
Distributed file system on the SURFnet network

Report

Jeroen Klaver, Roel van der Jagt

July 14, 2010

University of Amsterdam
System and Network Engineering

Abstract

SURFnet (the Dutch NREN) is expecting a storage explosion, because
of new services they would like to offer (for example SURFmedia). Also
does SURFnet like to offer a system to its participants to exchange storage
using the SURFnet network. Both problems need a new and innovative
storage solution, working on the high bandwidth but a geographical dis-
perse network. The new system needs to be scalable, durable, high avail-
able, have a performance comparable to a traditional SAN/NAS solution,
dynamic and cost effective. In this project two available open source tools
are selected (from all available tools), Coda and Lustre. Tests show that
Coda and Lustre perform good when there are no problems on the net-
work (latency or failure). The performance of Lustre drops when latency
is introduced while Coda remains performing at the same level (this be-
cause of its cache). Lustre does not have support for replication. Two
problems of Coda are: updating big files which causes the whole file to be
uploaded, and the hard configuration. Based on the test results (which
show the characteristics of the tools) a design recommendation is made
for both tools in combination with each other and additional tools .

2

Contents

1 Introduction 5
1.1 Research questions . 5
1.2 Approach . 5
1.3 Previous research . 6

2 Distributed file systems 7
2.1 Requirements . 7
2.2 Inventory . 8
2.3 Coda . 8

2.3.1 Architecture . 9
2.4 Lustre . 11

2.4.1 Architecture . 12

3 Benchmarks 15
3.1 Test environment . 15

3.1.1 VMware ESXi environment 15
3.1.2 Coda . 16
3.1.3 Lustre . 16
3.1.4 Used benchmark tools . 17

3.2 First stage . 18
3.2.1 Results . 18
3.2.2 Conclusion . 20

3.3 Second stage . 20
3.3.1 Approach . 21
3.3.2 Results . 21
3.3.3 Conclusion . 23

3.4 Third stage . 23
3.4.1 Approach . 23
3.4.2 Results . 24
3.4.3 Conclusion . 25

4 Recommended SURFnet implementation design 26
4.1 Additional tools . 26

4.1.1 ZFS . 26
4.1.2 Heartbeat . 27
4.1.3 DRBD . 27

4.2 Coda . 28
4.3 Lustre . 29
4.4 Combining the architectures . 30

5 Conclusion 32

6 Discussion 34

References 36

List of Acronyms 37

Appendices 41

3

A Tool selection 41
A.1 Coda . 41
A.2 Lustre . 42
A.3 GlusterFS . 43
A.4 XtreemFS . 44
A.5 Ceph . 45
A.6 PVFS . 46
A.7 MooseFS . 47
A.8 Hadoop . 48

B Raw results - First stage - Disk IO 49

C Raw results - First stage - Network IO 53

D Raw results - Second stage - File system benchmarks 54
D.1 Bonnie++ . 54
D.2 Iozone . 55

E Raw results - Third stage - File system benchmarks 57
E.1 Coda . 57
E.2 Lustre . 57

4

1 Introduction

SURFnet is the organisation which develops, implements and maintains the Na-
tional Research and Education Network (NREN) of the Netherlands. SURFnet
also offers services in the field of security, authentication and authorisation,
group communication and video to NREN users. For now the ICT facilities
make use of traditional SAN/NAS solutions. Since SURFnet is expecting a
storage explosion (because of new services), the traditional SAN/NAS environ-
ment has to scale up. But SURFnet thinks there is a smarter method to extend
the storage in comparison with the traditional SAN/NAS approach. The new
storage solution should be efficient and flexible and meet the requirement of
SURFnet (section 2.1). Also the regular SAN/NAS based systems have the
problem that they can cause a vendor locking. Based of these problems and the
available network a wish for a new distributed storage solution based on open
standards is born. A flexible system based on distributed, heterogeneous and
multi-tiered storage, with the ability to exchange storage between the organi-
sations within the SURFnet community. The goal is to create more storage for
own use, and to enable NREN participants to exchange storage for performance
and redundancy purposes. SURFnet has already experience with the commer-
cial products. Beside that SURFnet also wants to know what the open source
products can offer for a distributed storage solution.

1.1 Research questions

For this project the following main question is defined:

What infrastructure and open source tools provide SURFnet or the participants
a scalable and distributed any-kind-storage solution?

The main question above is defined with the following sub-questions:

• Do the tools meet the requirements of SURFnet?

• How intensive is the maintenance and deployment of the tools?

• What conditions does the network infrastructure need to accomplice?

• What is the performance of the tools on SURFnet’s network infrastruc-
ture?

• What security features are implemented by the tools?

1.2 Approach

The first stage of the project will be a product selection of open source dis-
tributed file systems. First a list of products that are theoretical reviewed will
be created. Based on the theoretical review the two most promising file systems
will be further researched.

The second stage of the project will be testing the selected file systems.
This is done to determine how they react on the geographical disperse and the
high speed network of SURFnet. A test environment is created based on the
theoretical research of the two file systems. The test environment will be made
with multiple VMware ESXi servers.

5

The last stage of the project will be an implementation design for the selected
file systems. Based on the test and the theoretical research a design will be made
on how the both file system could be used by SURFnet.

1.3 Previous research

The idea of a distributed file system is already old. The first major implemen-
tation was Andrew File System (AFS). This file system is still the base for the
newer distributed file systems Coda. Also Lustre has a relation with AFS. It
is not direct based on it, but the founder of the project worked before on the
Intermezzo project, which was an AFS fork as well. Although the implementa-
tions are available for some time, a lot of new project started in the past few
years. The newer project are less focused on overcoming the network limits and
more on performance. More about the different project/tools in section 2.

6

2 Distributed file systems

The first part of the research is searching and selecting distributed file systems.
This is done based on the requirements that were made by SURFnet. First the
requirements of the distributed file system are stated. Second a list of available
file systems will be created. The file system from the list will be rated and a
comparison will be made to see which two will be looked into. The two file
systems that have the most potential will be further researched.

2.1 Requirements

The aim of this project, is to determine the feasibility of building a high-capacity,
fully distributed, hierarchical storage solution, exploiting the SURFnet infras-
tructure. The available storage has to be suitable for general purpose. Next to
this, SURFnet has defined the following requirements:

Scalable The system must be scalable in terms of capacity and concurrent
access. It must be easy to expand the capacity without lost of performance.
And it has to be easy to expand the number of concurrent access, without
heavy performance impact.

High available Data must always be available for clients, even in case of main-
tenance or malfunctioning hardware or software. This means that main-
tenance and configuration of the system must happen ”on-the-fly”.

Durability When a single software or hardware component fails, no data may
be lost. The system must support replication to other (remote) locations.
Additional the system can make back-ups to back-up media such as tapes.

Performance at traditional SAN/NAS level The system must have a level
of performance comparable to that found in traditional (non-distributed)
SAN/NAS environments. By using different kind of storage within the
distributed system, it is possible to offer different levels of performance
and capacity. By combining different kinds of storage, the requirements
(performance an capacity) for the applications can be met.

Dynamic operation Availability, durability and performance must be config-
urable per application. This prevents the system to run always at the
highest supported level, which reduces costs. Preferable the system must
be self-configurable and tunable to optimise its own operation.

Cost effective The system must work with commodity hardware, because of
cost-effectiveness. This means that individual hardware is not as scalable,
high available, durable and fast like high-end hardware. Systems must be
able to compensate this. The system also has to be energy efficient and
license fees for software must be limited.

Generic interfaces The system must offer a generic interface to applications
and clients. It preferably supports the Portable Operating System Inter-
face (for Unix) (POSIX) file system interface. Alternatively, the system
may support a block device interface. This because such an interface can
be used to implement arbitrary file systems.

7

Protocols based on open standards The system must be build using pro-
tocols based on open standards as much as possible.

Multi-party access The system must support access by multiple, geographi-
cally dispersed parities, at the same time.

2.2 Inventory

The inventory was based on the requirements and the scope of this research. At
least the file systems have to be open source and support for distribution over
the network. Based on these two requirement the following list is made:

• Coda

• Lustre

• GlusterFS

• XtreemFS

• Ceph

• PVFS

• MooseFS

• Hadoop

The file systems that met the first requirements were reviewed based on the
information available on the Internet. The results of the review can be found in
appendix A. In short: Hadoop is a framework that can be used by applications
to store data in a distributed environment which is not SAN/NAS like. The used
method looks like the one used by Google File System (GFS). MooseFS, PVFS,
Ceph and XtreemFS are heavy developed and are either missing functionality or
not mature enough to be used in production. GlusterFS, Lustre and Coda are
the three file system that have the majority of the requirements and are mature
enough to be used. GlusterFS and Lustre are very comparable in functionality
and majority. Although GlusterFS is not chosen because on first sight it does
not seem to be possible to keep the storage volume available when one node fails.
Also the security is not handled within GlusterFS which could be a issue when
multiple participants are using the same storage. The downside of Lustre is the
lack of replications, but is does have security features and good documentation.
Based on the arguments above Lustre is selected over GlusterFS. The Coda
system is selected because it uses a different architecture. This architecture
uses more tiers in the file system. This gives it an advantage over GlusterFS
and Lustre.

In the section bellow (section 2.3 and 2.4), Coda and Lustre are described
in more detail based on the requirements in section 2.1.

2.3 Coda

Coda has been developed at Carnegie Mellon University (CMU) since 1987 by
M. Satyanarayanan, and it is still active developed. Coda is used by CMU
itself. It started with replicating file servers but develop into a more featured
architecture. In 1980’s the networks were not that stable and fast as they are
these days. This is why the caching client was developed, so less bandwidth
was required and clients could continue working even when the connection was
broken. These days it can be used for several system, because of this caching
client. For example, the client can be used as a web server, distributing Linux
distributions.[1]

8

2.3.1 Architecture

The architecture of Coda has six base components:

System Control Machine (SCM) The SCM is the so called master server.
This server is used to manage the Coda environment. During the config-
uration of the clients and servers, a connection with the System Control
Machine (SCM) is made and the configuration is retrieved. The SCM is
not redundant, but in case of a failure the whole cluster keeps running.
Only no volume or user management can be applied. The SCM can be
installed on a separate server, or can be combined with a file server.

