
.

Implementing Snort into SURFids

ing. Sander Keemink
ing. Michael van Kleij

February 4, 2008

Masteropleiding System and Network Engineering

Abstract

SURFnet is the scientific and academic internet service provider in the Nether-
lands. Customers of SURFnet are schools, universities and research facilities.

SURFnet’s SURFids is a unique Intrusion Detection System (IDS). It differs
from other Intrusion Detection Systems in the way it is set up. In SURFids all
detection functionalities are centralized. The sensors only send network traffic
to the centralized processing servers. At the moment this setup consists of Argos
and Nepenthes. SURFnet wishes to further improve this system. Snort might
be a valuable addition to this system.

The primary goal of implementing Snort into SURFids is to be able to rec-
ognize known attacks from the attacks reported by Argos. Argos in itself isn’t
able to recognize known attacks. Because of this SURFnet doesn’t know whether
Argos reported a new attack, or an existing one.

Which implementation of Snort into SURFids gives the most added
value to the customer while not degrading performance in a notice-
able way.

Quote 1: Research Question

In this research we tried to answer the question of how to implement Snort
in the best way. Quote 1 shows the research question. Subquestions of this
were:

• Where in the SURFids setup should Snort be placed to add the most value
to the system?

• How do we get the data from Snort into the SURFids database?

During the research it became more and more apparent that Snort could be
a system on its own, whereas the initial idea was to combine Snort with Argos.
Snort detects some attacks that aren’t detected by both Argos and Nepenthes
and for that reason might be a valuable addition on its own. Snort does need a
honeypot behind it to be able to detect attacks based on bidirectional traffic.

Snort will supply the system with a lot of information. There are various
ways to insert this information in the SURFids database. Depending on the
time available we advise the following:

• Develop or alter the Barnyard database plugin.

• Use the Barnyard csv output plugin and develop a program/script to parse
these values and put them in a database.

1

In a situation with little time we suggest the second advice. Otherwise the
first advice is better because it has one step less.

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

2

Acknowledgements

We would like to offer our gratitude to the following people and organizations:

• SURFnet : for providing us with the means and the opportunity to conduct
this research project.

• All the people of the SURFids group: For offering help and support.

• All those who gave their feedback on this document

3

Contents

1 About SURFnet 8

2 SURFids 9
2.1 What is an IDS? . 9
2.2 What is SURFids? . 9

2.2.1 Nepenthes . 10
2.2.2 Argos . 10

3 Snort 12
3.1 Snort modes . 12
3.2 Snort Components . 13

3.2.1 Packet Decoder . 13
3.2.2 Preprocessor . 13
3.2.3 The Detection Engine . 14
3.2.4 Output Plugins . 14

3.3 Snort rules . 15
3.4 Snort performance . 15

3.4.1 Barnyard . 16

4 Experiments 17
4.1 Experiment 1: Snort before Argos 17
4.2 Experiment 2: Snort next to Argos and Nepenthes 18
4.3 Experiment 3: Snort on the tunnel server 18

5 Results 21
5.1 Experiment 1 . 21

5.1.1 Points of interest . 21
5.1.2 Results of experiment 1 24

5.2 Experiment 2 . 24
5.3 Experiment 3 . 24

5.3.1 Results of experiment 3 24

6 Integrating Snort output into SURFids 26
6.1 Snort output compatibility with SURFids 26
6.2 Using the Snort data in SURFids 27

6.2.1 Severity of an attack . 28
6.3 Possibilities to integrate data . 28

6.3.1 Import Snort tables into the SURFids database 28

4

6.3.2 Develop a Snort output plugin 29
6.3.3 Using a Snort output plugin 29
6.3.4 Multiple Snort output by one attack 29
6.3.5 Snort logs and alerts . 30

