
RP2 project: Communication Channel
Performance Measurement

University of Amsterdam
Master of Science in System and Network Engineering

Class of 2009-2010

Alexandru Giurgiu (alex.giurgiu@os3.nl)
Jeroen Vanderauwera (jeroen.vanderauwera@os3.nl)

August 22, 2010

1

Performance Measurement

Abstract

Bottlenecks in high performance networking are difficult to pinpoint.
In this report we try to identify which software and hardware parameters
are the cause for these bottlenecks. The focus on this study is on the
end points and not the link itself. It is shown that CPU load, memory
swapping, bus speeds, MTUs and buffer sizes are parameters that cause
the most of the performance issues. Further, we developed a performance
measurement tool that gathers data from both end points, combines this
information and gives a clear overview of the measured values for the
different parameters. This way, warnings can be given to the end user.

Alex Giurgiu
Jeroen Vanderauwera

2

CONTENTS Performance Measurement

Contents

1 Introduction 4
1.1 Research question . 4

2 The layered view 5

3 Parameters that influence network performance 8
3.1 Hardware parameters . 9

3.1.1 Network interface . 9
3.1.2 PCI Express bus . 9
3.1.3 CPU . 10
3.1.4 Memory . 13

3.2 Software parameters . 14
3.2.1 Path MTU . 14
3.2.2 TCP window and large window extensions 17
3.2.3 TCP Buffer size(window size) 18
3.2.4 UDP buffer size . 19
3.2.5 Flow control . 19
3.2.6 TCP Selective Acknowledgements Option 20

4 Creating a diagnostic tool 21
4.1 Integrated tools . 21
4.2 Program structure . 21
4.3 Client/server communication 22
4.4 Output of the tool . 23
4.5 Challenges . 23

5 Recommendations for optimal network performance 25

6 Conclusions 26

7 Future research 28

8 Acknowledgements 29

A Tool source code A-1
A.1 main.rb . A-1
A.2 compare.rb . A-8
A.3 netcom.rb . A-13
A.4 logging.rb . A-15

Alex Giurgiu
Jeroen Vanderauwera

3

Performance Measurement

1 Introduction

Network performance tuning seems currently more an art than a science.
The network performance between two end hosts can be influenced and
limited by a sheer number of parameters. This includes the capacities and
bandwidth usage of individual links in the network, the memory buffer of
routers and switches along the way, as well as the memory size, CPU
power, bus speed, and hardware configuration of end hosts. Furthermore,
runtime parameters such as number of parallel streams, protocols on the
network and TCP window size greatly affect the achieved performance.
Multiple tools exist today to measure the overall obtainable performance.
However, these tools often report different results and hardly any tool
exists to determine the current and optimal values of individual system
parameters, which makes it hard to determine the cause of reduced net-
work performance.

1.1 Research question

Our research will lay more emphasis on the end points of the connection,
rather than the network which is located between those end points. We
want to investigate if it is possible to classify and analyze how some pa-
rameters influence network performance. Secondly we want to develop a
tool that somehow combines the results of measurements done with other
existing tools, and reports them in a clear and centralized way. This tool
should be able to automatically gather and analyze information and as a
result help pinpointing the bottleneck, which will be located somewhere
in the layered model that can be seen in section 2. Therefore our research
questions are:

• Is it possible to identify and classify the parameters which affect
network performance?

• Is it possible to develop a tool that monitors the parameters and can
pinpoint the cause of the reduced network performance?

Alex Giurgiu
Jeroen Vanderauwera

4

Performance Measurement

2 The layered view

Figure 1 represents the TCP/IP model while figure 2 represents the hard-
ware components that have direct influence on the network performance.
On each layer are parameters that can introduce bottlenecks.

Figure 1: Layered view of the TCP/IP protocol stack

On the hardware aspect, bottlenecks can be introduced by CPU usage,
bus speed, PCIe slot used, memory consumption and Network Interface
Card (NIC) or its firmware. More about this, can be read in the sections
below.

Figure 2: Hardware architecture of the Intel 5520 [1] and 5500 [2] chipset

The Ethernet layer At the Ethernet layer communication is done using
frames, which can have a payload size ranging from 46 bytes to 9000

Alex Giurgiu
Jeroen Vanderauwera

5

Performance Measurement

bytes when using Ethernet Jumbo frames. When using frames with
a bigger MTU the overall efficiency of the protocol becomes higher,
if there are no errors. In the real world, when there are a lot of
transmission errors on a link and TCP is used, the corrupted frames
will need to be retransmitted, which means that protocol overhead
is influenced by the frame size and RTT. If UDP is used, this will
result in packet loss. In our case, the machines are connected back
to back with a short cable making it a reliable link. This means that
a higher MTU should lead to better results.

IP layer Going up one layer, at the IP level, packets are used to send and
receive data. The maximum size of a packet can be 64 kbytes, from
which the header accounts for 20 bytes (more than 20 bytes in case
the option field is used, extended maximum by another 40 bytes).
Depending on the MTU at the Ethernet layer, one IP packet can
be fragmented and sent over the wire in multiple Ethernet frames.
Similarly to Ethernet, using a bigger IP packet size leads to a lower
protocol overhead as there will be less headers to transmit for the
same amount of data. If the header checksum mismatches the whole
packet gets discarded resulting in packet retransmission for TCP and
packet loss for UDP.

TCP TCP communicates using segments that have a 20 byte header and
a total maximum size equal to the payload of the IP datagram. TCP
achieves reliability by acknowledging all packets and retransmitting
lost or damaged packets. The TCP window size determines how
many bytes the receiver is willing to receive at this moment. If it is
bigger, acknowledgments will have to be sent less often or vice versa
if it is smaller. Protocol overhead is influenced by segment size and
RTT.

UDP UDP is a connectionless protocol that does not offer any reliability.
Applications that use UDP have to take care of reliability on their
own if it is needed. In cases like VoIP or video streaming it is not re-
quired because old data becomes irrelevant after a short time. UDP
has less overhead because it has a smaller header and does not use
any acknowledgments, buffering, retransmission, etc. Theoretically
it has a higher performance on very reliable links.

Figure 3: Layered view of packet sizes and constraints

As can be seen in figure 3, depending on the size of the Ethernet frames
and the IP packets, the latter can be fragmented and send on the wire

Alex Giurgiu
Jeroen Vanderauwera

6

Performance Measurement

using multiple frames. It should be noted that in case the IP protocol
uses the option field in the header, the total payload amount will decrease
by length of the option field. On every layer, tools are used to measure
and determine these bottlenecks by testing different parameters. These
tools are listed in the section bellow.

Alex Giurgiu
Jeroen Vanderauwera

7

Performance Measurement

3 Parameters that influence network per-
formance

In the following sections we explain the measurements we did to find out
the influence of hardware and software parameters on network perfor-
mance. Herefore a test environment is needed. The configuration can be
seen in figure 4.

Figure 4: Test environment

Both machines are connected directly to each other over a 10 Gb/s
copper link. We used the following tools to measure and determine the
bottlenecks in our test environment:

Iperf[3] is a network testing tool used for measuring the TCP and UDP
throughput of a network path. Iperf has a wide range of options
and allows to test a large part of the software parameters that influ-
ence network performance. We preferred iperf because it implements
shaping, which makes it usable for UDP. Additionally the implemen-
tation of the server is relatively simple and the output of the client
and server are independent.

Ethtool[5] is a tool for displaying and changing ethernet card settings.
The tool is used to modify the flow control and full duplex settings,
and to monitor network interface statistics (buffers, dropped packets,
. . .)

Netstat[6] is used to display UDP and TCP protocol statistics as present
in the kernel.

/proc/net/dev lists network statistics directly as recorded in the NIC
driver. The number of Ethernet packets and total amount of bytes
transfered can be read from here.

lookbusy[7] is an application which can generate predictable synthetic
load on a Linux system. During the tests it is used to generate
different amounts of CPU loads to see how it influences the network
performance.

stress[8] is an application that is used to fill up the system memory.

Alex Giurgiu
Jeroen Vanderauwera

8

3.1 Hardware parameters Performance Measurement

sysctl[9] is a tool for examining and dynamically changing parameters
in the Linux kernel. It is particularly used for changing TCP related
settings.