File server The file server is used for the file storage itself. For the meta
data no separate server is required and is stored on the file server self.
A file server can contain multiple volumes and volumes can be replicated
between multiple file servers.

Auth server Every server runs the authentication service. This is used to
authenticate the user. Based on a token (which the client receives form
the SCM during login) the rights for the user on a volume are determined.

Update server The update server is unique in the Coda infrastructure. This
is a process running on the SCM. When a configuration, Access Control
List (ACL) or user modification is made, the update server distributes it
to the servers.

Update client All the servers run the update client, so the server can reach
them for update information.

Client Using clients a connection to the Coda infrastructure is made. The
client has the capability to cache information local. So there is no need to
upload a file direct to the file server, when a file is saved. Or a file does
not always has to be retrieved from the file server when a read is executed.

The file servers do not require a specific file system. For the meta data and
log information a separate raw partition is required. And if possible a separate
disk for each. This to improve performance significant. But in case of a test
scenario, both can also be stored as a file on the root file system. The size of the
meta data and log partition/file can not be changed after installation. Further
configuration data is by default stored in /vice. The data store (or volumes,
more about volumes later) is by default located in /vicepa. If multiple drives
are available for the data store they are mounted under /vicepb, /vicepc, etc.
As noted before, for the data store, each file system can be used. The ability of
multiple data stores per Coda file server, makes the server more scalable.

To prevent data lost or unreachable data, Coda makes use of replicates. The
client contains a list of all replicates. As long as the client can reach one of the
replicates, the data is still available. As soon as the replicated are connected
again, the servers will automatically synchronise. To store data, a so called
volume is created. A volume can be stored on one till eight machines. The
replication is configured per volume. The addition of a replica of a volume after
creation is possible. Within Coda no capabilities to stripe data over multiple
machines are available.

9

Also the client has no specific file system requirements. The client makes
use of a kernel module. Using this module, the mount /coda is created. In this
folder the Coda root volume is mounted. In that folder the other volumes can
be mounted. Using the information retrieved for the System Control Machine
(SCM), the client knows were to find which volumes, and where replicates are
stored. Also the SCM distributes the Access Control List (ACL) for the vol-
umes. A very nice feature available in the client, is the cache. This makes it
possible for often used files to reach traditional SAN/NAS level performance.
Also this cache is file system independent. Using some advance technologies, the
cache can be used for read and write operations without the change on conflicts
between clients and servers. More information about this can be found in [2,
A.S. Tanenbaum and M. van Steen, Distributed Systems].

Notice there is no need to install the client software on the application server
itself. It is also possible to create an NFS share on the Coda client. iSCSI is not
possible, because Coda does not offer a block device. iSCSI can also store its
data in a large file, instead of a block device, but Coda has a problem handling
large files. More about large files later in this section.

Although the cache is a nice feature, it has some limitations. In case of a
large file where only one bit is changed, the whole file has to be uploaded again.
Also it is important to notice that files stored on the system can never be larger
as the cache size. Global the cache can work in two ways: write behind and
write through. In the first case the files are just stored in the cache and later
transmitted to the Coda file servers. This works well, but the transmission of
the data to the Coda file servers is often slow, this because of the auto regulating
bandwidth mechanism in Coda. If this mechanism is disabled, the Coda client
switches automatically to a write through system. This has the disadvantage
that the process stays locked, until the data is copied to all Coda file servers.
When data is written on the client, the will go through following cyclus:

1. Data copied from the process to the Coda client cache;

2. Data copied form the Coda client to the nearest Coda file server;

3. At the Coda file server the data is copied from a buffer to the real data
repository;

4. The Coda file servers replicates the data to all replicates at once.

So the data is processed four times before the process is released.
Coda has back-up functionality implemented. For users it is possible to

connect to a back-up volume and restore their own files. To create and restore
complete volumes, the following procedures are defined:

• Backup

1. Freeze one of the replicates of a volume and create a read-only clone;

2. Dump the read-only clone to a local disk;

3. Backing up the dumped data to a suitable archive media (e.g. tape
drive).

• Restore

10

1. Retrieving appropriate full and incremental dumps from the archive
media;

2. Merging the full and incremental dumps to the time line of restora-
tion;

3. Restoring the fully integrated backup to the Coda file system.

For the network used by Coda no special requirements are specified. Because
of the caching client, the bandwidth can be limited and the latency might be
high. As long as there is no structural capacity shortage, the client can cache
all the data send to the cluster and catch up during the night (as long as no
cache overflow occurs). If the cache appears to be flooded, the client will slow
down the writing process. If this does not solve the problem, the Coda client
will lock the process. For reading it may take a while for the first read, but later
the client gets served from its cache.

The Coda client makes the system scale well, because the amount of clients
is unlimited, and they will unload the Coda file servers. This makes the need
for striping file servers unnecessary. Also the amount of file servers is unlimited,
and by making use of volumes, the usage of file servers is transparent. The only
limitation is the throughput of one client, in case of an application with high
requirements. But later in this document (in section 4.2) this problem will be
solved. Also is the client a single point of failure, also this will be discussed
later. Although because of the scalability, no special and expensive hardware is
required.

Adding a new Coda file server is as easy as installing the software, and telling
it where it can find the SCM. For the clients it is almost the same thing. But
configuring the SCM is a bit harder. There are a lot of parameters which may
influence the performance significantly. Most are not well documented and some
have unexpected consequences. Also is the system vulnerable for errors during
synchronisation. Those errors are easy to fix using the supplied tools, but they
do require human interaction.

The Coda client and servers communicate using the Remote Procedure Call
version 2 (RPC2) standard. Files are transported using SSH File Transport
Protocol (SFTP)(File Transport Protocol (FTP)over Secure Shell (SSH)). Both
are open standards and well documented. Using SFTP prevents anyone to listen
in to the stream. Next to SFTP Coda makes use of authentication tokens. So
a user must authenticate against the SCM. After successful authentication a
token is received, which is valid for 24 hours. Based on these tokens, ACLs can
be build from volume till file level.

2.4 Lustre

Lustre is a distributed file system first thought of in 1999 by Peter J. Braam.
At that time he was a system scientist at CMU. He was already active in a fork
of Coda, named InterMezzo. The main goal of the fork was to add performance.
In 2002 the development of InterMezzo stopped and Lustre was started. The
development of Lustre was done within his own company named Cluster File
Systems. Later in 2007 the company was acquired by Sun Microsystems to use
the Lustre technology in their file system Zettabyte File System (ZFS). Nowa-
days Sun has been taken over by Oracle and Lustre remains being developed
and supported.

11

(a) The components in a Lustre system (b) Simplified Lustre system

Figure 1: The components of the Lustre system. The MDS serves the meta data stored
on the MDT. The OSS serves the file data stored on the OSTs. The clients
receives both the meta data and the file data.

2.4.1 Architecture

Lustre has five base components:

Meta Data Server (MDS) The Meta Data Server (MDS) makes the meta
data stored at the MDT available for the clients. The MDS manages
the names and directories within Lustre and provides network request
handling for one or more MDT.

Meta Data Target (MDT) The Meta Data Target (MDT) stores the meta
data of a MDS. Each file system has one MDT. An MDT can be available
to many MDS, although only one should use it. Other MDS can be passive
available is the active MDS fails.

Object Storage Server (OSS) The Object Storage Server (OSS) provides
the file I/O service and network request handling for the OSTs. Normally
one OSS serves between 2 and 8 OST servers.

Object Storage Target (OST) The Object Storage Target (OST) stores the
data of one or more OSSs. A Lustre system can have multiple OSTs, each
can serve a subset of a file. A logical object volume does the management
of the file striping over the different OSTs.

Clients Clients are the computers that mount the file system on their local
system.

The file system is based on the ext3 file system. Normally the file system
consists of inodes which point to the blocks on the disk where the actual data can
be found. On the Lustre file system the inodes points to the objects associated
to the file. The objects are chunks of the file and can be distributed on several
Object Storage Server (OSS)s. The inode information is stored at the Meta
Data Server (MDS) server. So if a clients wants to open a file, it will contact
the MDS first and retrieve the inode information. The information contains the
object(s) related to the requested file. Second the client will request the object
at the different OSSs.

12

Distribution over the nodes can be done using striping, this can be done
per file or directory. Using striping files are distributed along the OSSs, the
distribution can be configured at client side. So for example all servers can be
used but also a maximum number of OSS. The chunks of the file are placed
using round robin until the free space drops under the 20%. Then there will be
smart placement of the chunks so a server will not run full while other have a
lot of free space.

Replication is not done within a Lustre network. The files are distributed
over the storage node and those are assumed to be reliable. To get more reliable
nodes a fail-over can be configured. There are two kind of fail overs: active/pas-
sive and active/active. The active/passive is commonly used for the meta data
server. The active meta data servers is doing the work while the second waits to
take over, in case the active servers fails. This can be achieved using Heartbeat,
this is later explained in section 4.1.2. The downside of this approach is the
need for an extra server which is not used and not helping to add performance.
The second approach is to get an active/active fail over, this is normally done
for the storage nodes. Both servers have the files and both servers are serving
the data. This gives extra performance since a file can be downloaded from
multiple nodes. The fail over mechanism only works for the server and not for
the storage device. So the fail over servers share the same physical storage.

The backup of Lustre can be done by copying the files from the mounted
partition or use “dd“ to fully copy the block device. Using ”dd” it is possible
to copy the whole file system what makes it more easy to restore. In case of
an almost empty large partition, the usage of gzip can be useful to compress
the bulk of 0’s in the backup file. To copy only the files the partition has to be
mounted not as a Lustre file system but as a normal file system. Now the files
can be copied to another location. Although Logical Volume Manager (LVM)
volumes can be used by Lustre this will decrease the performance of the writing.
LVM does offer snapshots which are good for backup purpose. In the upcoming
version of Lustre there will be an feature to be able to replicate a volume based
on transaction logs[3].