6.4 Conclusion . 30

7 Conclusion 31
7.1 Future work . 32

A List of Appendixes 35
A.1 Project plan . 35
A.2 Experiment setup 1 . 35
A.3 Experiment setup 2 . 35
A.4 Experiment setup 3 . 35
A.5 Experiment results 1 . 35
A.6 Experiment results 3 . 36

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

5

List of Figures

2.1 SURFids . 10

3.1 Schematic overview of the Snort components and data flow . . . 13

4.1 Logical view of experiment 1 setup 18
4.2 Logical view of experiment 2 setup 19
4.3 Logical view of experiment 3 setup 20

6

Introduction

This document describes the project: “Implementing Snort into SURFids” ex-
ecuted by Sander Keemink and Michael van Kleij on behalf of SURFnet. The
project description can be found in quote 2. In our project plan we defined our
own research goal: Which implementation of Snort into SURFids gives the most
added value to the customer while not degrading performance in a noticable way.
To be able to answer this question we have conducted two experiments. These
experiments can be found in chapter 4. Before this however, we explain a bit
about SURFnet (chapter 1), Intrusion Detection Systems (chapter 2) and Snort
(chapter 3) first.

SURFids is an open source project which is created by SURFnet with
help of students of the SNE master. At this moment the project is
supported by organisations in the US, Germany, Sweden, Norway,
Japan and Australia. The current version of SURFids is in fact
a distributed Honeypot solution. SURFnet offers this system as a
service to her customers. At this moment about 50 sensors are active
within the system. SURFnet adds functionality to the SURFids
system on a regular basis. We want to find out how Snort can be
integrated into the system

Quote 2: Project description

In the experiments we discuss two options. One in which the Snort is placed
before Argos, and one in which Snort is placed before both Nepenthes and Argos.
Based on the results of these experiments we will give an advice about which of
the two options is the best. The primary reason to determine which of the two
solutions is best is based on the amount of added information to SURFids. All
this can be read in the chapters 4 and 5. A conclusion will be given in the end.
Another chapter, chapter 6, will cover the possibilities of inserting the Snort
data into the SURFids database.

7

Chapter 1

About SURFnet

SURFnet is the scientific and academic internet provider in the Netherlands.
SURFnet aims to provide a high speed, high availability network for its cus-
tomers (Universities, Research facilities etc.) SURFnets mission can be read in
quote 3.

It is SURFnets mission to facilitate groundbreaking education and
research through innovative network services.
SURFnet combines the demand of the institutions connected to
SURFnet. In doing so we create advantages of scale, innovation
and collaboration from which they benefit.
The SURFnet network services comprise five focus areas: Network
infrastructure, Security, Authentication & authorisation, Group
communication and Content Delivery.[8]

Quote 3: SURFnets mission

Innovation of the current SURFnet services, and the development of new
services is a key element to realize this mission. In pursuit of these goals services
like SURFids are continuously improved.

8

Chapter 2

SURFids

To know what SURFids is, one must first have an understanding of what an
IDS is. In this chapter an IDS is explained before SURFids is covered.

2.1 What is an IDS?

An IDS is an Intrusion Detection System. It is, as the name implies a system to
detect intrusions. It is not a system to prevent intrusions. To prevent malicious
traffic one needs to take a look at an IPS1. An IPS is sometimes called an
Active Intrusion Detection System where the other systems are called a Passive
Intrusion Detection Systems.

An IDS is able to analyze network traffic it receives to see whether it contains
a possible attack on a host in the network. When an IDS detects such traffic
it will only report this traffic. The IDS won’t interfere with the traffic itself, so
potentially dangerous traffic will arrive at the intended host.

There are various ways to implement Intrusion Detection Systems. The most
common Intrusion Detection Systems systems are Network Intrusion Detection
Systems and Host-based Intrusion Detection Systems. The difference between
the two is that a Network IDS looks at all the network traffic, including traffic
which isn’t destined for that host while a Host-based IDS only looks at attacks
destined for that system. In this research the focus is only on the Network based
IDS Snort. This research aims to find a way to implement Snort in the existing
SURFids system. More information about Snort can be found in chapter 3.