3.1 Hardware parameters

When transmitting a large amount of data, several hardware parameters
in the system can cause performance issues. In this section we will describe
which possible bottlenecks can be identified as a source of the performance
problems. We performed some measurements as well, mostly on the 2
different Internet Protocols: UDP and TCP.

3.1.1 Network interface

The network interface is the most straightforward bottleneck on a com-
puter system. As a network is only as fast as the slowest link, one network
interface can decrease the performance of the whole network connection.
For example, network traffic which is transmitted at a data rate of 10
Gb/s, cannot be received at the same rate if the receiver has a 1 Gb/s
network interface. For our tests we used a 10 Gb/s interface with a 10
Gb/s link. This is the maximum physical data rate possible in our exper-
iments.

3.1.2 PCI Express bus

PCI Express slots transmit and receive data from the network interfaces
to the CPU or conversely over so called lanes. Depending on the PCI
Express slot version, the bus speed varies from 2 Gb/s to 8 Gb/s per
lane. A PCI Express bus can have 1 up to 16 lanes. An overview can be
found in table 1. If the system has a configuration with a bus speed of 8

4 lanes 8 lanes 16 lanes
PCIe 1.0 8 Gb/s 16 Gb/s 32 Gb/s
PCIe 2.0 16 Gb/s 32 Gb/s 64 Gb/s
PCIe 3.0 31.5 Gb/s 63 Gb/s 126 Gb/s

Table 1: PCI Express bus speeds

Gb/s and traffic is received at 10 Gb/s on the network interface, the PCIe
bus speed can be identified as a bottleneck. The systems we used each
have two x16 generation 2.0 PCI express slots in which the 10 Gb NICs
are inserted. The bandwidth provided by the x16 PCI express slots is 64
Gb/s, so in this case it will not be a bottleneck. Of course, PCI express
has a protocol overhead because of the electrical encoding used but this
has been taken into account in the above table.

However we did tested the network performance if one of the NICs was
inserted in a PCIe 2.0 x1 slot. The network performance decreased dra-
matically to 1.5 and 1.7 Gb/s.

Alex Giurgiu
Jeroen Vanderauwera

9

3.1 Hardware parameters Performance Measurement

3.1.3 CPU

The fact that a CPU has multiple cores and threads can influence network
speeds but these are not the only factors that effect performance, one
other important factor being CPU frequency. As can be seen from our
measurements in figure 5, UDP is just a bit faster than TCP. It pushes the
data to the receiver without checking or acknowledging if the packets have
arrived. On the other hand, TCP waits for ACKs before sending the next
amount of data. This is also noticeable in figures 6 and 7, where UDP gets
overall better performance than TCP. From figure 5 one can see that the
difference between TCP and UDP performance is almost unnoticeable,
leading to the conclusion that when CPU power is available the effect on
TCP and UDP performance is minimal.

 0 5 10 15 20 25 30 35 40 45 50 55

9750

9800

9850

9900

9950

Time (sec)

N
et

w
or

k
Pe

rf
or

m
an

ce
 (M

bi
ts

/s
)

UDP 1 core/thread htop
TCP 1 core/thread htop

UDP 1 core/2 threads
TCP 1 core/2 threads
TCP 1 core/thread

UDP 1 core/thread

Figure 5: The effect of different amount of threads on network performance

In figures 6 and 7, the impact of CPU load on network performance is
shown. We made the tests by inflicting synthetic load on each of the CPU
cores and threads, using the lookbusy tool. Consistent with 20% CPU
load, UDP network performance is not influenced at all, while TCP takes
a considerable performance hit. It is clear that TCP is more dependent
on the CPU than UDP is. When running htop for monitoring CPU load
on the cores, one can notice that even a little amount of CPU load can
influence the network performance as the CPU needs to switch between
processing network traffic and htop. More about CPU load based tests,
can be read below.

Alex Giurgiu
Jeroen Vanderauwera

10

3.1 Hardware parameters Performance Measurement

 10 20 30 40 50 60 70 80 90 100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10.000

Time (sec)

N
et

w
or

k
Pe

rf
or

m
an

ce
 (M

bi
ts

/s
)

100% CPU load

10% CPU load
20% CPU load

50% CPU load

70% CPU load

90% CPU load

Figure 6: The effect of CPU load on UDP network performance

 10 20 30 40 50 60 70 80 90 100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10.000

Time (sec)

N
et

w
or

k
Pe

rf
or

m
an

ce
 (M

bi
ts

/s
)

100% CPU load

10% CPU load

20% CPU load

50% CPU load

70% CPU load

90% CPU load

Figure 7: The effect of CPU load on TCP network performance

Alex Giurgiu
Jeroen Vanderauwera

11

3.1 Hardware parameters Performance Measurement

As can be seen in figure 6, the UDP performance is severely influenced
by CPU load. At 10% and 20% CPU load, UDP performance is not af-
fected, having the same maximum throughput. At 50% load, performance
degrades considerably, from an average of 9.9 Gb/s to 7.3 Gb/s, with a
high level of variation. Throughput drops to 5.4 Gb/s when the CPU is
70% loaded and the variation is even more pronounced. At 90% load UDP
performance drops by a factor of about 5, while at 100% load the perfor-
mance drops to 700 Mb/s. One can notice that performance is smoother
at low and high CPU loads, while at intermediate loads the fluctuations
are much higher.

TCP suffers even more from increased CPU loads. Even at 20% load
the average performance drops to 8.7 Gb/s while at 50% the average is 6
Gb/s. Similarly to UDP, throughput is smoother at low and high CPU
loads and jagged at intermediate loads.

The next performance test was performed on the receiver. As can be
seen in figure 8 it appears that receiving data does not effect the CPU1

that hard, as higher data rates are achieved with the same CPU load.

 10% 20% 50% 70% 90% 100%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10.000

CPU load

N
et

w
or

k
Pe

rf
or

m
an

ce
 (M

bi
ts

/s
)

UDP TCP UDP TCP UDP

TCP

UDP

TCP

UDP

TCP

UDP

TCP

Actual performance

Theoretical performance
without packet loss

Figure 8: The effect of CPU load on network performance at the receiver

1Note that in this case the CPU of the receiver has less cores and operates at a lower
frequency than the transmitter.

Alex Giurgiu
Jeroen Vanderauwera

12

3.1 Hardware parameters Performance Measurement

3.1.4 Memory

Theoretically all data which is fed to the CPU, resides in memory first.
This is why the memory can be a possible bottleneck. We tested if full
memory had any effect on the network performance of both TCP and
UDP. This seems not the case. Though if the memory is filled up, swap-
ping occurs. In the graph 9 below one can determine that when the
memory is filled up and starts swapping, the UDP network performance
goes down, while TCP network performance fluctuates very strong. Be-
cause of the I/O interrupts, the CPU has to write content from the RAM
to disk. If no more memory is needed and the RAM and the swap space is
full, the memory stops swapping and network performance returns to its
normal values. The measurements in the graph have been taken in two
separate test rounds.

As can be seen the network performance at the receiving host is not that
influenced as at the transmitting host. This is because iperf needs to gen-
erate the data it wants to send in memory. At the receiving host, the iperf
server only counts the bytes and discards the data immediately. Another

 10 20 30 40 50 60

0
1000

2000

3000

4000

5000

6000

7000

8000

9000

10.000

Time (sec)

N
et

w
or

k
Pe

rf
or

m
an

ce
 (M

bi
ts

/s
)

UDP, memory swapping (tx)
TCP, memory swapping (tx)

TCP, memory swapping (rx)
UDP, memory swapping (rx)

2.5% packet loss

Transmitting

Receiving

Figure 9: The effect of swapping on network performance

approach includes filling up the memory without going over the maximum
capacity so swapping would not occur. This did not influence the network
performance in any way. As of this, we can conclude that not the filled
up memory is a bottleneck but the swapping, which introduces a lot of
I/O interrupts, is. Though, a sufficient amount of RAM is still needed in
order to provide the buffers with enough memory.

Alex Giurgiu
Jeroen Vanderauwera

13

3.2 Software parameters Performance Measurement

3.2 Software parameters

In this section we will list which parameters can be configured in order to
obtain the best network performance. We will explain as well when and
why these parameters could be a bottleneck.

3.2.1 Path MTU

The Maximum Transmission Unit can be modified in the following layers
of the OSI model:

Data link layer In this layer it is possible to change the ethernet MTU
to 1500 or even 9000 bytes if jumbo packets are used.