Lustre uses Lustre Networking (LNET) for the communication within the
Lustre network. LNET runs on top of the network drivers of the Operating
System (OS) and can run on multiple interfaces at the same time. The network
stack can support multiple types of network interfaces, including Ethernet and
InfiniBand. The ability to connect multiple interfaces makes the support for link
aggregation and routing more interesting. Within LNET it is possible to define
what routes should be taken and what link can work together. Although the
link aggregation can only work if the kernel and the other endpoint support it.
Normally this endpoint is a switch which needs support for link aggregation1.
Another feature of LNET is Remote Direct Memory Access (RDMA). This
feature grants a network interface direct access to the application memory. This
eliminates the need to copy the data to the data buffers from the OS and
thereby reducing the CPU work. Although this does not work on Ethernet at
the moment.

The scalability of Lustre is good. The MDS is the only components that
can have a limiting factor since it can not be used multiple times. To add
performance or capacity multiple OSS nodes can be used. This can scale up to

1Link aggregation is defined in the standard: 802.3ad Dynamic Link Aggregation

13

ten thousands of nodes, which is most likely enough for SURFnet.
For security Lustre can be configured to use Kerberos. Kerberos can be used

to authenticate the nodes (OSS, MDS and clients) with each other. In this way
client can be prevented to connect to nodes that they should not be able to
connect to. Also the Remote Procedure Call (RPC) send over the network can
be protected against eavesdropping and modification. This adds privacy to the
use of the network data and prevents leakage of the data. Beside the security
added by Kerberos, Lustre also has an access list to direct who can access what
data. This in combination with pools of data that can be configured means that
users can set with who he is working together. Other clients can not profit from
that until deals have been made.

More information about the architecture can be found in the operations
manual of Lustre [4] or a paper from P.J. Braam about Lustre [5].

14

3 Benchmarks

A test environment for Coda and Lustre will be build to test the performance
and behaviour of both architectures. In the test environment the disk perfor-
mance will be measured and the behaviour during failures will be noted. This
based on the requirement for performance comparable to traditional NAS/SAN
environments, and high availability (section 2.1).

In this section, first the test environment will be described including the tools
used for benchmarking. Second the different stages of testing will be discussed.
The first stage contains a null test of the test environment to determine the
limitation and characteristics of the test environment. The second stage will be
a null test of Coda and Lustre running in the test environment. The third stage
consists of tests done to see how the architectures reacts on different conditions
like latency and failures.

3.1 Test environment

The test environment is based on the theoretical research done in the earlier
section. The test environment is kept simple to get more experience with both
tools and because of time restrictions.

Also some practical experience already has been taken into account of setting
up the tools. The test environment is based on the theoretical research and
practical experience with Coda and Lustre. Based on all experience a simple
environment is created to be able to test the characteristics of the architectures.

3.1.1 VMware ESXi environment

The test environment is build with use of four ESXi servers. The hardware of
each server is a little different. The machine have the following specifications:

• VMware ESXi 1

– Dell Poweredge 1750

– Intel Xeon single core 2.8 GHz

– 2048 GB RAM

– 3 * 136 GB SCSI hard disks

– VMware ESXi version 3.5

• VMware ESXi 2

– Dell Poweredge 1750

– Intel Xeon single core 2.8 GHz

– 2048 GB RAM

– 3 * 136 GB SCSI hard disks

– VMware ESXi version 3.5

• VMware ESXi 3

– Dell Poweredge 1750

– Intel Xeon single core 2.8 GHz

– 1024 GB RAM

15

– 3 * 136 GB SCSI hard disks

– VMware ESXi version 3.5

• VMware ESXi 4

– Dell Poweredge 1850

– Intel Xeon single core 2.8 GHz

– 2048 GB RAM

– 10 GB hard disk RAID 1

– VMware ESXi version 4.0

On all the virtual nodes the virtual Intel e1000 network interface is used.

3.1.2 Coda

Figure 2 shows the Coda test environment. Two Coda servers are used. One
of them is also used as the SCM. One volume is replicated to the both servers.
Further two clients are used, although the benchmarks will run on one client.
The second client can be used to see how fast changes are propagated (this
because of the caching capabilities of Coda). Each of the machines runs on a
separate VMWare ESXi server. So each machine has its own VMWare ESXi
server. The Coda file servers have each three virtual disks, each on a separate
data store. One used for the operating system, one for the data repository and
one for the meta and log data. This to prevent interference.

Figure 2: The Coda test setup.

3.1.3 Lustre

The test setup for Lustre is kept basic as can be seen in figure 3. Only two file
servers are used since early tests showed that two file servers are already at the
limit of the physical disks. The nodes are separated on the four VMWare ESXi
servers. Since the server nodes require a separate storage device connected for

16

the storage of data or meta data, each server node has two hard disk attached.
Each hard disk is put on a different data store so the OS disk I/O does not
interferences with the (meta) data disk I/O. On the client the mounted directory
has the setting to use striping so the files will be distributed over the storage
nodes.

Figure 3: The Lustre test setup.

3.1.4 Used benchmark tools

To benchmark the performance of the file systems the following tools will be
used: Iozone and Bonnie++. Both are open source hard disk benchmark tools
which can be used to test the read and write performance of the hard disk. Both
benchmarks tools can perform sequential and random write/read benchmarks.
Iozone has more configuration parameters that can be set and is used in the
following research [6, S. Carlier and D. Muller, SSD Performance]. The con-
figuration parameters makes it possible to tune the benchmark and save time.
Bonnie++ was recommended by SURFnet and has the advantage to store the
average CPU load with the benchmark results. This can be useful to see whether
the CPU is a bottleneck. Different block sizes are used to see if the architectures
have an advantages if using big or small block sizes.

The network is tested using Iperf and ping. Iperf is used to test the network
bandwidth using a TCP connection. The test consist of a server and a client
that transfer data between them. The test is performed multiple times to get
an average but also to see the fluctuations on the network. Ping is used to test
the latency between the hosts. A set of 100 ICMP echo messages is send and
the latency is stored. This can be used to see the average latency between hosts
but also the peaks or network hick-ups which can occur.

The benchmarks are invoked using the following commands including the
noted parameters:

Iozone /usr/bin/iozone -s 2048000 -f /mnt/sda1/tmp2.test -b

/home/roel/codaclient1_iozone_1.xls -r 8k -r 256k -r 8m -i 0 -i 1 -i 2 +d

17

Bonnie++ /usr/sbin/bonnie++ -n0 -d/mnt/sda1/ -s1024 -x3 -q -u root

> codaclient1_bonnie++_2.csv

Iperf (client) /usr/bin/iperf -c 192.87.110.159 -f M > 4_3iperf.txt

Iperf (server) /usr/bin/iperf -s

Ping /bin/ping -c 100 1.1.1.1 > 4_3ping.txt

3.2 First stage

In the first stage, a reference test will be executed. This to get insight in the
characteristics and the limitations of the used VMWare ESXi test environment.
The first test is running the file system benchmark tools on a virtual server on
its local storage. Using this test a reference point is made to know what the
disk performance of the VMWare ESXi test environment is. Since the VMWare
ESXi servers have multiple disks, there will be a virtual disk on each of them.

The second part of this stage is testing the maximum network bandwidth
and the average network latency of the test environment. A configuration as
displayed in figure 4 is build. The location of the machines will be changed, to
get information about all the systems.

Figure 4: The reference test configuration.

3.2.1 Results

In this section the results of the first test stage are presented. First the hard
disk benchmark results are presented. Next the network benchmark results are
discussed.

Disk benchmarks
The results of the disk benchmarks from Iozone are displayed in figure 5. For
each test the lowest, the maximum and the average values are displayed. The
read and write tests are comparable in speed. Also the different block sizes
do not make much difference. With the random tests the different block sizes
make more differences. This because with a larger block size, data is read in a
more sequential way (blocks are sequential on disk). Notice that the random
read speed with 8192KByte blocks is faster as the sequential read speed. This

18

is exceptional. Normal this is the other way around. Probably it has something
to do with some smart read ahead functionality within VMWare ESXi.

Figure 5: Disk null test results using Iozone.

When looking at the data in figure 6 it can been seen that the first disk of
each VMWare ESXi server is slower. This is because ESXi itself and the virtual
machine have their OS installed on that disk. Also on the first virtual hard
disks snapshots are activated which may cause extra overhead.

The results of the Bonnie++ benchmark can be found in figure 7. The results
are lower in comparison with the previous results from the Iozone benchmark.
This is all caused by the different test methods. Notice that this does not mind
in this case, because we will only use those results to compare the results of
Coda and Lustre with the local disk speed. And not to determine the real
throughput of the virtual disks. Also here we see the lower performance of the
first disks.

The raw data can be found in appendix B.

Network benchmarks
The bandwidth benchmarks show a big difference between benchmarks on the
same link. This was not expected since the environment is connected using a
dedicated 1 Gbit switch. To make sure the deviation comes not from the switch,
a test is ran over a direct cable. This did not take away the deviation. The
final bandwidth results can be found in table 1. The numbers are the average
of three tests. This to tamper the differences in the results. The raw results can
be found in appendix C in table 7.

The latency is bellow the one msec between the servers as can be seen in
table 2. This is based on a 64Byte icmp ping. The latency has some peaks which

19

Figure 6: Disk null test results using Iozone, average per data store.

from
1 2 3 4

to 1 x 65.8 67.0 65.1
2 65.2 x 67.5 72.2
3 66.9 67.9 x 68.0
4 82.5 86.5 82.1 x

Table 1: Network bandwidth null test results using Iperf (in MBytes/sec).

show that the networking can be inconsistent like the bandwidth benchmarks
already showed. Those can also be seen in the more detailed information in
appendix C in table 8.