2.2 What is SURFids?

SURFids is the IDS implementation of SURFnet. It is unique in many ways.
Like many IDS systems SURFids consists of sensors. Unlike many IDS systems
these sensors don’t do anything with the traffic except forwarding this through
a VPN tunnel. These sensors are installed at the customers site and they make
a tunnel to a central tunnel server. All traffic is processed by two honeypot
systems2. The used honeypot systems are Nepenthes and Argos. On the tunnel

1IPS: Intrusion Prevention System
2These are Host-based Intrusion Detection Systems

9

server a decision is made as to which honeypot the traffic will be sent. The
default honeypot system is Nepenthes.

This setup is unique in the way that the sensors are “maintenance free”,
all intelligence and maintenance are stored on the tunnel server and honeypot
systems. Adding sensors is as easy as pushing an USB-stick into a computer.
A schematic view of SURFids can be seen in figure 2.1. In this schematic view
Nepenthes is shown as a separate system, but at this moment Nepenthes still
runs on the tunnel server itself.

Figure 2.1: SURFids

2.2.1 Nepenthes

Nepenthes is one of the honeypot programs used by SURFids. It is a low
interaction honeypot, which means it simulates vulnerabilities instead of running
the service that has the vulnerability [11]. A low interaction honeypot can only
detect known attacks. It is modular of setup which means it is easy to expand.

Nepenthes registers every connection on ports on which it emulates an ex-
ploit. All connections on these ports are possible malicious attacks until an
exploit is, in fact, executed.

2.2.2 Argos

Argos is a high interaction honeypot which means that it is running a full oper-
ating system. All actions which are a response to network traffic are monitored

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

10

for potential illegal activity. In Argos network packets are marked as potential
threats. The data from these packets is always marked and when the system
tries to execute this data on an illegal way –like using it as a jump target– an
interrupt is thrown and Argos shellcode is inserted to analyze the attack. This
method does not allow Argos to recognize known attacks. Every attack is new
for Argos. More information about Argos can be found on the Argos website [2].

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

11

Chapter 3

Snort

Snort is a Network Intrusion Detection System (NIDS) it describes itself as
follows [15]:

“SnortTMis an open source network intrusion prevention and de-
tection system utilising a rule-driven language, which combines the
benefits of signature, protocol and anomaly based inspection meth-
ods.”

Snort [18] is based on libpcap [9] and uses its functionality to capture all
network packets on an interface, even those destined for other hosts. Snort
uses a rule-driven language to detect malicious packets and gives information
on detected malicious packets. With this rule language Snort is able to detect
attack types like: buffer overflows, port scans, ddos attacks and many more.

Snort is being developed by Sourcefire [19], a commercial company founded
by Martin Roesch, the creator of Snort. Sourcefire is not only active in the
development of Snort but also in the creation of Snort rules.

3.1 Snort modes

Snort offers four modes in which it can operate [14]. These modes determine
the functionality Snort provides.

• Sniffer mode, displays all IP packets in a continuous mode on screen.

• Packet Logger mode, logs all network packets to disk.

• Network Intrusion Detection System mode, analyzes network traffic by
matching it against rules and outputs alert or log information based on
those rules.

• Inline mode, obtains packets from iptables instead of libpcap and then use
inline-specific rule types to help iptables pass or drop packets.

For this project we will be working with the network intrusion detection
mode. This is the mode that is able to analyze traffic intended for other hosts,
in our case Argos and Nepenthes.

12

3.2 Snort Components

Snort can be logically divided into components [1] [10]. These components work
together to decode and analyze each IP packet and output information based
on the results. Snort consists of the following components:

• Packet Decoder

• Preprocessor

• Logging and Alerting System

• Output Modules

Figure 3.1 shows how these components operate. A packet enters Snort at
the packet decoder and passes through the other components where it will either
generate an alert or gets dropped. When Snort drops a packet it means Snort
hasn’t found a match and moves on to the next packet.