Network layer In this layer one can maximally use 64kbytes as MTU.

During our tests we used 3 different values for the Ethernet MTU size and
7 different values for the IP MTU size.

 1.5k 3k 6k 8k 9k 30k 63k

10.000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

IP MTU

N
et

w
or

k
Pe

rf
or

m
an

ce
 (M

bi
ts

/s
)

9k 9k

1.5k

1.5k

1.5k

1.5k

1.5k

1.5k

1.5k

9k

9k

9k

9k

9k

6k

6k

6k

6k

6k

6k 6k

rx performance
tx performance (packet loss)

Figure 10: Ethernet and IP MTU influence on UDP performance

Alex Giurgiu
Jeroen Vanderauwera

14

3.2 Software parameters Performance Measurement

There are two observations to be made about UDP performance when
it comes to MTU. As can be seen in figure 10, Ethernet MTU affects
packet loss, while IP MTU affects throughput. We obtained maximum
performance by using a 9000 bytes Ethernet MTU and a 63 kbytes2 IP
MTU. Comparing the results from UDP and TCP found in figures 10 and
12 we can see some strange discrepancies. We would expect that TCP
performance would be on par with the actual UDP performance (green
bars), but instead the values are similar to the ones that don’t take into
account the UDP loss (purple bars).

We reran the test with a Myri-10G NIC[10], manufactured by Myricom,
which uses optical fiber technology. As can be seen in figure 11, in general
the packet loss is lower. Note that the same trend can be seen in this
figure as the figure above; high packet loss at a Ethernet MTU size of
1500 bytes and an increase of packet loss if the IP MTU size is 63 kbytes.

 1.5k 3k 6k 8k 9k 30k 63k

10.000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

IP MTU

N
et

w
or

k
Pe

rf
or

m
an

ce
 (M

bi
ts

/s
)

9k 9k

1.5k

1.5k

1.5k

1.5k

1.5k

1.5k

1.5k

9k

9k

9k

9k

9k

6k

6k

6k

6k

6k

6k 6k

rx performance
tx performance (packet loss)

Figure 11: Ethernet and IP MTU influence, using fiber, on UDP performance

263 kbytes is used because 64 kbytes gave malformed packet errors. This is because the
MTU size, set in iperf, is the size of the payload. Hence the total size of the IP packet would
be the 64 kbytes + 20 bytes, which would be too big.

Alex Giurgiu
Jeroen Vanderauwera

15

3.2 Software parameters Performance Measurement

Table 2 represents the packet loss of the chart above in numbers. What
was less noticeable in the chart, but more clear in the table is when an
IP MTU equal or more than 30 kbytes is used, the packet loss is higher
when using the Myrinet 10-G NIC.

IP MTU Ethernet MTU Myrinet 10-G Intel 10GbE
1.5 kbytes

1.5 kbytes 58% 67%
6 kbytes 20% 19%
9 kbytes 19% 18%

3 kbytes
1.5 kbytes 47% 77%
6 kbytes 0.15% 0.03%
9 kbytes 0.2% 0.01%

6 kbytes
1.5 kbytes 67% 81%
6 kbytes 6.6% 4.8%
9 kbytes 0% 0.16%

IP MTU 8 kbytes
1.5 kbytes 41% 76%
6 kbytes 0.09% 0.23%
9 kbytes 0.1% 0.17%

IP MTU 9 kbytes
1.5 kbytes 35% 77%
6 kbytes 0.66% 0.01%
9 kbytes 0.16% 0.37%

IP MTU 30 kbytes
1.5 kbytes 12% 8.9%
6 kbytes 0% 0%
9 kbytes 0% 0%

IP MTU 63 kbytes
1.5 kbytes 25% 19%
6 kbytes 0% 0%
9 kbytes 0% 0%

Table 2: Myrinet 10-G vs Intel 10GbE packet loss

On TCP the Ethernet MTU does not have a very big impact on per-
formance. On the other hand IP MTU influences performance quite a
lot. The default IP MTU that most applications use is 8 kbytes, and that
yields an average performance of 5 Gb/s. When the IP MTU is increased
to 63 kbytes the performance goes up to 8 Gb/s.

Although headers consume proportionally less bandwidth when using big-
ger IP datagrams, the performance advantage does not correlate with the
numbers we have from our tests on the 30k and 63k IP MTU sizes. There
is no difference between the speed at this sizes, leading us to believe that

Alex Giurgiu
Jeroen Vanderauwera

16

3.2 Software parameters Performance Measurement

 1.5k 3k 6k 8k 9k 30k 63k

10.000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

IP MTU

N
et

w
or

k
Pe

rf
or

m
an

ce
 (M

bi
ts

/s
)

6k 6k

1.5k

1.5k

1.5k

1.5k

1.5k

1.5k 1.5k

6k

6k

6k

6k

6k

9k

9k

9k

9k

9k

9k 9k

tx/rx performance

Figure 12: Ethernet and IP MTU influence on TCP performance

as IP MTU size increases, header count matters less and less.

The rerun of the TCP test on the Myri-10G NIC, did not give any anoma-
lies and had approximately the same outcome.

3.2.2 TCP window and large window extensions

The RFC “TCP Extensions for High Performance”[12] presents a set of
TCP extensions to improve performance over large bandwidth delay prod-
uct paths and to provide reliable operation over very high-speed paths.
One of the most important extensions is the TCP window scaling.

In most of the operating systems the TCP window is too small by de-
fault. This gives performance issues because the transmitter needs to
wait for the acknowledgments before it can send any TCP packets again.
The transfer speed can be calculated by the following formula:

Troughput ≤ RWIN

RTT
(1)

RWIN = Receiving Window, RTT = Round Trip Time (= latency * 2)
The overhead can be calculated as follows:

Overhead =
RWIN

2tcp adv win scale
(2)

Alex Giurgiu
Jeroen Vanderauwera

17

3.2 Software parameters Performance Measurement

tcp adv win scale is 2 by default. For the default parameters in Linux for
the receiving window (tcp rmem) this gives the following result:

87380 − 87380
22

= 65536

If a transatlantic link would be used [13] with a round trip time of 150ms
the following calculation would be made:

65536
0.150

= 436906bytes/s ≈ 400kbytes/s As can be seen, this speed is very
slow for these days. This is why the default Linux TCP window parame-
ters need to be changed. There is a clear difference in network speed if a
different TCP window size is set.

Window size Network performance
32k 1.14 Gb/s
128k 3.84 Gb/s
512k 9.47 Gb/s
1M 9.91 Gb/s
8M 9.92 Gb/s
128M 9.92 Gb/s
195M (Kernel limit) 9.93 Gb/s

Table 3: TCP windows size(back-to-back on copper wire, RTT ¿ 0)

3.2.3 TCP Buffer size(window size)

As one can see in the table table:tcpwsize the TCP buffer size has a big
influence on network performance. The main question here is why is per-
formance so low when using the 32k TCP window size? We calculated
the window size required to obtain full (10 gbit) performance on our test
setup, with the two servers connected back to back using copper wire. The
calculation were made using an average RTT of 5 microseconds(0.000005
seconds) and the result was that a 6.4k theoretical buffer size was enough
to obtain full performance. So our 32k buffer size should be more than
enough for the purpose.

10 gbits = 10485760 kbits
32 kbytes = 256 kbits
10485760

256
= 40960 (required interrupts/second)

We then calculated the amount of kernel interrupts required to process
data at 10 gbit/sec speeds when using 32 kbyte buffer size, and the result
was 40960 interrupts. We believe that this is the limiting factor in our
test scenario because the resulted number of interrupts is way to big for
the operating system to handle.

For TCP in general, there are two different types of buffers which should
be configured at the least:

Maximum TCP buffer space This is the maximum amount of buffer

Alex Giurgiu
Jeroen Vanderauwera

18

3.2 Software parameters Performance Measurement

space available for all TCP connections. Most of the time this pa-
rameter (net.ipv4.tcp rmem) is configured by default with a value
which was adequate when transmitting small amount of data at low
speeds. For high performance networks, this value is too small.

Socket buffer size This is the size of the buffer per TCP connection
and is in fact the same as the TCP window size.

3.2.4 UDP buffer size

Like the TCP window, the UDP buffer size is too small by default on
all OSs. We did some measurements involving configuring different UDP
buffer sizes. In table 4, one can clearly see that a buffer of 512 kbytes is
sufficient for back to back communication or if RTT = 0.

