domains Bigram

English Bigrams Domain Bigrams
LETTER |FREQUENCY LETTER | FREQUENCY
th 0.03883 in 0.01702
he 0.03681 / er 0.01550
in 0.02284 / an 0.01333
er 0.02178 / re 0.01290
an 0.02141 / es 0.01271
re 0.01749 4 ar 0.01188
nd 0.01572 on 0.01135
on 0.01418 L or 0.01051
en 001383 { te 0.01017
at 0.01336 al 0.00976
ou 0.01286 st 0.00921
ed 0.01276 ne 0.00921
ha 0.01275 en 0.00897

Source: Detecting DNS Tunnels Using Character Frequency Analysis [9]



Figure 3: English Domains Trigram

English Trigrams Domain Trigrams
LETTER |FREQUENCY LETTER | FREQUENCY
the 0.03508 ing 0.00498
and 0.01593 ion 0.00327
ing 0.01147 ine 0.00314
her 0.00822 ter 0.00314
hat 0.00651 lin 0.00306
his 0.00597 ent 0.00286
tha 0.00594 the 0.00285
ere 0.00561 ers 0.00258
for 0.00555 and 0.00240
ent 0.00531 est 0.00220
ion 0.00507 tio 0.00218
ter 0.00461 fra 0.00218
was 0.00461 tor 0.00212
you 0.00437 art 0.00204

Source: Detecting DNS Tunnels Using Character Frequency Analysis [9]

In figure 2 a very similar anomaly can be seen. The most frequent bigrams
in the English language are ”TH” and "HE” which form the word ”the” when
combined. These bigrams are missing from the most frequent domain bigrams.
This table has less similarities than the unigram table but note that the bigram
possibilities are exponential to the unigrams.

The last table in figure Blis for the trigrams. As with the previous tables the
trigrams for both the domains as the English language show similarities which
can be exploited to detect anomalous domains.

By comparing the different N-gram frequencies from the English language
or top domains with a frequency table generated from the captured data, the
analysis method could detect if the data is likely to be English or anomalous. By
checking with different tables for different languages, the language of a domain
could be predicted. However if a small set of domains is checked against a large
set of different frequency tables a false positive for one of these tables is very
likely.

4.4.2 Zipfian Distribution

Apart from matching frequency tables as described in section EZ4.1] a more
generic detection method could be created with letter frequencies. The fre-
quency tables are not similar for different languages but the distribution of the
frequencies over the different ranks in the table are very similar. The linguist
George Kingsley Zipf proposed this for the first time in 1935 though Jean-
Baptiste Estoup appears to have noticed the relationship before Zipf.

Zipt’s Law [17] states that the frequency of a word is inversely proportional
to its place in the frequency table. So the most frequent word will occur twice as
often as the second most frequent word. This distribution is observed in many



Figure 4: English and Domain Frequency by Rank
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Source: Detecting DNS Tunnels Using Character Frequency Analysis [9]

other rankings including the frequency of letters.

This means that the letter itself is not relevant for the detection method
but the frequency distribution of the letters is. This is illustrated in figure
M@ It can be seen that the distribution closely follows the Zipfian distribution
for the English language and the distribution for the top domains also has
characteristics of the Zipfian distribution.

If a similar graph would be made of an encrypted data channel the frequency
distribution would by definition be almost even and the line would be a flat
horizontal line. This can off-course easily be detected and works for any western
language.

4.5 Fast-Flux Detection

Fast-flux is a technique used by cyber-criminals to hide critical hosts behind an
ever changing set of compromised hosts. A modified DNS server is used that
will return a different set of IP addresses for a given domain over time. These
addresses belong to compromised hosts that will relay for instance HTTP (web)
traffic to a server hosting a malicious site. This server is sometimes called the
fast-flux mothership, see figure [l

A query to a fast-flux hosting service can easily be detected. An example
of a lookup for such a domain is given in listing There are three things
that should be noticed. The first obvious notion is the number of records. The
domain resolves to ten A records which is a lot for most websites. The second
notion would be the IP addresses the domain resolves to. The addresses are
spread over a large number of address spaces. Then the Time To Live (TTL) of
the records is abnormally low. It has been set to 300 seconds, or five minutes.
This will store the results only for a short period of time in the cache of the
client or its caching name server. This allows the fast-flux service provider to
switch hosts very frequently, to mitigate the fact that bots are normal client
PCs which are not reliable as service providers.