3.2.2 Conclusion

The results show the limitation of the test environment. The first disk that is
in use for VMware ESXi itself performs a little bit slower then the other disks.
The networking does not reach it full potential and can vary over time. This is
due the use of VMware ESXi.

3.3 Second stage

The second stage is to test Coda and Lustre. This is done to see the impact
of the added middleware (Coda and Lustre) on the performance and to act as
a reference for stage 3 where the condition of the network will change (higher
latency and failures).

20

Figure 7: Disk null test results using Bonnie++.

from
1 2 3 4

to 1 x 0.642 0.390 0.462
2 0.424 x 0.727 0.501
3 0.386 0.438 x 0.483
4 0.395 0.512 0.479 x

Table 2: Network latency null test results using 64Byte icmp ping (in msec).

3.3.1 Approach

In this stage, the performance of Coda and Lustre will be tested. In this test the
tools are set up in the test environment. To limit the performance interference
with each other, the servers and clients are put on different VMware ESXi
servers and all other virtual machines are shut down. The benchmark will be
executed on the client system.

3.3.2 Results

The results of the Iozone benchmarks can be seen in figure 8. The sequential
read performance of Lustre is standing out. Since Lustre is using a striping
configuration the files can be read from 2 servers at the same time. Coda is
also performing slightly better then the null test, this is because of the caching
that is done by Coda. The read performance drops when random read is done,
especially compared to the good result of the sequential read. The cause of the
performance drop is the added time that is needed to request the meta data.
The random read of 8192KByte blocks of Coda and the null test are equal or

21

higher as the sequential. This is not what was expected since normally the
random read takes more time. As mentioned before this is probably caused by
the used VMWare ESXi environment. The results of the other test does not
show any surprises, Coda and Lustre are a little slower. On the other results
show that Coda and Lustre perform a little bit less as the null test. This is
caused by the overhead of using the middleware. The meta data needs to be
requested, the files need to be requested and also the network is in between.

Figure 8: Iozone benchmark of Coda, Lustre and for comparison, the null test.

Figure 9: Bonnie++ benchmark of Coda, Lustre and for comparison, the null test.

The results of the Bonnie++ benchmarks, can be seen in figure 9. Only the
seek test is used. Actually this is a random read with a single of a single block.
This shows a much lower performance of Lustre and an even more dramatic
performance of Coda. This is all caused by the middleware. Probably most by

22

the meta data servers. Al thought the performance is lower, it is more stable.
The longer seek time also gives the explanation for the differences for random
read in figure 8. Coda reads faster, but Lustre seeks faster.

The other performance results generated by Bonnie++ are not used. This
because of the high deviation of the results for Coda as can be seen in appendix
D table 9.

Note
Notice the Iozone benchmark of Coda is performed with a 1GByte test file,
instead of the 2GByte file. This because of some problems during the Coda
benchmark. Coda did not seem to be able to handle the 2GByte file. This is
probably related to the used Coda cache size of 2,5GBytes.

3.3.3 Conclusion

Overall the test results show that Coda and Lustre are capable of performing
almost as fast as the null test. With sequential reading Lustre has the benefit
of reading from two servers at once. Coda has the benefit from its cache when
it comes on reading and writing data (both in random as sequential way). Al
thought the performance is good, it is still lower as the null test. This is caused
by the extra overhead of the middleware.

3.4 Third stage

In the third stage, the test environment will be altered to simulate conditions
that can be expected in the SURFnet network. Latency and failures will be
introduced. Those parameters are selected based on the requirements (section
2.1).

3.4.1 Approach

The test environments of the second stage will be used with some small modi-
fications to the network. This is done the see how Coda and Lustre react when
the following variables will be changed:

Latency Within the SURFnet network the storage nodes and client can be at
different geographical location. The distance between the participants in
the network introduce latency. How will the systems react if the latency
is increased? The main goal of this test is to test whether Coda and
Lustre can handle the increasing or changing latencies. The latency that
is introduced is 20ms RTT, that is the maximum latency that is allowed
on the SURFnet network[7]. In the Lustre setup the latency is added at
the file servers. Adding it to the meta data is did not give any major
issues. In the coda setup every node has added latency.

Failure Failures can happen within the system. How do Coda and Lustre react
when one of the following components of the system is taken out.

• Client

• Meta data server (if separate available)

• Storage server

23

• Temporary network link outage

The latency variable will be adjusted using the Linux tool called Traffic
Control (TC). This tool can introduce latency. This can be done by installing
this tool on the Coda and Lustre servers and clients, so there will be no need
for separate machines and networks.

3.4.2 Results

Latency
Adding latency is hard to handle for Lustre. The results from Iozone can be
seen in figure 10. It shows a significant performance drop. The seeks/sec from
Bonnie++ (table 3) show also a reduced amount of seeks. This performance
drop can be explained by the fact that Lustre is optimised for a low latency
network (latency of one msec or lower). The used protocol makes use of ac-
knowledge messages. By waiting for the acknowledgement before sending the
next message, the higher round-trip time has its impact.

Figure 10: Iozone benchmark of Lustre and Coda with an added latency of 20ms RTT.

In contrast with Lustre, Coda performed very well. There is almost no
performance difference as can be seen in figure 10. This can be explained by the
usage of the cache. The benchmark actual ran on the local disk (were the cache
is stored). Although the synchronisation between the client and the server was
slowed down, this did not influence the benchmark.

Just as Lustre, Coda also has higher seek times (so does less seeks/sec) as
can be seen in table 3. Despite of the cache, for seeks the Coda client has still
to connect to the meta data server, which is on the delayed network.

24

min avg max

Lustre No added latency 151.4 153.2 155.4
Latency (20ms RTT) 28.7 29.0 29.2

Coda No added latency 27.6 28.2 28.4
Latency (20ms RTT) 9.5 9.8 10.0

Table 3: Bonnie++ benchmark on Lustre and Coda with an added latency of 20ms
RTT. (seeks/sec)

Failure
Lustre is not designed to handle with failure. Default when a node or link is
down it means the files or chunks on that node can not be reached. In practise
this means that a copy job will block and will wait until the file becomes available
again. After the time out has been reached the copy will fail.

Coda is more designed to handle failures. When the SCM fails, and the
client has a valid token, it can continue working. Also it is not possible any
more to create new volumes or configure ACLs. In case of a failing file server,
this has no impact, as long as the volumes on the file server are replicated. The
client will notice the failing file server and switch to one of the other replicates.
Also in case of an accidental limited bandwidth or raised latency, the client will
connect to the fastest available file server.

3.4.3 Conclusion

Where the differences were not that big in stage 2, they are in stage 3. The
added latency has a big impact on the performance of Lustre. Coda could stand
the latency better, because of its local cache. And was almost not influenced.
Also in the case of failures is Coda better facilitated, because of its replicas.

25

4 Recommended SURFnet implementation de-
sign

This section describes a design on how Coda and Lustre can be used by SURFnet.
This is a recommended design on how both file systems can be implemented on
the network of SURFnet and what additional tools are required. This is based
on the experience collected during the research, and the test results.

First some information about those additional tools will be given. After this
first Coda will be discussed, second Lustre.

4.1 Additional tools

To enhance the architecture of both Coda and Lustre extra tools will be used.
The tools and techniques will be explained in this section.

4.1.1 ZFS

Coda uses a cache to store data locally, this is done using the local file system.
Here might be an opportunity to add an extra tier to the model. ZFS offers
caching on the local file system. In this section two features of ZFS will be
discussed: Second level ARC (L2ARC) and ZFS Intent Log (ZIL). L2ARC is
an addition to the Adaptive Replacement Cache (ARC) and is used to cache
file read operations. ZIL does speed up writes operations by caching those in
DRAM instead of writing them direct to hard disks.

(a) The old model (b) The new model (c) Implementation in ZFS

Figure 11: ARC, L2ARC and ZIL in ZFS

ZFS makes use of ARC to cache files in DRAM. ARC sits between the system
and the disks, so not all requests have to come from the slow disks. ARC is
called primary cache. This because there is also a secondary cache available
under the name L2ARC. L2ARC sits between the DRAM and the hard disks.
This cache extents the DRAM cache. Often this cache is build with Solid State
Drive (SSD) drives. Figure 11 shows the models in relation with ARC and
L2ARC. [8]

ZIL is used by ZFS to speed up write operations to the hard disk. Normal
some write operations are cached in memory, but important writes are direct
written to the disk. Those writes drop the performance. To prevent this, ZIL
makes it possible to also prevent those writes to the disk. To eliminate the risk

26

of data loss in case of a power or system failure, the system keeps a log of the
system calls (the actual write operations). This log is saved on SSD drives, so
it is saved on persistent storage and can be accessed fast. In case of a system
failure, the system calls in the log can be replayed.[9][10]

4.1.2 Heartbeat

Heartbeat can be used to build a high available cluster. This by running two
servers with each an own IP address, and one shared IP-address. One of the
nodes is the master, and handles the requests. The second node is a slave, and
is stand-by for the case the master fails. In case the master fails, the client can
detect this in several ways. For example by scanning a specific service on the
master, but also a dedicated RS232 communication link can be used. In case of
a failure, the client will take over the shared IP address. Clients connecting to
this IP address will not notice any change.

Figure 12: The components and their relations used by Heartbeat. [11]

4.1.3 DRBD

Distributed Replicated Block Device (DRBD) can be used to replicate a parti-
tion over a network. This is done by creating a RAID 1 like setup. DRBD is
used on top of a normal device or partition. Two nodes need to be set up with
a device or partition with the same size. On both nodes a virtual device is cre-
ated. For the user data seems to be stored in the virtual drive. But when data
is written to the virtual device, DRBD will write the data to the local device
and also send the data over the network to the second node. The writing can
be done synchronous and asynchronous. The difference is the moment DRBD
returns a write successful message. With asynchronous this is done when the
file is locally written. With synchronous this will be done after the file also has
been written on the remote host.