UDP buffer size Network performance Packet loss
128 kbytes 4.13 Gb/s 44%
512 kbytes 9.93 Gb/s 0%
2 Mbytes 9.93 Gb/s 0%
8 Mbytes 9.93 Gb/s 0%
128 Mbytes 9.75 Gb/s 3.2%

Table 4: UDP buffer size

As can be seen at the first row of the table, there is a lot of packet loss.
The reason for this is because the buffer size is to small to store all traffic
at this high data rate and the kernel starts discarding the UDP packets.
In fact this value (which is the net.core.rmem max) is used as a default
in the Linux kernel, which was sufficient years ago. However, as can be
seen from our measurements, this is not optimal for high performance
networking.

3.2.5 Flow control

Flow control should be enabled. When turned off, the receiver could
be overrun with data if the sender has more CPU power and sends too
much data too fast. As the receiver is saturated from the beginning of
the transmission, the network performance will decrease. If flow control
is enabled, the receiver will let the transmitter know if its buffer is full
and the latter will transmit the data at a lower rate. In our own tests
flow control did not make a difference because both cards were running
optimally with all settings configured for full performance. We did witness
the effects of flow control in situations where bottlenecks occurred. One
situation was when we used a lower speed PCIe slot. With flow control
off UDP had massive packet loss because the receiving card was not able
to send the data fast enough to the higher layers. With flow control on,
the UDP was slowed down to the point that the slower card could keep
up with the stream.

Alex Giurgiu
Jeroen Vanderauwera

19

3.2 Software parameters Performance Measurement

3.2.6 TCP Selective Acknowledgements Option

TCP Selective Acknowledgements Option or SACK[14] is a mechanism
that enables to optimize the retransmission of lost TCP packets if packets
did not arrive at their destination. The receiver sends back SACK packets
to the sender to inform him what packets did arrive. The sender can
then retransmit only the missing data segments. An aggressive sender
can retransmit the dropped packets immediately while they already could
have been received successfully.

Alex Giurgiu
Jeroen Vanderauwera

20

Performance Measurement

4 Creating a diagnostic tool

As a second goal for our project we investigated if it is possible and feasi-
ble to build a tool that can pinpoint the network performance bottleneck
on a host. Taking into account the sheer number of factors that can influ-
ence the network performance and the complexity of the relations between
them it is a challenge to gather all the required data in a central point,
and based on that give a result. If indeed it is possible to build such a
tool, perhaps one of the most important questions would be how reliable
it can be?

Ideally we would use a tracing framework like DTrace (Solaris) or System-
Tap (Linux) to read all data directly from the kernel without making use
of external tools, thus having a unified and clean solution. Unfortunately
we could not make use of SystemTap because it has a steep learning curve
(needs deep knowledge of the Linux kernel), so in our short time frame
it would not be feasible to build a working tool. Instead we integrated
several Linux tools that report network and hardware statistics.

4.1 Integrated tools

In order to reach our goals and to gather data about static and dynamic
parameters, we used the following tools:

ethtool From this tool we gathered data about flow control and the PCIe
slot number.

iperf We used this to perform capacity measurements about network
throughput and packet loss for TCP and UDP.

/proc/sys/net/ The files which can be found here were used to examine
the TCP and UDP buffer sizes. They were used for reading TCP
SACK settings.

lspci From the output of this command we could obtain the slot speed
of the PCIe slot that contained the NIC.

netstat Was used to read the network counters in the NIC.

/proc/net/dev Was used to read the network counters in the kernel.

Based on the output of these tools we parsed the results in our program,
where we gathered the essential parameters on the server.

4.2 Program structure

The program was written in the Ruby programming language. The main
reason why we chose it, was because it is easy to prototype a tool in a
short amount of time. The program contains of four classes.

Info In this class the local information about the different parameters is
gathered.

Client This class is used when the tool is started in client mode.

Server This class is used when the tool is started in server mode.

Alex Giurgiu
Jeroen Vanderauwera

21

4.3 Client/server communication Performance Measurement

Compare This class is executed only on the server after the data has
been received from the client. It compares the data collected on the
server with the data collected on the client and displays a side by
side report about the tests.

Log Is used to give information to the end user while the programs are
used and are communicating.

4.3 Client/server communication

In figure 13 the work flow of the tool is represented.

1. The user first has to start the server which will start gathering data
locally and starts listening for incoming connections.

2. When the client is started, it will gather this data as well and make
a connection to the server. At this point the client will send a com-
mand to the server to start the iperf servers: one for TCP and one
for UDP.

3. Once the servers are started a message will be sent to the client to
start the iperf clients. This will initiate the network measurements
tests.

4. If the client is done testing after a specific amount of time, it will
send a ”kill“ server command to the server.

5. Both systems will count their network statistics and the client will
send all its information to the server. The latter will display this in
a clear and comprehensive way to the end user.

Figure 13: Communication between client and server

Communication is done using an XML/RPC interface over an HTTP con-
nection. The Ruby library that we used is very high-level, which makes

Alex Giurgiu
Jeroen Vanderauwera

22

4.4 Output of the tool Performance Measurement

it trivial to establish a connection and send information over this.

4.4 Output of the tool

As a result, the output is shown in a clear overview of both end points. An
example can be found in figure 4.4. Output, marked in red, are warnings
of possible settings that decreases network performance.

Figure 14: Output of the tool

The reason why the IP MTU is not included in the output of the tool
is because it is one of the parameters the tool takes and it is supposed to
be known.

4.5 Challenges

There are several issues that we encountered when we wrote and tested
the tool:

• Using our program and the integrated tools without influencing CPU
load.

– This was mitigated by waiting for iperf to perform the tests
and then cleanly exit. During the time that iperf performed the
tests our application would be in blocking mode. This means

Alex Giurgiu
Jeroen Vanderauwera

23

4.5 Challenges Performance Measurement

that the server resources will not be influenced while the Iperf
tests are running.

• Counting network statistics without taking the overhead in to ac-
count which is introduced by the client/server communication.

– This problem could be solved by sending the data only after
the network statistics were read. This does not entirely solve
the problem. Our tool and iperf still needs to communicate
between client and server, which we calculated as to introduce
a small overhead of 18 bytes. We subtracted these bytes from
the network counters, which lead to even reporting on both
sides.

Alex Giurgiu
Jeroen Vanderauwera

24

Performance Measurement

5 Recommendations for optimal network
performance

To obtain optimal network performance, one should verify the buffer sizes
first. These can be found in /etc/sysctl.conf. As been said in sections
3.2.4 and 3.2.3, default buffer sizes in all major operating systems are just
to small.

A second recommendation includes the use of jumbo frames. As one can
see from figure 10 there is a clear performance difference in the different
Ethernet MTUs which are used. Standard an Ethernet MTU size of 1500
bytes is used. This basically means that six times more headers needs to
be generated, which takes some time.

If possible use a large IP MTU size. 8000 bytes is the default on the
Internet. With an IP MTU size of 63k bytes, one could almost gain 100%
of the speed.

When a multi cored CPU is part of the configuration, dedicate one or
two threads to processing network traffic, as CPU load influences the net-
work performance. In a setup with a single core/thread, one should try
to keep the CPU load as low as possible.

Choose the right slot for the network interface card. For example, do
not insert the external firewire card into the fastest PCIe slot, but use it
for the network interface card instead.

If the system, which receives or transmits data at a high rate, has barely
enough RAM to have all its processes and services running, dedicate some
services to another system or add RAM. If not enough RAM is provided
and the system starts swapping, network performance will decrease dras-
tically.

Alex Giurgiu
Jeroen Vanderauwera

25

Performance Measurement

6 Conclusions

In this section we review our research questions, like stated in section 1.1.

Is it possible to determine and classify the parameters which af-
fect network performance?

We could define a large array of complex parameters that influence the
network performance.

Fundamentally there are two main aspects where bottlenecks can occur,
namely in software and hardware.

Hardware bottlenecks include CPU load, swapping from RAM to disk,
PCIe bus speeds and network interface speeds.

Software parameters include both IP and Ethernet MTU, TCP window
size, TCP buffer size, UDP buffer size, flow control and SACK.