Listing 2: Single Flux Domain Example

$ dig naughtydateingsite.net
;3 ANSWER SECTION:
naughtydateingsite.net. 300 IN
naughtydateingsite.net. 300 IN
naughtydateingsite.net. 300 IN
naughtydateingsite.net. 300 IN
naughtydateingsite.net. 300 IN
naughtydateingsite.net. 300 IN
naughtydateingsite.net. 300 IN
naughtydateingsite.net. 300 IN
naughtydateingsite.net. 300 IN
naughtydateingsite.net. 300 IN
;3 AUTHORITY SECTION:
naughtydateingsite.net. 172318 IN NS ns1.7418391.com.
naughtydateingsite.net. 172318 IN NS ns2.7418391.com.
naughtydateingsite.net. 172318 IN NS ns3.7418391.com.
naughtydateingsite.net. 172318 IN NS ns4.7418391.com.
naughtydateingsite.net. 172318 IN NS ns5.7418391.com.
naughtydateingsite.net. 172318 IN NS 1ns6.7418391.com.
;; ADDITIONAL SECTION:
nsl.7418391.com. 85917 IN
ns2.7418391.com. 85917 IN
ns3.7418391.com. 85917 IN
ns4.7418391.com. 85917 IN
ns5.7418391.com. 85917 IN
ns6.7418391.com. 85917 IN

77.127.166.235
82.228.65.61
84.109.81.176
92.253.40.134
94.54.254.3
94.228.118.59
114.33.131.22
118.101.225.28
201.167.15.123
203.99.233.142

b i i e g g g e

173.212.75.160
79.119.188.9
88.87.251.45
82.228.65.61
79.117.122.25
186.114.80.139

>

There is a second fast-flux technique which is increasing in popularity, called
double flux. A double flux service provider will host the domains name servers
also on the botnet, mitigating the weakest link of a single flux domain. A single
flux domain can be shut down by shutting down its name servers. A double
flux service provider will regulary update the records at the domain registrar to
reflect the changes in its botnet.

4.6 Time Based Analysis

One of the more abstract methods is the time based analysis method. This
method is designed to detect anomalies in the timing of queries. By collecting
the queried domains, the time they occured and the host that initiated the

Figure 5: Fast-Flux Example
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query a number of anomalies can be detected. The most interesting anomalies
we examined could all indicate botnet activety.

Most botnet programs are designed to periodically query a central server
for commands to execute. The server could instruct its bots to start scanning
for vulnerable systems, start sending spam e-mails or download a malicious
program. Botnet herders will program the domain name of the server in the
botnet client software, so the bots will be able to locate the server. To be able
to connect to the server, a bot has to query the domain name and resolve its IP
address.

If a group of hosts in a network have been compromised by the same botnet,
an analysis method could be designed to detect similar queries from the same
set of hosts within a timeperiod. A clear difference should be seen if these hosts
are compared with hosts that have not been comprimised.

A different approach would be to analyse the queries over time. A host
querying the same domain on a regular interval could indicate a bot querying
the server for new commands. This method would not work very well if the host
has a local DNS cache that caches the query for a significant period of time.

In some environments, e.g. server environments, hosts are left powered on
outside office hours. If these hosts are infected with a botnet program the
software would not stop querying the server outside office hours. This could
easily be detected. As with the previous approach this will not work efficiently
if a query is cached locally.