27

4.2 Coda

The Coda proof of concept environment is based on Coda, ZFS and Heartbeat.
Coda is used as the distributed file system, as described in section 2.3. Coda
consists global of two kind of nodes, the file servers and the clients. The Coda
file servers will run out-of-the-box without any special changes.

The Coda clients will be optimised by making use of ZFS and Heartbeat.
ZFS is used on the Coda clients to speed up the caches. This by implementing
the ZIL and L2ARC features. The cache is stored not in the default folder, but
on a special mount, containing the ZFS file system. How ZIL and L2ARC work
can be found in section 4.1.1.

Heartbeat is used to solve the Single Point of Failure (SPOF) caused by the
client. The Coda client will be used by a whole system as access point to the
distributed file system. If the Coda client fails, nobody behind the client can
access the data any more. By creating a redundant Coda client, with heartbeat
as fail-over mechanism, this SPOF can be eliminated. In this scenario the cache
of the stand-by client will be empty, which will hit the read performance in the
beginning, because all data has to be read from the servers. This empty cache
will be called a cold cache. To keep the cache warm, it is possible to synchronise
the cache of the active and the passive Coda client each minute using ZFS. The
performance impact will be limited. This because of the used ZFS caching
mechanisms which will cause most I/O being served from the DRAM. More
information how Heartbeat works can be found in section 4.1.2.

In figure 13 a graphical presentation of the design of the Coda based dis-
tributed file system is presented.

Figure 13: The Coda implementation design.

28

4.3 Lustre

The Lustre design is how Lustre could be used in the SURFnet environment.
The design is shown in figure 14 and consists of the base components (as de-
scribed in section 2.4.1) and some additional software to overcome some of the
limitations of the Lustre architecture. The core of the system are the MDS, the
OSS and the client.

The MDS is normally a single point of failure but this can be prevented by
using Heartbeat (see section 4.1.2) to create an active/passive fail-over mech-
anism. Lustre has support for Heartbeat so this will not be a problem for
implementing. The downside of using Heartbeat is the need for extra hardware.
And this hardware does not add extra performance. Also the hardware is not
being used until there is a failure. The positive side is that maintenance can be
done on the main MDS server without taking down the whole Lustre system.

Figure 14: The Lustre implementation design.

Replication of the storage is a big issue in the Lustre environment since the
system is only using striping and not any kind of replication. This can be a
big problem if a server goes down since all files on that server can not be used
anymore. Within Lustre it is possible to have multiple OSSs serving the same
Object Storage Target (OST). This will prevents the system to be down, when
one node fails. Although this does not solve the problem of an outage at a
whole site because then all nodes serving the data are down. To add replication
DRBD can be used to have a RAID1 like replication of the storage. Since Lustre

29

supports active/active fail-over, both sites can then serve the data. Although
DRBD adds replication it will also create an overhead which will decreases the
performance of the system. So adding the replication has a downside.

Looking back at the test results from stage 3 (section 3.4) the failure is taken
away by using DRBD and fail-over. This is an improvement over the test setup.
Also can DRBD probably take away (some) of the performance impact caused
by the latency. Although this is not confirmed jet, some further research is
required.

4.4 Combining the architectures

Coda has trouble with big files and striping. These both features are handled
well within Lustre. Lustre on the other hand has trouble with replication and
latency, those are well handled within the Coda architecture. This leads to the
idea to use both architectures and benefit from the good sides and eliminate the
weak sides of both. This idea is visualised in figure 15.

Figure 15: The combination of Coda and Lustre.

The Lustre architecture is used at the local site and can be used to mount
the data. Lustre does not store the data on the local disk but rather on a Coda
mount. Since Lustre uses chunks and striping to store the data on multiple sites
the big file weakness of Coda is solved. The chunks are stored in the local cache
of Coda, eliminating the latency that is a problem for Lustre. Once the data
has been stored on in the Coda system it can be replicated at multiple servers.
So now the striping is done by Lustre and the data is replicated by Coda.

In this setup there is a problem of the connection of Coda and Lustre. Lustre
requires a block devices that be available on which it will place it own file system.

30

The coda client is a mount point which Lustre can not use. This problem needs
to be solved with an external tool. Also using both architectures causes an
increase of complexity which is not good for the maintenance of the whole
system.

31

5 Conclusion

In this section the main and sub question will be answered. First the sub
questions will be discussed, so they can be used to answer the main question.

• Do the tools meet the requirements of SURFnet?
Both Coda and Lustre do not meet some of the requirements. Coda has
trouble with updating large files. This causes the whole file to be copied
to the server at every update of the file. Also is it hard to maintain.
Lustre is missing replication, failure handling and can not handle the
added latency well. Other requirements like cost effective, scalability and
multi party access are met by both tools. The performance of Lustre
is very depending on the latency. The performance of Coda is near to
local storage, as long as the local cache can be used. When the network
is involved, the performance drops as well, but not as dramatic as with
Lustre. The shortcomings of both tools can be solved by using additional
tools like: ZFS, DRBD, or heartbeat.

• How intensive is the maintenance and deployment of the tools?
The installation of both Coda and Lustre can be done easy, also adding
new nodes to the system is not a problem. The configuration and mainte-
nance of Coda is a problem due the complexity of the system. Lustre has
tools available which makes it easier to maintain. Also the documentation
of Lustre is good and complete, what is not the case with Coda.

• What conditions does the network infrastructure need to accomplice?
The most important condition is the reliability of the network, since both
tools have trouble with connection failures. Coda is capable of handling
the latency of a geographical dispersed network because of its read cache
and write behind cache. Lustre has trouble with latency and needs a
latency that is as low as possible (preferable around one msec). This
because Lustre does not have a cache. This forces Lustre to communicate
direct over the network. Also is the used protocol not optimised for latency

• What is the performance of the tools on SURFnet’s network infrastruc-
ture?
The impact of the SURFnet’s network is mostly the added latency and
the possibility of network failures. Coda does not have problems with
the latency due the client cache. Luster on the other hand has trouble
with the added latency, this is seen in the big decrease in performance.
Network failure is something that is not handled well within both tools.
Coda continues working but needs to replicate later after the connection
has been re-established. This might require human interaction to solve
conflicts. Lustre is not accessible any more, the copy is blocked until the
server becomes available again.

• What security features are implemented by the tools?
Both tools have a several security features implemented. Coda makes
use of its own authentication mechanism and uses SSH to encrypt the
communication channels. Access list can be used to control what user can
access what. Lustre can use Kerberos for authentication and encryption.
Lustre also uses access list to control the access to the files.

32

Now the sub questions are answered, the main question can be answered.
Looking back at the main research question:

What infrastructure and open source tools provide SURFnet or the participants
a scalable and distributed any-kind-storage solution?

At this moment the tools do not meet all the requirements that are needed to
implement the wished distributed storage. The architectures have the potential
but have trouble of managing the requirements on their own. This can partly
be solved by using additional tools.

Coda has two main problems: the configuration and the handling of big files.
The first problem can be solved by getting more experience with the system or
when better documentation becomes available. The second problems is in the
architecture of Coda, this can be hard to solve since it requires updating of the
tool. The positive side of Coda is that it can handle the latency well and uses
of multi tier storage architecture.

Lustre has a major problem with the latency since the performance of the
system drops. Also the lack of replication is something that is really missing
in Lustre. The replication can be performed outside of Lustre, by using an
additional tool, but that will add extra overhead. Since Lustre already has
trouble with latency this can be a problem. The positive side of Lustre is that
it is using striping which cause a performance increase on sequential reading.

33

6 Discussion

The test environment used, was based on VMware ESXi. This added some
overhead and made the test environment less predictable. This was visible in the
network and the disk performance, and did have impact on the benchmarks. For
further research in this subject it would be advised to look at the performance
without the virtualisation layer in between.

Another good point for future testing, is to have a better look into the config-
uration and tuning capabilities of Coda. It can be more configured and tweaked
as done during this project. Although the performance in the benchmarks was
not bad, the throughput between the client and server was limited. This will
be a problem if more data is offered as can be processed. By tuning the client
and server communication speed will be increased.

A third point of future research is to extend Coda and Lustre with extra tools
like ZFS and DRBD. Due to time limitations, this could not be done within this
project but it can have a big impact on the results. For example what kind of
impact does ZFS have on Coda or DRBD have on Lustre. Also the possibility
to combine Coda and Lustre can be interesting for further research.

At last, an interesting point to look at, are other distributed file system
projects. During the project two projects were chosen but also others show
some potential. GlusterFS is the most important one, and has almost the same
architecture as Lustre. It is interesting to test how GlusterFS handles the la-
tency. Any differences in relation with Lustre, do not come from the architecture
but from the implementation.

34

References

[1] Peter J. Braam. The coda distributed file system. URL http://www.coda.

cs.cmu.edu/ljpaper/lj.html.

[2] A.S. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms, 2/E. Prentice Hall, feb 2006.

[3] Lustre replication rsync, June 2010. URL http://wiki.lustre.org/

index.php/Lustre_2.0_Features#lustre_rsync.

[4] Lustre operations manual, June 2010. URL http://wiki.lustre.org/

images/0/09/821-0035_v1.3.pdf.

[5] The lustre storage architecture.

[6] S. Carlier and D. Muller. Ssd performance. Technical report, University of
Amsterdam, feb 2010.

[7] Surfnet service level specification, May 2009. URL http://www.surfnet.

nl/Documents/SLS4.0-definitief.pdf.

[8] Zfs l2arc, jul 2008. URL http://blogs.sun.com/brendan/entry/test.

[9] Zfs on-disk specification, 2006. URL http://hub.opensolaris.org/bin/

download/Community+Group+zfs/docs/ondiskformat0822.pdf.

[10] Zfs: The lumberjack, November 2005. URL http://blogs.sun.com/

perrin/entry/the_lumberjack.

[11] High-availability middleware on linux, part 1: Heartbeat and apache
web server, October 2004. URL http://www.ibm.com/developerworks/

linux/library/l-halinux/.