From our findings we could conclude that parameters, like the IP MTU,
influence throughput while other parameters, like the Ethernet MTU, in-
fluence the packet loss. Historically, the consent regarding IP MTU is that
it should be small enough that fragmentation will not occur at the data
link layer. One can see that for high performance(10 GBit) networking
this principle is not effective anymore, with maximum speeds obtained
with very large IP MTU sizes, i.e. 63k.

An anomaly is that the receiver was less influenced by CPU load and
memory swapping, while one would expect that receiving data at a high
rate would be more intensive, as of the checksum calculation and inspect-
ing packet order. One possible explanation is that the process on the
sender part runs in user space, while on the receiving side interrupts hap-
pen in the kernel space, having a higher priority.

Further, we noticed that the default settings for Linux are inappropri-
ate for high performance networking. The buffers are optimized for hosts
which are connected to networks with lower rates. It should be noted that
RTT should play a very important part when choosing the appropriate
buffer size, because using a low buffer size on a link with high RTT would
cause dramatic losses of performance. Furthermore, choosing a low TCP
buffer size on a high speed network would introduce a different bottleneck,
and that is the large amount of kernel interrupts required to process the
small data buffers.

Is it possible to develop a tool which monitors the parameters
and can pinpoint the cause of the reduced network performance?

A high dynamic environment makes it hard to pinpoint bottlenecks. CPU
load fluctuates all the time, just like memory usage. Therefore measure-
ments need to be performed in a time frame which is wide enough to make
the data reliable.

Alex Giurgiu
Jeroen Vanderauwera

26

Performance Measurement

Gathering data from the static parameters, like configured Ethernet MTU
and TCP buffer sizes, is more easy. Based on this information, it is pos-
sible to make recommendations to the end user.

Alex Giurgiu
Jeroen Vanderauwera

27

Performance Measurement

7 Future research

Network performance monitoring and measuring is a very broad subject.
Because of the limited time frame we could only perform a small part of
this subject. Other possible approaches are:

Link bonding By using link bonding, a double link can be established
between two end hosts. Using round robin, one could send the data
simultaneously over both ends. Calculating the optimal IP MTU
can be something to keep in mind. If an IP MTU of 63k is used
for example, a 9k Ethernet frame is sent on one link, another 9k
Ethernet frame is sent on the other link, and so on. In the end 3
Ethernet frames will be send on one link, while four Ethernet frames
will be send on the other link. It is clear that the links will send the
data out of balanced, and this might introduce decreased network
performance.

Multiple streams Using multiple streams can improve performance, but
can also introduce new issues. The packet reordering can for exam-
ple be one of these issues. Two streams with packets of different
sequence numbers will arrive and the reordering could be more com-
plex.

Adding network devices Our test setup did not include any network
devices. By adding different kinds of network devices in between,
unexpected problems can come up.

Hard drive speed Iperf did not use the hard drive to read data from
(although one can specify to read from a file) or to write data to.
Some applications, though, require disk access. Disk speed and the
bus speed to transfer data from and to the hard drive, can play a
crucial role here.

Delay We did not include delay in our research because we would focus
on the end points and the delay was to negligible. However, this is
an essential topic to investigate.

Alex Giurgiu
Jeroen Vanderauwera

28

Performance Measurement

8 Acknowledgements

We would like to thank SARA, especially our supervisors Freek Dijkstra
and Ronald van der Pol, for providing us with the hardware to run our
tests and valuable advice. During our project they steered us in the
right direction and whenever we had questions their response was fast
and prompt.

Alex Giurgiu
Jeroen Vanderauwera

29

REFERENCES Performance Measurement

References

[1] Intel 5520 Chipset and Intel 5500 Chipset Datasheet
http://www.intel.com/assets/pdf/datasheet/321328.pdf

[2] Intel Pentium Dual-Core Processor E6000 and E5000 Series
Datasheet
http://download.intel.com/design/processor/datashts/

320467.pdf

[3] Iperf
http://iperf.sourceforge.net/

[4] Comparison between network test tools http://staff.

science.uva.nl/~jblom/gigaport/tools/test_tools.html

[5] Ethtool man page
http://manpages.ubuntu.com/manpages/lucid/en/man8/ethtool.

8.html

[6] Netstat man page
http://manpages.ubuntu.com/manpages/lucid/en/man8/netstat.

8.html

[7] Lookbusy
http://www.devin.com/lookbusy/

[8] Stress man page
http://manpages.ubuntu.com/manpages/lucid/man1/stress.1.

html

[9] Sysctl man page
http://linux.die.net/man/8/sysctl

[10] Myri−10G NICs and Software
http://www.myri.com/Myri-10G/documentation/Myri-10G_NICs+

Software.pdf

[11] D1.1 Server Scalibility
Authors: Ronald van der Pol, Freek Dijkstra

[12] TCP Extensions for High Performance
http://www.ietf.org/rfc/rfc1323

[13] TCP performance tuning
Author: Mattias Wadenstein
http://www.acc.umu.se/~maswan/linux-netperf.txt

[14] TCP Selective Acknowledgment Options
http://www.ietf.org/rfc/rfc2018

[15] ESnet Network Performance Knowledge Base
http://fasterdata.es.net/

[16] Flow Control in the Linux Network Stack
http://www.cl.cam.ac.uk/~pes20/Netsem/linuxnet.ps

Alex Giurgiu
Jeroen Vanderauwera

30

http://www.intel.com/assets/pdf/datasheet/321328.pdf
http://download.intel.com/design/processor/datashts/320467.pdf
http://download.intel.com/design/processor/datashts/320467.pdf
http://iperf.sourceforge.net/
http://staff.science.uva.nl/~jblom/gigaport/tools/test_tools.html
http://staff.science.uva.nl/~jblom/gigaport/tools/test_tools.html
http://manpages.ubuntu.com/manpages/lucid/en/man8/ethtool.8.html
http://manpages.ubuntu.com/manpages/lucid/en/man8/ethtool.8.html
http://manpages.ubuntu.com/manpages/lucid/en/man8/netstat.8.html
http://manpages.ubuntu.com/manpages/lucid/en/man8/netstat.8.html
http://www.devin.com/lookbusy/
http://manpages.ubuntu.com/manpages/lucid/man1/stress.1.html
http://manpages.ubuntu.com/manpages/lucid/man1/stress.1.html
http://linux.die.net/man/8/sysctl
http://www.myri.com/Myri-10G/documentation/Myri-10G_NICs+Software.pdf
http://www.myri.com/Myri-10G/documentation/Myri-10G_NICs+Software.pdf
http://www.ietf.org/rfc/rfc1323
http://www.acc.umu.se/~maswan/linux-netperf.txt
http://www.ietf.org/rfc/rfc2018
http://fasterdata.es.net/
http://www.cl.cam.ac.uk/~pes20/Netsem/linuxnet.ps

Performance Measurement

A Tool source code

A.1 main.rb

1 #!/usr/bin/ruby1.9

2 # Usage ./ mtool <interface > [-c <ipaddress >] [-s]

3 # Example: On the server: ./ mtool eth0 -s

4 # On the client: ./ mtool eth0 -c 10.0.0.1

5 #

6 # Mtool is a tool which helps to identify

bottlenecks on high

7 # performance networks.

8 #

9 # This program is written by Alex Giurgiu (alex.

giurgiu@os3.nl) and

10 # Jeroen Vanderauwera (jeroen.vanderauwera@os3.nl)

11

12 require ’logging.rb’

13 require ’netcom.rb’

14 require ’test.rb’

15

16

17 class Info

18 attr_reader :ipaddr , :lspeed , :ldetected , :lduplex

, :flowcontrol , :info

19

20 def initialize(interface)

21 @interface = interface

22 self.gather(interface)

23 end

24

25

26 def gather(interface)

27 Log.inf("Starting data gathering for " +

interface)

28

29 @hostname = %x[hostname]

30 ethdata = %x[ethtool #{interface }]

31

32 ethdata.each_line do |d|

33 if d.include ?("Speed")

34 @lspeed = d.split.last

35 elsif d.include ?("Link detected")

36 @ldetected = d.split.last

37 elsif d.include ?("Duplex")

38 @lduplex = d.split.last

39 end

40 end

41

42 ipdata = %x[ifconfig #{interface }]

Alex Giurgiu
Jeroen Vanderauwera

A-1

A.1 main.rb Performance Measurement

43 @ipaddr = ipdata.split [6]. split(’:’)[1]

44

45 @flowcontrol = []