4.7 Scoring Mechanism

We have examined a lot of different methods which are designed to detect all
known exploitable DNS anomalies. To create a system that detects all these
anomalies, the different methods have to be combined. Some methods however
will generate more false positives or false negatives than an other method. If all
these methods would have the same alerting level, the system would be unusable.
A scoring mechanism would mitigate this problem by assigning the less certain
results a lower score. The system could then be tuned to work as efficiently as
possible in different environments.

5 System Design

In this section we will describe what choices we have made, how our analysis
program is set up and we give a general overview of how it works.

5.1 Choices

In our original design of our analysis program we made some choices based
on our knowledge and based on the use within a small organization. In this
first concept we did not fully thought about how to upscale our solution to an
environment where the amount of DNS query’s would be extremely higher. In
our analysis program we decided to test everything in separate methods to focus
our programming on every method separately.

Due to the limited time we decided we would focus on pre-generated network
traffic in the form of pcap files. Reading pcap files instead of live traffic was an
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easier way to test our methods and scanning techniques than doing it on live
network traffic. If we are able to proof our methods on pre-generated network
traffic then it will also work on live network traffic.

5.2 Code Design

The analysis program has an highly modular design. This was done mainly to
test our methods separately from each other. In our analysis program, analysis
on different methods was done from the pre-generated pcap files, calling different
methods read from command line parameters.

In the final version of the proof of concept, every method should be combined
with a scoring algorithm to create the alerting value of a DNS query. More about
the proof of concept and the scoring mechanism will be discussed in section [§

5.3 Database Design

Because we choose to work with a small database to improve performance and
readability of the captured data, the design was important to make it efficient
as possible. To limit the size of the database on the blacklist lookup part, we
decided that adding a new blacklist to the database had to be optimized. Since
some blacklists contain the same domains, blindly adding a blacklist to the
database was not really smart. For that problem we introduced a lookup in the
database for each new entry. It will check if an entry exists from an previously
imported blacklist. If the domain name already exists then the entry with the
highest value would have his domain-name activated and the domain-name with
a lower value would have its entry disabled.

These and similar tricks are used to shorten query time of the database and
therefore resources will be less stressed. This method of checking every domain
before entering into a database greatly decreases its performance when adding
blacklists to the database, but will greatly increase performance while looking
up data. Because the value lookup takes roughly only half of the time of a
lookup on an entire database.

The database consists out of multiple tables, each with links to each-other.
This has been done to separate the results or entries from the general part.
Multiple blacklists can be added using this system and they only have to have
one 'danger value’ assigned to an entire blacklist. This value can then be changed
on one record and not on every entry of the blacklist. The same model is used
for the results of the analysis and reporting parts. Every instance starts with
generating an ID and the start time for that round, with that unique ID results
and reports will be added to a different table for the entries.

A small example of how a database design was implemented in our analysis
program is show in figure

11



Figure 6: Database Design example

Blacklists | Blacklist_entries
blacklist_entry_id
blacklist_id blacklist_id
blacklist_name blacklist_domainnan
blacklist_score blacklist_disabled

Design example for the blacklist part

6 Results

This section contains the most interesting results from the detection methods
we developed and the other research we have done to support our methods and
hypothesis.

6.1 Blacklisting

We implemented a blacklist checking method based on our own created black-
list. The program allows the usage of multiple blacklists and the use of different
scores for each blacklist also determine what score you get back a domain. When
a domain name is queried the number of entries in the blacklist table should be
taken into account. In our analysis program we used a simple sqlite database
setup for testing purposes. This seemed sufficient enough for our research. As
the number of entries in the blacklist table grows the execution time of a query
also grows. Even with the use some optimization techniques, looking up if a do-
main name is listed in the blacklist still takes a relatively long time if a domain
name is not blacklisted. Keeping this list up to date and as short as possible is
therefore a real performance challenge if the probe is under heavy DNS traffic.
With a blacklist database of 10.000 entries the average throughput is 293 queries
per second.