[12] Coda file system, June 2010. URL http://www.coda.cs.cmu.edu/.

[13] Coda file system - wiki, June 2010. URL http://en.wikipedia.org/

wiki/Coda_(file_system).

[14] Lustre, June 2010. URL http://wiki.lustre.org/index.php/Main_

Page.

[15] Lustre - wiki, June 2010. URL http://en.wikipedia.org/wiki/Lustre_

(file_system).

[16] Glusterfs, June 2010. URL http://www.gluster.org/.

[17] Xtreemos, June 2010. URL http://www.xtreemos.org/.

[18] Xtreemfs, June 2010. URL http://www.xtreemfs.org/.

[19] Xtreemfs - wiki, June 2010. URL http://en.wikipedia.org/wiki/

XtreemFS.

[20] Ceph, June 2010. URL http://ceph.newdream.net/wiki/Main_Page.

35

http://www.coda.cs.cmu.edu/ljpaper/lj.html
http://www.coda.cs.cmu.edu/ljpaper/lj.html
http://wiki.lustre.org/index.php/Lustre_2.0_Features#lustre_rsync
http://wiki.lustre.org/index.php/Lustre_2.0_Features#lustre_rsync
http://wiki.lustre.org/images/0/09/821-0035_v1.3.pdf
http://wiki.lustre.org/images/0/09/821-0035_v1.3.pdf
http://www.surfnet.nl/Documents/SLS4.0-definitief.pdf
http://www.surfnet.nl/Documents/SLS4.0-definitief.pdf
http://blogs.sun.com/brendan/entry/test
http://hub.opensolaris.org/bin/download/Community+Group+zfs/docs/ondiskformat0822.pdf
http://hub.opensolaris.org/bin/download/Community+Group+zfs/docs/ondiskformat0822.pdf
http://blogs.sun.com/perrin/entry/the_lumberjack
http://blogs.sun.com/perrin/entry/the_lumberjack
http://www.ibm.com/developerworks/linux/library/l-halinux/
http://www.ibm.com/developerworks/linux/library/l-halinux/
http://www.coda.cs.cmu.edu/
http://en.wikipedia.org/wiki/Coda_(file_system)
http://en.wikipedia.org/wiki/Coda_(file_system)
http://wiki.lustre.org/index.php/Main_Page
http://wiki.lustre.org/index.php/Main_Page
http://en.wikipedia.org/wiki/Lustre_(file_system)
http://en.wikipedia.org/wiki/Lustre_(file_system)
http://www.gluster.org/
http://www.xtreemos.org/
http://www.xtreemfs.org/
http://en.wikipedia.org/wiki/XtreemFS
http://en.wikipedia.org/wiki/XtreemFS
http://ceph.newdream.net/wiki/Main_Page

[21] Ceph - wiki, June 2010. URL http://http://en.wikipedia.org/wiki/

Ceph.

[22] Pvfs, June 2010. URL http://www.pvfs.org/.

[23] Pvfs - wiki, June 2010. URL http://en.wikipedia.org/wiki/Parallel_

Virtual_File_System.

[24] Moosefs, June 2010. URL http://www.moosefs.org/.

[25] Moosefs - wiki, June 2010. URL http://en.wikipedia.org/wiki/Moose_

File_System.

36

http://http://en.wikipedia.org/wiki/Ceph
http://http://en.wikipedia.org/wiki/Ceph
http://www.pvfs.org/
http://en.wikipedia.org/wiki/Parallel_Virtual_File_System
http://en.wikipedia.org/wiki/Parallel_Virtual_File_System
http://www.moosefs.org/
http://en.wikipedia.org/wiki/Moose_File_System
http://en.wikipedia.org/wiki/Moose_File_System

List of Acronyms

Access Control List (ACL)

An access control list, with respect to a computer file system, is a list of
permissions attached to an object. 9, 11, 25, 39, 40, 42

Andrew File System (AFS)

The Andrew File System is a distributed networked file system which uses
a set of trusted servers to present a homogeneous, location-transparent file
name space to all the client workstations. 6, 41

Adaptive Replacement Cache (ARC)

The primary cache used by ZFS to cache file read operations. 26

Carnegie Mellon University (CMU)

Carnegie Mellon University is a global research university with more than
11,000 students, 84,000 alumni, and 4,000 faculty and staff. Recognised
for its world-class arts and technology programs, collaboration across dis-
ciplines and innovative leadership in education, Carnegie Mellon is consis-
tently a top-ranked university. 8, 11

Distributed Replicated Block Device (DRBD)

DRBD is a distributed storage system that can be used to get a RAID 1
like replication over the network. 27, 29, 30, 32, 34

European Union (EU)

The European Union is an economic and political union of 27 member
states, located primarily in Europe. 44

File Transport Protocol (FTP)

File Transfer Protocol is a standard network protocol used to copy a file
from one host to another over a TCP/IP-based network, such as the In-
ternet. 11

Google File System (GFS)

File system used by google for all storage. 8, 48

General Public License (GPL)

The GNU General Public License is the most widely used free software
license, originally written by Richard Stallman for the GNU project. 47

Graphic User Interface (GUI)

A Graphic User Interface is a type of user interface that allows people
to interact with programs using graphical icons, and visual indicators.
The actions are usually performed by direct manipulation of the graphical
elements. 46

37

High Performance Computing (HPC)

High-performance computing uses supercomputers and computer clusters
to solve advanced computation problems. 42

Institute of Electrical and Electronics Engineers (IEEE)

The Institute of Electrical and Electronics Engineers is an international
non-profit, professional organisation for the advancement of technology
related to electricity. 39

Internet Small Computer System Interface (iSCSI)

Internet Small Computer System Interface is an Internet Protocol (IP)-
based storage networking standard for linking data storage facilities. 48

Lustre Networking (LNET)

LNET provides the communication infrastructure for Lustre. It can work
with mulitple network types including Ethernet and InfiniBand. 13

Second level ARC (L2ARC)

The primary cache used by ZFS to cache file read operations. 26, 28

Logical Volume Manager (LVM)

Logical Volume Manager for the Linux kernel; it manages disk drives and
similar mass-storage devices, in particular large ones. The term volume
refers to a disk drive or partition. 13

Meta Data Server (MDS)

The MDS is the metadata server handling the requests. 12–14, 29

Meta Data Target (MDT)

The MDT is the storage nodes containing the meta data served by the
MDS. 12

Network File System (NFS)

File system used by google for all storage. 48

National Research and Education Network (NREN)

A National Research and Education Network is a specialised internet ser-
vice provider dedicated to supporting the needs of the research and edu-
cation communities within a country. 5

Operating System (OS)

An operating system is the software on a computer that manages the way
different programs use its hardware. 13, 44

Object Storage Server (OSS)

The Object Storage Servers handles the request for files or chunks that
are requested by clients. 12–14, 29

38

Object Storage Target (OST)

The Object Storage Target contains the files or chunks that are handled
by one or more OSS. 12, 29

Portable Operating System Interface (for Unix) (POSIX)

Portable Operating System Interface (for Unix) is the name of a family of
related standards specified by the Institute of Electrical and Electronics
Engineers (IEEE) to define the application programming interface, along
with shell and utilities interfaces for software compatible with variants
of the Unix operating system, although the standard can apply to any
operating system 7, 42

Parallel Virtual File System (PVFS)

The Parallel Virtual File System is an Open Source parallel file system.
This is a type of distributed file system that distributes file data across
multiple servers and provides for concurrent access by multiple tasks of a
parallel application. 46

Remote Direct Memory Access (RDMA)

RMDA is direct memory access form the memory between 2 hosts across
the network. This is done without involving the OS which makes it more
efficient to send files. 13

Remote Procedure Call (RPC)

A remote procedure call is an Inter-process communication that allows
a computer program to cause a subroutine or procedure to execute in
another address space (commonly on another computer on a shared net-
work) without the programmer explicitly coding the details for this remote
interaction. 14

Remote Procedure Call version 2 (RPC2)

A remote procedure call is an Inter-process communication that allows
a computer program to cause a subroutine or procedure to execute in
another address space (commonly on another computer on a shared net-
work) without the programmer explicitly coding the details for this remote
interaction. 11

System Control Machine (SCM)

The management server of the Coda environment. This server is used to
create volumes, manage users and ACLs 9, 11, 16, 25

SSH File Transport Protocol (SFTP)

FTP implemented over a reliable and secure SSH version 2 connection.
11, 41

Single Point of Failure (SPOF)

A SPOF is a part of a system which, if it fails, will stop the entire system
from working. 28, 39

39

Solid State Drive (SSD)

A solid-state drive is a data storage device that uses flash memory to store
persistent data. 26

Secure Shell (SSH)

Secure Shell is a network protocol that allows data to be exchanged using
a secure channel between two networked devices. 11, 32

Secure Socket Layer (SSL)

Secure Socket Layer is a cryptographic protocol that provide security for
communications over networks. 44

Traffic Control (TC)

Traffic Control is a tool for Linux able to introduce more latency and
limited bandwidth. This by making use of the leaky bucked model. 24

Wide Area Network (WAN)

A wide area network is a network that covers a broad area. 42, 44

Zettabyte File System (ZFS)

Zettabyte File System is a combined file system and logical volume man-
ager designed by Sun Microsystems. The features of ZFS include support
for high storage capacities, integration of the concepts of file system and
volume management, snapshots and copy-on-write clones, continuous in-
tegrity checking and automatic repair, RAID-Z and native NFSv4 ACLs.
11, 26, 28, 32, 34

ZFS Intent Log (ZIL)

The ZFS intent log saves transaction records of system calls that change
the file system in memory with enough information to be able to replay
them. 26, 28

40

Appendices

A Tool selection

A.1 Coda

Coda is a distributed file system which was born in 1987 as a fork of AFS. AFS
had one big disadvantage, when a file server was replicated, the replicates where
read-only. This was solved in Coda. From Coda a new fork called InterMezzo
was born. But these days InterMezzo does not exist any more.