46 flowdata = %x[ethtool -a #{interface }]

47 flowdata.each_line do |d|

48 if d.include ?("Autonegotiate")

49 @flowcontrol [0] = d.split(’:’).last.lstrip

50 elsif d.include ?("RX")

51 @flowcontrol [1] = d.split(’:’).last.lstrip

52 elsif d.include ?("TX")

53 @flowcontrol [2] = d.split(’:’).last.lstrip

54 end

55 end

56

57 #Ethernet MTU

58 ethmtudata = %x[ifconfig #{interface }]. split

59 ethmtudata.each do |l|

60 if l.include ?("MTU")

61 @ethmtu = l.split(":")[1]

62 end

63 end

64

65 ##

##

66 # Reading values from /proc/sys/net/ipv4

#

67 ##

##

68

69 # TCP socket buffer (TCP windows size)

70 lines = IO.readlines("/proc/sys/net/ipv4/

tcp_rmem")

71 first = lines.first

72 @tcpwsize = []

73 @tcpwsize [0] = first.split [0] # initial TCP

window size

74 @tcpwsize [1] = first.split [1] # default TCP

window size

75 @tcpwsize [2] = first.split [2] # max. TCP window

size

76

77 # TCP sending socket buffer

78 lines = IO.readlines("/proc/sys/net/ipv4/

tcp_wmem")

79 first = lines.first

80 @tcpsbsize = []

81 @tcpsbsize [0] = first.split [0] # initial TCP

sending buffer size

Alex Giurgiu
Jeroen Vanderauwera

A-2

A.1 main.rb Performance Measurement

82 @tcpsbsize [1] = first.split [1] # default TCP

sending buffer size

83 @tcpsbsize [2] = first.split [2] # max. TCP

sending buffer size

84

85 # TCP buffer (For all connections)

86 lines = IO.readlines("/proc/sys/net/ipv4/tcp_mem

")

87 first = lines.first

88 @tcpbsize = []

89 @tcpbsize [0] = first.split [0] # initial TCP

buffer size

90 @tcpbsize [1] = first.split [1] # default TCP

buffer size

91 @tcpbsize [2] = first.split [2] # max. TCP buffer

size

92

93 # TCP SACK

94 lines = IO.readlines("/proc/sys/net/ipv4/

tcp_sack")

95 @tcpsack = lines.first

96 if @tcpsack == 1

97 @tcpsack = "On"

98 else

99 @tcpsack = "Off"

100 end

101

102 # UDP buffer (For all connections)

103 lines = IO.readlines("/proc/sys/net/ipv4/udp_mem

")

104 first = lines.first

105 @udpbsize = []

106 @udpbsize [0] = first.split [0] # initial UDP

buffer size

107 @udpbsize [1] = first.split [1] # default UDP

buffer size

108 @udpbsize [2] = first.split [2] # max. UDP buffer

size

109

110 # UDP min receiving buffer

111 lines = IO.readlines("/proc/sys/net/ipv4/

udp_rmem_min")

112 @udprb = lines.first

113

114 # UDP min sending buffer

115 lines = IO.readlines("/proc/sys/net/ipv4/

udp_wmem_min")

116 @udpsb = lines.first

117

Alex Giurgiu
Jeroen Vanderauwera

A-3

A.1 main.rb Performance Measurement

118 ##

###

119 # Reading PCI(e) slot speed #

120 ##

###

121 slot = %x[ethtool -i #{interface }]

122 slotid =""

123 slot.each_line do |d|

124 if d.include ?("bus -info")

125 temp = d.split.last.split(":")

126 slotid = temp [1] + ":" + temp [2] unless temp

[1]. nil? || temp [2]. nil?

127 end

128 end

129 lspcidata = %x[lspci -vvvv]

130 block = []

131 @slot = {}

132 lspcidata.each_line do |l|

133 l.chomp!

134 block << l

135 if l.empty?

136 if block [0]. include ?(slotid)

137 block.each do |b|

138 if b.include ?("LnkSta")

139 tmp = b.split(":")[1]. split(",")

140 @slot["speed"] = tmp [0]. split [1]

141 @slot["width"] = tmp [1]. split [1]

142 end

143 end

144 end

145 block = []

146 end

147 end

148 ##

###

149

150 beforestats

151

152 @info = {}

153 @info["hostname"] = @hostname

154 @info["ipaddress"] = @ipaddr

155 @info["linkspeed"] = @lspeed

156 @info["linkup"] = @ldetected

157 @info["duplex"] = @lduplex

158 @info["flowcontrol"] = @flowcontrol

159 @info[’ethmtu ’] = @ethmtu

160 @info[’slot’] = @slot

Alex Giurgiu
Jeroen Vanderauwera

A-4

A.1 main.rb Performance Measurement

161 @info["tcpwsize"] = @tcpwsize

162 @info["tcpbsize"] = @tcpbsize

163 @info["tcpsbsize"] = @tcpsbsize

164 @info["tcpsack"] = @tcpsack

165 @info["udpbsize"] = @udpbsize

166 @info["udprb"] = @udprb

167 @info["udpsb"] = @udpsb

168

169 @info = sanitizehash(@info)

170 end

171

172 def sanitizehash(info)

173 info.each_pair do |k,v|

174 if v.nil?

175 info[k] = v ="n/a"

176 elsif v.kind_of? Hash

177 info[k] = sanitizehash(v)

178 elsif v.kind_of? Array

179 info[k] = sanitizearray(v)

180 elsif v.kind_of? String

181 info[k]=v.chomp.lstrip.lstrip

182 end

183 end

184 return info

185 end

186

187 # Count bytes and packets in the NIC

188 def getNicCounters (interface)

189 lines = IO.readlines("/proc/net/dev")

190 niccounter = {}

191 lines.each do |l|

192 if l =~ /#{interface }/

193 niccounter["rxp"] = l.split(’:’).last.split

[0] # Received packets

194 niccounter["rxb"] = l.split(’:’).last.split

[1] # Received bytes

195 niccounter["rxe"] = l.split(’:’).last.split

[2] # Received errors

196 niccounter["txp"] = l.split(’:’).last.split

[8] # Transmitted packets

197 niccounter["txb"] = l.split(’:’).last.split

[9] # Transmitted bytes

198 niccounter["txe"] = l.split(’:’).last.split

[10] # Transmitted errors

199 end

200 end

201 return niccounter

202 end

203

204 # Count bytes and packets in the kernel

Alex Giurgiu
Jeroen Vanderauwera

A-5

A.1 main.rb Performance Measurement

205 def getKernelCounters (interface)

206 temp = %x[netstat -i]

207 kernelcounter = {}

208 temp.each_line do |l|

209 if l =~ /#{interface }/

210 kernelcounter["rxp"]

= l.split [3] #

Received

packets

211 kernelcounter["rxe"]

= l.split [4] #

Received errors

212 kernelcounter["txp"]

= l.split [7] #

Transmitted

packets

213 kernelcounter["txe"]

= l.split [8] #

Transmitted

errors

214 end

215 end

216 return kernelcounter

217 end

218

219 # Subtract to reset counters

220 def subtractCounters (after , before)

221 result = {}

222

223 after.each_key do |k|

224 result[k] = after[k].to_i - before[k].to_i

225 end

226 result.each_key do |k|

227 result[k] = result[k].to_s

228 end

229 return result

230 end

231

232 def sanitizearray(info)

233 info.each do |a|

234 if a.nil?

235 info[info.index(a)] = a ="n/a"

236 elsif a.kind_of? Hash

237 info[info.index(a)] = sanitizehash(a)

238 elsif a.kind_of? Array

239 info[info.index(a)] = sanitizearray(a)

240 elsif a.kind_of? String

241 info[info.index(a)]=a.chomp.lstrip.lstrip

242 end

243 end

Alex Giurgiu
Jeroen Vanderauwera

A-6

A.1 main.rb Performance Measurement

244 return info

245 end

246

247 def beforestats

248 @beforenic = getNicCounters(@interface)

249 @beforekernel = getKernelCounters(

@interface)

250 end

251

252 def afterstats

253 afternic = getNicCounters(@interface)

254 afterkernel = getKernelCounters(@interface)

255

256 @resultnic = subtractCounters(afternic ,

@beforenic)

257 @resultkernel = subtractCounters(afterkernel

, @beforekernel)

258 @info["niccounter"] = @resultnic

259 @info["kernelcounter"]= @resultkernel

260 end

261

262 def showinfo

263 puts @ipaddr

264 puts @lspeed

265 puts @ldetected

266 puts @lduplex

267 puts @ethmtu

268 puts @flowcontrol.to_s

269 puts @tcpwsize.to_s

270 puts @tcpbsize.to_s

271 puts @tcpsbsize.to_s

272 puts @tcpsack

273 puts @udpbsize.to_s

274 puts @udprb

275 puts @udpsb

276 puts @slot.to_s

277 end

278

279

280 end

281

282 if ARGV.empty?