Database Query times
Queries  Time (s) Queries a Sec.
1000 3.438 290.8667
2500 8.536 292.8772
5000 17.250 289.8550
10000 34.475 290.0652
20000 67.524 296.1909
50000 168.675  296.4280
100000  338.000  295.8579

Total average 293.1631

6.2 Fast-flux Detection

In our search to detect Fast-flux domains we already had some promising results
in the first few measurements. We collected already more then 20 unique IP

12



Figure 7: Database Query time

Database Query times
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The time in seconds it takes to lookup 1.000, 2.500, 5.000, 10.000, 20.000, 50.000
and 100.000 not blacklisted domain names, with 10.000 blacklist entries in the
database table.

addresses for some hosts with five test runs. After 7 days of measurements
approximately every half hour for the first 2 days, every hour for the next 2 days
and every 4 hours for the next 3 days, we could clearly see that some domains
changed IP addresses a lot. After further investigation to these domains, they
mostly contained dating related web pages. Results are plotted in figure 8

After reading more about fast-flux we payed some attention to the double
flux detection. In our search for detecting fast-flux domains we altered our code
to also look for the changing name servers of listed domains. We also took the
top 10.000 most visited domains from our top one million most visited domains,
to test if those domains used techniques similar to fast-flux.
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Figure 8: Single flux detection rates
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Every domain is listed with the number of unique ip-addresses found for that
domain.

As clearly can be seen in figure @ the top blacklisted domains actually
change ip-addresses a lot. The former top of the single flux detection method
are now listed number 24 till 32 instead of number 1 till 6. With the top 8
domains in the double flux detection scoring relatively low with the single flux
detection method, there is clearly a proof this detection method works quite
well for detecting (double) flux domains. Noticeable is that the top 10.000
not blacklisted (good) domains have lower detection rates then the blacklisted
domains. This is mainly because the good domains use higher TTL values and
they normally do not have the need for changing addresses a lot.
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Figure 9: Double flux detection rates
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The top 50 is listed with the number of unique ip-addresses found for that
domain.

As a comparison between the two detection methods and the two lists, figure
[IQ gives an overview of the amount of new IP addresses collected during each
run. Noticeable is that the resolving of the good domains drops to very low
values within a couple of runs and then remains low. The first part has to
do with the first run of the script, a lot of domains received errors and after
those runs eventually the curve drops to almost no changing hosts. How ever
in the characteristics of the double flux detection on the blacklisted domains, it
is clearly visible that the amount of new ip-addresses collected remains higher
then the rest, with some ups and downs due to expiring TTL’s. In the single
flux detection line there is a small change noticeable after the 4.000 minute
mark. After that mark we added 20 known fast-flux domains to our blacklist
and therefore the discovery of new ip-addresses was slightly higher per run.

6.3 Character Frequency Analysis

Since this method has been chosen to detect suspicious patterns in DNS to
detect DNS tunnels, we focused our research on this goal. Our initial research
was done on the data generated with the Iodine [I] software. We compared
our results with data generated with other DNS tunnel software, but no major
differences could be identified. The data was captured with tcpdump, read with
the Scapy [2] library and analyzed with the NLTK toolkit.

To get a baseline for the character frequency distribution we first verified
the results from the research done by Kenton Born and David Gustafson [9].
The results can be found in figure [Il 2 and Bl As described in section 4] the
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Figure 10: Flux detection rates

Difference in Flux Detection
700 T T

«— Good Domains, Double Flux
~— Blacklist, Double Flux
600 ~— Blacklist, Single Flux

N
o
=)

w
o
=)

Nr of new entries

200

100f

R

4000 N 6000 8000 10000
Minutes from start analysis

Measurements over time, listed are the total new ip-addresses per run.

results are promising.

We applied the same method to compare the domain strings generated by
the DNS tunnel software with the top domains list. We hypothesized that if
the data is truly random, the frequency should be distributed evenly. This
is however not completely the case as can be seen in figure [[3l The software
seems to have a preference for certain characters. This behavior can partly be
explained by the fact that the software sends a frequent heartbeat with a similar
string every few seconds. Some of the characters also seem to have a special
meaning and are used for signaling. This has not been researched in depth.