Coda is a system which works with replicated file servers. A file server can
be replicated over one or multiple replicates. A client is used to connect to the
servers. The client owns a list (received from a so called master system) of the
primary file server, and the replicates. The client makes use of caching on its
local file system to speed things up. Advantages[12][13]:

• Product is developed for already a long time and is still active developed;

• Active community;

• Support for read/write replicates;

• Number of replicates can be configured upto 8;

• A replica can be added to a volume, even after the creation of the volume.

• Large number of file servers and clients can be used;

• Caching capabilities at the client;

• Clients are available for all well-known platforms: Windows, Mac OSX
and Linux;

• Beneath the system all possible file systems are possible;

• Good documentation available;

• If master server fails the whole system continues running, except for adding
or removing volumes, managing users and groups, or changing passwords.

Disadvantages[12][13]:

• All known limitations: http://coda.wikidev.net/Limitations;

• Files are processed multiple times, once at the client and at most two
times at the file servers (depending on whether distribution is used).

• Complex product, easy to set up, hard to maintain and tune;

• The system makes use of SFTP for the file transport, which gives a per-
formance hit on the CPU;

• No redundant master (management) server.

General information:

• Started in 1987 [12]

• Main page: http://www.coda.cs.cmu.edu/

• Wiki: http://coda.wikidev.net/Main_Page

41

http://coda.wikidev.net/Limitations
http://www.coda.cs.cmu.edu/
http://coda.wikidev.net/Main_Page

A.2 Lustre

Lustre was first thought of in 1999 by Peter Braam. He was also working on the
Coda fork InterMezzo. InterMezzo fixed in the past some performance issues.
The assumption is that these performance issues in Coda are fixed in these days,
so the advantage of InterMezzo disappeared. In 2002 he founded the company
”Cluster file system” and started working on Lustre and dropped InterMezzo.
In 2007 Sun Microsystems acquired the company and Lustre and later Oracle
became the owner. Lustre was created to create a distributed file system using
commodity hardware. Lustre is often used for High Performance Computing
(HPC), it is used on 15 of the top 30 supercomputer.

Advantages[14][15]:

• Portable Operating System Interface (for Unix) (POSIX) compliance (atomic
commit),

• ACL/ quotas,

• Adding data dynamic,

• Striping,

• TCP/IP supported,

• Failover of server role,

• Fully developed.

Disadvantages[14][15]:

• Not sure if it works on Wide Area Network (WAN);

• Essence is on performance not on distributed storage;

• Replication not handled in Lustre

General information:

• Oracle

• Started in 1999, first release in 2003 and bought by Sun at 2007. Active
development.

• http://wiki.lustre.org/index.php/Main_Page

42

http://wiki.lustre.org/index.php/Main_Page

A.3 GlusterFS

GlusterFS is a parallel and / or replicated file system, initiated and supported by
Gluster. At Gluster support can be bought. The development of GlusterFS has
started in 2007. GlusterFS is very user friendly. Within a few minutes a master
server is running. Storage nodes are deployed with the same ease. Although the
easy deployment, the functionality is limited. Actually only JBOD, RAID1 or
RAID10 configurations can be build. Flexible redundancy or redundancy over
more nodes is not available. Adding more storage later on the storage nodes is
unclear. When one of the cluster nodes fails, the storage is not available any
more.

Advantages[16]:

• Nice Gui, as well web based as on the console on the master
server;

• Can create normal (JBOD), stripe or mirrored volumes;

• Support for CIFS, NFS and native by making use of the GlusterFS client;

• Multiple file systems can be deployed on the virtual distributed file system
(like ext3, ext4, ZFS)

• Support for Ethernet and Infiniband;

• Very easy deployment of new cluster nodes;

• Very easy central update management using the central man-
agement console;

• Professional (paid) support available;

• All nodes can be used to reach the data

Disadvantages[16]:

• Management runs only on one server, no redundancy;

• New nodes can not be added on the fly;

• Not clear how to add multiple disks per node.

• Not developed for performance

• Security is not done in GlusterFS

General information:

• Developed by Gluster

• Started in 2007

• http://www.gluster.org/

43

http://www.gluster.org/

A.4 XtreemFS

XtreemFS is part of XtreemOS. In 2006 it got an funding from the European
Union (EU). The XtreemOS OS aims at integrating as a single computing plat-
form many different kinds of devices, from mobile ones to large clusters[17]. The
project is fully in development so the project is not very usable for production.

Advantages[18][19]:

• Designed for Wide Area Network (WAN) grid;

• Authentication;

• Secure Socket Layer (SSL) encryption;

• Striping, checksums;

• Policies for authentication and striping;

• Basic website for status;

• Caching for high latency links;

• Linux file right are remembered (user / group ID).

Disadvantages[18][19]:

• Is new and not fully developed;

• Only read only replication possible at the moment;

• Management runs on 1 server;

• Client needed for mounting;

General information:

• Part of EU project

• Started in 2006 - last release may,2010

• http://www.Xtreemfs.org

44

http://www.Xtreemfs.org

A.5 Ceph

Ceph is a distributed file system designed for reliability, scalability, and per-
formance. Just like the other systems discussed in this report. Ceph is well
featured, but still under heavy development. This makes it at this moment in-
appropriate for SURFnet.

Advantages[20][21]:

• Snapshot functionality (on directory level);

• Support for redundant meta data servers;

• Support for redundant management (monitors) servers;

• Multiple pools can be defined for replication. By example racks,
or physical separated locations.

Disadvantages[20][21]:

• Under heavy development, not yet usable for production pur-
pose;

• Storage nodes (called bricks) have to make use of Btrfs (ext3 is also pos-
sible, but not advised);

• Their wiki page is not completely filled yet.

General information:

• Ceph community

• Started at 2007

• http://ceph.newdream.net/wiki/Main_Page

45

http://ceph.newdream.net/wiki/Main_Page

A.6 PVFS

Parallel Virtual File System (PVFS) is a file system that is used for being
parallel. So distribution is supported but replication not. Also the lack of
authentication and the hard possibility for adding and removing server is not
feasible for the intended usage.

Advantages[22][23]:

• Can use more network interfaces simultaneously;

• Storage is assigned to a directory;

• Distributed.

Disadvantages[22][23]:

• Special library or kernel module needed for client;

• No Graphic User Interface (GUI)configuration;

• Authentication not seen;

• No replication in data and metadata;

• Changes in the system (adding server) require the system to be
fully down.

General information:

• Research community - Universities / laboratories / Commercial

• Started at least before 2003 - last release in February 2010

• http://www.pvfs.org/

46

http://www.pvfs.org/

A.7 MooseFS

MooseFS is a relative young project which was released in 2008 by a research
company. It has some good advantages and the new features are promising but
it is also not very developed yet.

Advantages[24][25]:

• Replication factor (N-1 still available);

• Security;

• On the fly changes possible (mark for removal);

• Snapshot possible.

Disadvantages[24][25]:

• Non redundant master server;

• Not fully developed yet;

• Chunk size is hard coded;

• File size limit of 2TiB (possibly extended in new release to 16 EiB);

• Network should be build on 1GB Ethernet.

General information:

• Developed by http://gemius.com/

• General Public License (GPL)in 2008 - Last release in April 2010

• Main page: http://www.moosefs.org

47

http://gemius.com/
http://www.moosefs.org

A.8 Hadoop

Hadoop is a cloud storage framework based on GFS. GFS is a nice example
of distributed storage, although not feasible for this project. Google owns one
of the largest distributed file systems. Despite GFS is not available for public.
That is why open source communities created their own. Hadoop has nice
features that would meet the requirements but it does only can be used by the
API. The framework can be used by application for storage in the cloud. An
other example is CloudStore.

Because of the lack of an Internet Small Computer System Interface (iSCSI),
Network File System (NFS), or other interface, those systems are not suitable
for file storage and contain only interfaces at application level. They are not
build with file storage in mind.

48

B Raw results - First stage - Disk IO

Put character Put block Get character Get block Seeks
(KB/s) (KB/s) (KB/s) (KB/s) (seeks/sec)

esx1 sda 18621 31430 22533 34271 254
sdb 19208 44066 23928 46865 623
sdc 18913 39397 24066 41968 591

esx2 sda 19081 42480 23284 46314 591
sdb 18577 52300 23182 59225 615
sdc 18934 51867 23730 53291 604

esx3 sda 17975 37605 21870 51672 633
sdb 18899 49595 23300 52744 632
sdc 19077 47353 23395 53362 435

esx4 sda 33132 40622 29424 47139 535

Table 4: Raw disk null test results from Bonnie++.

49

Figure 16: Detailed overview of the average performance for each data store.

50

Read Write
(KB/s) (KB/s)

8 256 8192 8 256 8192

esx1 sda 33183 33024 32180 33727 33661 33437
33893 33906 33497 34117 32540 33231
33159 32953 31384 33776 34118 33335
32497 32213 31659 33289 34324 33746

sdb 46066 46603 45775 47866 48721 48097
47133 47007 46088 47319 49099 47350
44312 46480 43929 47614 48492 48729
46752 46323 47308 48664 48573 48212

sdc 43677 43986 44299 43876 44442 44752
43564 43943 44662 44091 44756 44057
43801 44576 44089 42490 44511 45029
43666 43440 44147 45048 44058 45171

esx2 sda 43040 43920 43378 46234 45881 46117
48120 49194 48732 51427 50749 50622
39185 41307 42200 43475 43879 44355
41815 41260 39201 43799 43015 43375

sdb 57140 57008 56301 56173 57796 59165
57582 57583 57741 58911 58158 58200
56633 56565 54051 54544 55151 59210
57206 56875 57111 55064 60079 60086

sdc 54776 55174 55858 54587 54053 53024
53898 55333 55838 54713 53671 53629
55157 55278 55749 54576 53825 53774
55273 54912 55986 54473 54663 51669

esx3 sda 54166 53038 54290 47627 45731 48459
53994 50198 54358 48944 48476 47887
54484 54371 54026 45405 40595 48460
54019 54544 54485 48532 48123 49029

sdb 56761 54694 54712 52042 50920 52499
56811 51062 56569 53015 49065 50353
56347 56280 50883 53047 51013 53089
57125 56739 56685 50064 52683 54054

sdc 51983 44322 51940 52448 43371 49970
49105 26297 53614 51480 26336 45828
53392 53335 53588 53048 52700 52117
53453 53334 48618 52817 51077 51965

esx4 sda 50140 48161 50454 46441 44891 43338
49863 50469 51137 49148 45252 38021
49877 45981 49851 47532 42355 44445
50681 48034 50373 42644 47066 47547

Table 5: Raw test disk null test results from Iozone - Part1. Bold results are average
values for that data store.