283 Log.error("Usage: ./ mtool <interface > [-c <

ipaddress >] [-s]")

284 else

285 interface = ARGV [0]

286

287 if ARGV [1] == ’-c’

288 clientth = Thread.new { @client = Client.new(

ARGV [2]) }

Alex Giurgiu
Jeroen Vanderauwera

A-7

A.2 compare.rb Performance Measurement

289 intdata = Info.new (interface)

290 @client.nettest(ARGV[2], 50, intdata.info["

ipaddress"])

291 intdata.afterstats

292 @client.send(intdata.info)

293 @client.killrpc

294

295 clientth.join

296 elsif ARGV [1] == ’-s’

297 serverdata = Info.new (interface)

298 serverth = Thread.new { @server = Server.new(

serverdata.ipaddr) }

299 serverth.join

300 serverdata.afterstats

301 puts @server.clientdata.size.to_s

302 puts @server.clientdata [0]. to_s

303 puts "================"

304 puts @server.clientdata [1]. to_s

305 puts "================"

306 puts @server.clientdata [3]. to_s

307 clientinfo = @server.clientdata [2]. merge(

@server.clientdata [0])

308 serverinfo = serverdata.info

309 puts "================"

310 puts clientinfo

311 puts serverinfo

312 puts "================"

313 Compare.info(serverinfo , clientinfo)

314 end

315

316 #rescue => msg

317 #Log.error(" Something went wrong :(Terminating

... [" + msg.to_s + "]")

318 #end

319

320 end

A.2 compare.rb

1 class Compare

2

3 def self.info(serverdata , clientdata)

4 @serverdata = serverdata

5 @clientdata = clientdata

6 self.callChecks

7 self.display

8 end

9

10 def self.display

11

Alex Giurgiu
Jeroen Vanderauwera

A-8

A.2 compare.rb Performance Measurement

12 puts makeline("","*Server(" + @serverdata[’

hostname ’] + ")*" , "*Client(" + @clientdata

[’hostname ’] + ")*")

13 puts "--------------------General NIC

information

--

"

14 puts makeline("Ip address:", @serverdata[’

ipaddress ’], @clientdata[’ipaddress ’])

15 puts makeline("Link speed:", @serverdata[’

linkspeed ’], @clientdata[’linkspeed ’])

16 puts makeline("Link up [Yes/No]:", @serverdata[’

linkup ’], @clientdata[’linkup ’])

17 puts makeline("Duplex [Full/Half]:", @serverdata

[’duplex ’], @clientdata[’duplex ’])

18 puts makeline("Flow control [On/Off]:", "autoneg

:" + @serverdata[’flowcontrol ’][0] + " rx:"

+ @serverdata[’flowcontrol ’][1] + " tx:" +

@serverdata[’flowcontrol ’][2] , "autoneg:" +

@clientdata[’flowcontrol ’][0] + " rx:" +

@clientdata[’flowcontrol ’][1] +" tx:"+

@clientdata[’flowcontrol ’][2])

19

20 puts makeline("Ethernet MTU:", @serverdata[’

ethmtu ’]. chomp.lstrip.lstrip , @clientdata[’

ethmtu ’]. chomp.lstrip.lstrip)

21 puts makeline("PCIe slot:", @serverdata[’slot’][

’speed ’] +" "+ @serverdata[’slot’][’width ’

], @clientdata[’slot’][’speed’] +" "+

@clientdata[’slot’][’width ’])

22

23 puts "--------------------TCP settings

"

24 puts makeline("TCP window size [Initial Default

Maximum]:", @serverdata[’tcpwsize ’][0] + " "

+ @serverdata[’tcpwsize ’][1] + " " +

@serverdata[’tcpwsize ’][2], @clientdata[’

tcpwsize ’][0] + " " + @clientdata[’tcpwsize ’

][1] + " "+ @clientdata[’tcpwsize ’][2])

25 puts makeline("TCP buffer size [Initial Default

Maximum]:", @serverdata[’tcpbsize ’][0] + " "

+ @serverdata[’tcpbsize ’][1] + " " +

@serverdata[’tcpbsize ’][2], @clientdata[’

tcpbsize ’][0] + " " + @clientdata[’tcpbsize ’

][1] + " " + @clientdata[’tcpbsize ’][2])

26 puts makeline("TCP sending buffer [Initial

Default Maximum]:", @serverdata[’tcpsbsize ’

][0] + " " + @serverdata[’tcpsbsize ’][1] + "

" + @serverdata[’tcpsbsize ’][2],

Alex Giurgiu
Jeroen Vanderauwera

A-9

A.2 compare.rb Performance Measurement

@clientdata[’tcpsbsize ’][0] + " " +

@clientdata[’tcpsbsize ’][1] + " "+

@clientdata[’tcpsbsize ’][2])

27 puts makeline("TCP SACK [On/Off]:", @serverdata[

’tcpsack ’], @clientdata[’tcpsack ’])

28

29

30 puts "--------------------UDP settings

"

31 puts makeline("UDP buffer size [Initial Default

Maximum]:", @serverdata[’udpbsize ’][0] + " "

+ @serverdata[’udpbsize ’][1] + " " +

@serverdata[’udpbsize ’][2], @clientdata[’

udpbsize ’][0] + " " + @clientdata[’udpbsize ’

][1] + " " + @clientdata[’udpbsize ’][2])

32 puts makeline("UDP min. receiving buffer:",

@serverdata[’udprb ’], @clientdata[’udprb ’])

33 puts makeline("UDP min. sending buffer:",

@serverdata[’udpsb ’], @clientdata[’udpsb ’])

34

35 puts "--------------------IPERF results

"

36 puts makeline("UDP :", @clientdata[’udpclient ’],

@clientdata[’udpserver ’])

37 puts makeline("UDP loss:", @clientdata[’udploss ’

], @clientdata[’udploss ’])

38 puts makeline("TCP:", @clientdata[’tcp’],

@clientdata[’tcp’])

39

40 puts "--------------------Packet/byte counters

--

"

41 puts "NIC counter

"

42 puts makeline("Packets: " , "rx:" + @serverdata

[’niccounter ’][’rxb’], "tx:" + @clientdata[’

niccounter ’][’txb’])

43 puts makeline("" , "tx:" + @serverdata[’

niccounter ’][’txb’], "rx:" + @clientdata[’

niccounter ’][’rxb’])

44 puts "

--

"

45 puts makeline("Bytes: ", "rx:" + @serverdata[’

niccounter ’][’rxp’], "tx:" + @clientdata[’

niccounter ’][’txp’])

Alex Giurgiu
Jeroen Vanderauwera

A-10

A.2 compare.rb Performance Measurement

46 puts makeline("", "tx:" + @serverdata[’

niccounter ’][’txp’], "rx:" + @clientdata[’

niccounter ’][’rxp’])

47 puts "

--

"

48 puts makeline("Errors: ","rx:" + @serverdata[’

niccounter ’][’rxe’], "tx:" + @clientdata[’

niccounter ’][’txe’])

49 puts makeline("","tx:" + @serverdata[’

niccounter ’][’txe’], "rx:" + @clientdata[’

niccounter ’][’rxe’])

50 puts "Kernel counter

--

"

51 puts makeline("Packets: ", "rx:"+ @serverdata[’

kernelcounter ’][’rxp’] ,"tx:" + @clientdata[

’kernelcounter ’][’txp’])

52 puts makeline("", "tx:"+ @serverdata[’

kernelcounter ’][’txp’] ,"rx:" + @clientdata[

’kernelcounter ’][’rxp’])

53 puts "

--

"

54 puts makeline("Errors: ","rx:" + @serverdata[’

kernelcounter ’][’rxe’], "tx:" + @clientdata[

’kernelcounter ’][’txe’])