We focused the research on data encoded with base 32 or base 128. The
results for base 128 encoded data show a far superior bandwidth as expected,
but characters not present at a normal keyboard show high in the frequency
table (figure [2). This is a clear indication of an anomaly. The anomalies for
base 32 encoded data (figure [[I]) are harder to detect. If you would compare
the frequency distribution table with the table for the most frequent domains
it is clear they are very different. A system could be made to easily detect this
difference. A more language independent approach would be harder since the
distribution of frequencies is not evenly as predicted. More research is needed
on real live data to confirm these results.
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Figure 13: Base 32 comparison to top domains

Tunnel DNS Dump Unigrams Base32 Domain Unigrams
Letter Frequency LETTER | FREQUENCY
d 0.09367 \ e 0.10139
a 0.08899 a 0.08935
m 0.07194 [ 0.07346
q 0.07153 0 0.07105
r 0.06279 S 0.06804
b 0.05572 r 0.06524
q 0.04647 t 0.06263
W 0.04637 n 0.06094
h 0.04044 I 0.04849
y 0.03982 c 0.03861
C 0.03971 m 0.03249
f 0.03951 d 0.03247
t 0.03909 u 0.03105
2 0.02817 p 0.02689

7 Conclusions

During the course of the project it became increasingly more clear that the sta-
tistical analysis methods would get the best detection results but that handling
the data needed to do this analysis would be to big of a challenge to solve in
the time we had. We also thought of more methods than we could implement
and researching the methods took a bigger chunk of the available time than
anticipated. We have therefore a lot of room for future research as described in
section

The first few simple methods implemented in the POC can all be done real-
time, but as we started investigation the implementation of the more difficult
methods it became clear doing these could not be done in real-time. The fast-
flux detection method, the timing analysis method and the letter frequency
method are more accurate on large sets of data and a smart decision could
therefore be made on when would be the optimal time to analyze a subset of
the available data.

We believe that when the methods described in this paper are combined with
a scoring mechanism and the scoring mechanism is tuned with real life tests,
a system is realized that could detect all known anomalies. We have covered
most, if not all possible exploitable DNS vectors and a proper detection method
has been proposed for all.
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8 Future Work

8.1 Proof of concept

During our research project we did not had the time to create a fully working
proof of concept. This proof of concept was not mandatory for our project, but
it was very welcome if we succeeded in creating a working proof of concept. In
this paragraph we will explain the parts we did not cover in our research, why
we did not succeed and what can be done to make it a success.

8.2 Scoring Mechanism

The main idea of combining different methods to one big program is to have a
solid answer to your question, in our case is this domain malicious or not. Since
there is no single method that could possibly detect all known DNS vectors,
different methods have to be combined.

This score is very important for an query to be marked malicious, because
different methods are used and every method could produce a value according
to that method. Because tuning these methods is a research project in itself,
we did not implement it in full in our analysis program. The work to be done is
determine the best score for every method or a combination of methods together.
If the generated score then reaches a threshold an alert must be given.

8.3 Timing analysis

For a proper timing analysis a lot of data is needed over a longer period of
time. Based on our previous mentioned methods in there are some ways
according to us, to correctly implement a good checking mechanism for time
based analysis. Also our methods require traffic over a longer period of time.
This would create a huge amount of data to be checked which is a challenging
project in itself.

8.4 Character Frequency Analysis

Future work for the character frequency analysis would be to further examine
the most common tools for DNS tunneling and what kind DNS traffic they
generate. Over a longer period of time DNS queries should be monitored and
used for a learning dataset for the character characteristics, both from the DNS
tunnels as for normal DNS traffic. Eventually this character analysis should be
fully implemented and be able to generate a score based on a DNS query.

8.5 Live Data

In our analysis program we only worked with pre-generated network traffic. For
the real proof of concept it should also work on live data streams. As mentioned
in section [5.J] we had our reasons for that. However we created the program
to be able to use live data. Every method takes an input and generates an
output based on the input. Together with the creation of a full working proof
of concept this is a key feature for future work.
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