51

Random Radom
read write
(KB/s) (KB/s)
8 256 8192 8 256 8192

esx1 sda 1628 23055 44461 2499 20385 33909
1576 22102 44068 2409 20218 33106
1631 23100 42783 2526 20200 35209
1677 23963 46533 2562 20736 33412

sdb 2736 33289 61995 5543 30661 40856
2662 32034 57772 5979 30829 40415
2775 33767 62857 5257 31208 42252
2771 34067 65355 5394 29945 39901

sdc 2714 31971 58345 5082 27340 37654
2634 30851 56804 5037 26973 38461
2746 32459 58255 5050 27621 36828
2763 32602 59975 5158 27427 37673

esx2 sda 2611 32546 59723 5287 31068 40541
2477 32711 63320 5573 32608 45190
2671 31818 57369 4995 30174 37868
2685 33108 58480 5293 30423 38566

sdb 2717 36326 72050 5322 33375 48726
2521 35369 61714 5036 32825 49202
2817 36444 77835 5257 34089 51090
2812 37165 76601 5674 33210 45886

sdc 2746 36113 74726 5380 33225 46164
2609 33724 71114 5046 32851 45705
2812 37204 76166 5522 33005 46150
2816 37410 76899 5572 33820 46636

esx3 sda 2713 37079 71532 5317 35694 43833
2672 37468 71851 5404 36050 46083
2722 37690 65746 5162 36004 43019
2746 36080 76999 5386 35029 42396

sdb 2726 37716 73621 5078 35166 45248
2683 35481 65141 4912 33973 46246
2751 38690 75625 5107 36677 44221
2745 38977 80097 5216 34848 45278

sdc 2796 34306 72460 5705 39302 46068
2664 30457 69441 5479 37727 45437
2858 37323 73534 5786 40962 46898
2865 35139 74406 5851 39216 45870

esx4 sda 3271 24277 71737 5718 34830 41734
3186 24202 74690 5978 34456 40885
3387 24155 70289 5860 34618 43556
3240 24473 70232 5315 35416 40762

Table 6: Raw test disk null test results from Iozone - Part2. Bold results are average
values for that data store.

52

C Raw results - First stage - Network IO

Connection test1 test2 test3 Averages

1 to 2 76.7 58.5 60.5 65.2
1 to 3 73.9 62.4 64.5 66.9
1 to 4 87.0 79.4 81.2 82.5
2 to 1 70.6 61.4 65.5 65.8
2 to 3 73.8 64.7 65.1 67.9
2 to 4 89.2 85.3 85.1 86.5
3 to 1 75.2 61.8 64.0 67.0
3 to 2 67.1 68.6 66.7 67.5
3 to 4 88.5 80.1 77.7 82.1
4 to 1 67.8 62.3 65.3 65.1
4 to 2 77.8 70.6 68.3 72.2
4 to 3 75.0 64.0 65.1 68.0

Table 7: Raw network null test results using Iperf on a clear network (in MBytes/sec).

Connection min avg max mdev

1 to 2 0.294 0.424 0.961 0.074
1 to 3 0.249 0.386 2,369 0.247
1 to 4 0.291 0.395 1,074 0.108
2 to 1 0.312 0.642 13,464 1,499
2 to 3 0.306 0.438 3,673 0.389
2 to 4 0.298 0.512 1,888 0.168
3 to 1 0.252 0.39 1,393 0.116
3 to 2 0.298 0.727 28,743 2,826
3 to 4 0.296 0.479 2,021 0.181
4 to 1 0.27 0.462 1,604 0.15
4 to 2 0.332 0.501 0.954 0.097
4 to 3 0.218 0.483 4,460 0.463

Table 8: Raw network null test results using ping with 100 runs on a clear network
(in msec).

53

D Raw results - Second stage - File system bench-
marks

D.1 Bonnie++

Put character Put block Get character Get block Seeks
Test (KB/s) (KB/s) (KB/s) (KB/s) (seeks/sec)

Lustre run1 1 27000 8257 27353 42552 155.4
2 25542 8671 27641 64929 153.3
3 17902 8762 28606 71931 153.4

run2 1 27080 8755 27795 48378 154.4
2 25310 8678 27096 68098 151.5
3 24792 8540 27631 48732 151.4

Coda run1 1 3454 41827 3604 3804 27.6
2 3621 43300 31137 3738 28.4

run2 1 3759 40548 3761 3921 28.4
2 3777 3878 3758 3922 28.3

Table 9: Bonnie++ benchmark on Lustre and coda, raw results.

Put character Put block Get character Get block
(KB/s) (KB/s) (KB/s) (KB/s)

Lustre min 17902 8257 27096 42552
avg 24604 8610 27687 57437
max 27080 8762 28606 71931

Coda min 3454 3878 3604 3738
avg 3653 32388 10565 3846
max 3777 43300 31137 3922

Null test min 17975 31430 21870 34271
avg 20242 43671 23871 48685
max 33132 52300 29424 59225

Table 10: Bonnie++ benchmark on Lustre and coda, summarised results.

min avg max

Lustre 151 153 155
Coda 27.6 28.175 28.4
Null test 254 551 633

Table 11: Bonnie++ disk latency test. The amount of seeks in one second for the null
test, Coda and Lustre (seeks/sec).

54

D.2 Iozone

Figure 17: Iozone benchmark of Coda, Lustre and for comparison, the null test in
detail.

55

Read Write Random Radom
(KB/s) (KB/s) read write

(KB/s) (KB/s)
256 8192 256 8192 256 8192 256 8192

Lustre Run1 76808 84672 35540 33211 18139 41508 26430 37195
Run2 86460 82986 37383 36595 18325 43870 27476 37311
Run3 87089 84841 34998 32851 18516 45130 26906 36647
Min 76808 82986 34998 32851 18139 41508 26430 36647
Avg 83452 84166 35974 34219 18327 43503 26937 37051
Max 87089 84841 37383 36595 18516 45130 27476 37311

Coda Run1 54239 51418 41219 40712 17059 50188 30083 34308
Run2 56927 54289 39377 42557 17993 55418 31242 33331
Run3 56966 56386 42966 46713 18261 51609 31473 36946
Min 54239 51418 39377 40712 17059 50188 30083 33331
Avg 56044 54031 41187 43327 17771 52405 30933 34862
Max 56966 56386 42966 46713 18261 55418 31473 36946

Table 12: Iozone benchmark on Lustre and Coda, raw results.

56

E Raw results - Third stage - File system bench-
marks

E.1 Coda

Put character Put block Get character Get block Seeks
(KB/s) (KB/s) (KB/s) (KB/s) (seeks/sec)

Run1 1285 38058 1280 1299 9.9
Run2 1266 39696 34219 54822 9.5
Run3 1274 1286 1270 1292 10
Run1 1284 1288 1273 1295 9.8
Run2 1281 1300 1277 1304 9.8
Run3 1274 39946 1294 1308 9.9

Table 13: Bonnie++ benchmark on Coda with 20ms (RTT) latency, raw results.

Read Write Random Random
(KB/s) (KB/s) read write

(KB/s) (KB/s)
256 8192 256 8192 256 8192 256 8192

Run1 51717 53354 40412 43246 16224 53881 28801 33932
Run2 53029 54140 40640 44001 16360 53042 29174 35334
Run3 52293 52006 41913 41905 16317 55382 29340 33392

Table 14: Iozone benchmark on Coda with 20ms (RTT) latency, raw results.

E.2 Lustre

Put character Put block Get character Get block Seeks
(KB/s) (KB/s) (KB/s) (KB/s) (seeks/sec)

Run1 16655 9119 15213 4437 28.7
Run2 14304 9086 17513 17418 29.2
Run3 14069 9039 16701 8281 29.1

Table 15: Bonnie++ benchmark on Lustre with 20ms (RTT) latency, raw results.

57

Read Write Random Random
(KB/s) (KB/s) read write

(KB/s) (KB/s)
256 8192 256 8192 256 8192 256 8192

Run1 15594 18811 14691 16501 2721 9927 13644 18125
Run2 22363 22666 3731 15259 2709 10110 13396 15953
Run3 20121 20269 16053 16692 2713 10016 13335 17752

Table 16: Iozone benchmark on Lustre with 20ms (RTT) latency, raw results.

58

	Introduction
	Research questions
	Approach
	Previous research

	Distributed file systems
	Requirements
	Inventory
	Coda
	Architecture

	Lustre
	Architecture

	Benchmarks
	Test environment
	VMware ESXi environment
	Coda
	Lustre
	Used benchmark tools

	First stage
	Results
	Conclusion

	Second stage
	Approach
	Results
	Conclusion

	Third stage
	Approach
	Results
	Conclusion

	Recommended SURFnet implementation design
	Additional tools
	ZFS
	Heartbeat
	DRBD

	Coda
	Lustre
	Combining the architectures

	Conclusion
	Discussion
	References
	List of Acronyms
	Appendices
	Tool selection
	Coda
	Lustre
	GlusterFS
	XtreemFS
	Ceph
	PVFS
	MooseFS
	Hadoop

	Raw results - First stage - Disk IO
	Raw results - First stage - Network IO
	Raw results - Second stage - File system benchmarks
	Bonnie++
	Iozone

	Raw results - Third stage - File system benchmarks
	Coda
	Lustre