55 puts makeline("","tx:" + @serverdata[’

kernelcounter ’][’txe’], "rx:" + @clientdata[

’kernelcounter ’][’rxe’])

56

57

58 end

59

60 def self.wspacel(nr , str)

61 wsp = ""

62 nr.times do

63 wsp.concat(" ")

64 end

65 return wsp.concat(str)

66 end

67

68 def self.makeline(col1 , col2 , col3)

69 col2 = wspacel (50-col1.length , col2)

70 if col2.include ?("\033[0m")

71 col3 = wspacel (80-col2.length -col1.length + 9,

col3)

72 else

73 col3 = wspacel (80-col2.length -col1.length ,

col3)

Alex Giurgiu
Jeroen Vanderauwera

A-11

A.2 compare.rb Performance Measurement

74 end

75

76

77 return col1 + col2 + col3

78

79 end

80

81 def self.callChecks

82 serverlinkspeed = @serverdata[’linkspeed ’].sub(

"Mb/s", "").to_i

83 clientlinkspeed = @clientdata[’linkspeed ’].sub(

"Mb/s", "").to_i

84 self.checks(@serverdata , serverlinkspeed ,

clientlinkspeed)

85 self.checks(@clientdata , clientlinkspeed ,

serverlinkspeed)

86 end

87

88 def self.checks (data , thislinkspeed ,

otherlinkspeed)

89 # General NIC information checks

90 data[’linkspeed ’] = self.red(data[’linkspeed ’])

unless thislinkspeed >= otherlinkspeed

91 data[’duplex ’] = self.red(data[’duplex ’]) unless

data[’duplex ’] != "Half"

92 for i in (0..2)

93 data[’flowcontrol ’][i] = self.red(data[’

flowcontrol ’][i]) unless data[’flowcontrol

’][i] != "off"

94 end

95 data[’ethmtu ’] = self.red(data[’ethmtu ’]) unless

data[’ethmtu ’] >= "9000"

96 slotspeed = data[’slot’][’speed’].sub("GT/s", "

").to_i * data[’slot’][’width’].sub("x", ""

).to_i * 1000

97 data[’slot’][’speed ’] = self.red(data[’slot’][’

speed ’]) unless slotspeed >= thislinkspeed

98 data[’slot’][’width ’] = self.red(data[’slot’][’

width ’]) unless slotspeed >= thislinkspeed

99

100 # TCP settings checks

101 tcpsettings = Array["4096", "16384", "1048576"

]

102 for i in (0..2)

103 data[’tcpwsize ’][i] = self.red(data[’tcpwsize ’

][i]) unless data[’tcpwsize ’][i] >=

tcpsettings[i]

104 end

105 for i in (0..2)

Alex Giurgiu
Jeroen Vanderauwera

A-12

A.3 netcom.rb Performance Measurement

106 data[’tcpbsize ’][i] = self.red(data[’tcpbsize ’

][i]) unless data[’tcpbsize ’][i] >=

tcpsettings[i]

107 end

108 for i in (0..2)

109 data[’tcpbsize ’][i] = self.red(data[’tcpbsize ’

][i]) unless data[’tcpbsize ’][i] >=

tcpsettings[i]*4

110 end

111 data[’tcpsack ’] = self.red(data[’tcpsack ’])

unless data[’tcpsack ’] != "Off"

112

113 # UDP settings checks

114 for i in (0..2)

115 data[’udpbsize ’][i] = self.red(data[’udpbsize ’

][i]) unless data[’udpbsize ’][i] >=

tcpsettings[i]*4

116 end

117 data[’udprb’][i] = self.red(data[’udprb ’])

unless data[’udprb ’] >= "4096"

118 data[’udpsb’][i] = self.red(data[’usbsp ’])

unless data[’udpsb ’] >= "4096"

119

120 end

121

122 # Color the command line output to normal

123 def self.colorize(text , color_code)

124 "#{ color_code }#{ text }\033[0m"

125 end

126

127 # Color the command line output to red

128 def self.red(text); self.colorize(text , "\033[31m"

); end

129

130 end

A.3 netcom.rb

1 require ’xmlrpc/client ’

2 require "xmlrpc/server"

3 require ’webrick ’

4 require ’compare.rb’

5

6

7

8 class Client

9

10 def initialize(ip , port =12333)

11 @server = XMLRPC :: Client.new(ip , "/netmes", port

)

Alex Giurgiu
Jeroen Vanderauwera

A-13

A.3 netcom.rb Performance Measurement

12 @ip = ip

13 @port = port

14 end

15

16 def send(data)

17 Log.inf ("Sending gathered data.")

18 @server.call("data", data)

19 Log.inf @server.call("data", data), @ip

20 end

21

22 def nettest(ip ,time=20, iplocal)

23 Log.inf ("Sending start iperf server call")

24 Log.inf @server.call("startiperfs"), ip #start

the TCP and UPD iperf servers on the server

25 Log.inf ("Start iperf server call sent")

26 sleep (2)

27 Log.inf ("Starting iperf locally")

28 c2s = Test.new("client",ip , ’63k’, ’512k’, ’

10000M’, 50) #start the TCP and UPD iperf

clients on the client

29 renew

30 Log.inf @server.call("stopiperfs"), ip #stop

the TCP and UPD iperf servers on the server

31 send(c2s.clientdata)

32 killrpc

33 end

34

35 def killrpc

36 renew

37 Log.inf @server.call("stoprpcs"), @ip

38 end

39

40 def renew

41 @server = XMLRPC :: Client.new(@ip , "/netmes",

@port)

42 end

43

44 end

45

46

47 class Server

48 attr_accessor :clientdata , :serverdata

49

50 def initialize(ip , port =12333)

51

52 @clientdata = []

53 servlet = XMLRPC :: WEBrickServlet.new

54 servlet.add_handler("data") do |data|

55 puts data.to_s

56 @clientdata << data

Alex Giurgiu
Jeroen Vanderauwera

A-14

A.4 logging.rb Performance Measurement

57 Log.inf "Data received from client. "#XML -RPC

stoping ."

58 "Data received"

59 #@server.stop

60 end

61

62 servlet.add_handler("startiperfs") do

63 @c2s = Test.new(’server ’ ,ip)

64 "Iperf servers started"

65 end

66

67 servlet.add_handler("startiperfc") do |ip|

68 @s2c = Test.new(’client ’ ,ip)

69 @serverdata = @s2c.clientdata

70 "Iperf client started"

71 end

72

73 servlet.add_handler("stopiperfs") do

74 Thread.kill(@c2s.ths1)

75 Thread.kill(@c2s.ths2)

76 %x[killall -9 iperf]

77 "Iperf servers stoped"

78 end

79

80 servlet.add_handler("stoprpcs") do

81 @server.stop

82 Log.inf "RPC server stoped"

83 "RPC server stoped"

84 end

85

86 Log.inf("Starting XML -RPC server")

87

88 @server=WEBrick :: HTTPServer.new(:Port => port)

89 trap("INT"){ server.shutdown }

90 @server.mount("/netmes", servlet)

91 @server.start

92

93 #rescue => msg

94 #Log.error(" Failed to start the RPC server.

Terminating ... [" + msg.to_s + "]")

95 #end

96

97 #Log.inf("XML -RPC server started on " + ip + ":"

+ port.to_s)

98 end

99

100 end

A.4 logging.rb

Alex Giurgiu
Jeroen Vanderauwera

A-15

A.4 logging.rb Performance Measurement

1 class Log

2 def self.inf(data , from="local")

3 puts "[INFO]("+from+")==> " + data

4 return data

5 end

6

7 def self.error(data , from="local")

8 puts "[ERROR]("+from+")==> " + data

9 return data

10 end

11 end

Alex Giurgiu
Jeroen Vanderauwera

A-16

	Introduction
	Research question

	The layered view
	Parameters that influence network performance
	Hardware parameters
	Network interface
	PCI Express bus
	CPU
	Memory

	Software parameters
	Path MTU
	TCP window and large window extensions
	TCP Buffer size(window size)
	UDP buffer size
	Flow control
	TCP Selective Acknowledgements Option

	Creating a diagnostic tool
	Integrated tools
	Program structure
	Client/server communication
	Output of the tool
	Challenges

	Recommendations for optimal network performance
	Conclusions
	Future research
	Acknowledgements
	Tool source code
	main.rb
	compare.rb
	netcom.rb
	logging.rb