Figure 3.1: Schematic overview of the Snort components and data flow

3.2.1 Packet Decoder

The packet decoder decodes the specific protocol elements of a captured packet.
It starts at the link layer protocol and moves up to the network layer protocol
and finally the transport layer protocol. From this it stores information like
ports and addresses. Snort will generate an alert if a malformed header, unusual
length TCP options or other anomalies are detected.

3.2.2 Preprocessor

Snort knows two types of preprocessors, those that examine packets for suspi-
cious activity and those that modify packets so that the detection engine can

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

13

properly interpret them. Not all attacks can be detected by rule matching us-
ing the detection engine so preprocessors have been setup to detect suspicious
activity. A packet modification example is when an attacker wants to elude the
NIDS with the use of IP fragmentation [17]. Another example with the use of
IP fragmentation is a Denial of Service attack [10]. The frag3 preprocessor can
be used to detect ddos attacks but also to reassemble fragmentated packets so
the detection engine can match them against rules.

3.2.3 The Detection Engine

The detection engine reads Snort rule files line by line and loads them into an
internal data structure. Rules are split into two functional sections; the rule
header, see example 1, and the rule option, see example 2.

Example 1 A rule header for port 135 based traffic
alert tcp any any -> any 135

To match an IP packet to a rule the detection engine follows its internal
data structure until a match is made or the packet is dropped in the case of no
match. First a packet will be referenced against the rule header. What protocol
is used? TCP, go to the TCP structure. What destination port? Port 135, go
to the subset of TCP for destination port 135. This structure is followed until
a match is made against a rule option or in the case of no match the packet will
be dropped.

Example 2 A rule option for a DCOM exploit
(msg:"DCOM Exploit (MS03-026) targeting Windows2000 SP0";
content:"|74 16 e8 77 cc e0 fd 7f cc e0 fd 7f|";
classtype:attempted-admin;
sid:1100001;
reference:URL,
www.microsoft.com/security/security_bulletins/ms03-026.asp;
reference:URL,
jackhammer.org/rules/1100001;
rev:1;)

The rule option contains the message that is displayed in logs and alerts,
the payload against which will be matched, some reference data and additional
options to specify where to look for the payload. Detection plugins can be used
for special payload matching operations in data structures for example, to get
a value from ASN.1 coding or a Remote Procedure Call (RPC).

3.2.4 Output Plugins

The output plugins provide the means to get the Snort output to the user. Snort
has a modular setup and provides the means to use multiple output plugins.

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

14

For more information on the output plugins and it’s reference to SURFids see
chapter 6.

3.3 Snort rules

The value of Snort as an NIDS depends on the rules used. The rules determine
what you can and can not detect. There are several different resources available
from where one can obtain those rules:

• Subscribers, for an annual fee of $499 per sensor, rules become available
before they are released to the public when the Sourcefire Vulnerability
Research Team has finished them.

• Registered, a registered user can obtain the commercial Sourcefire rules 30
days after they are released to the subscribed users. Registration is free.

• Unregistered, the rules that come with each major Snort release.

• Bleeding Edge Threats [7], a community that provides open source rules.

Snort rules are created by the Sourcefire Vulnerability Research Team (VRT) [21].
Sourcefire VRT reacts on vulnerabilities by analyzing these and aim at making
rules that match against all possible attacks that use this vulnerability. Rules
are created on the vulnerability, not on a known attack so that one rule matches
several attacks.

Bleeding Edge rules are not tested as thoroughly as the Sourcefire rules.
Before the rules are released they are checked if the syntax is correct and they
don’t crash Snort. Bleeding Edge rules are more focussed on a known attack
and respond faster to new attacks. Over time they try to make the rules more
general and vulnerability specific instead of attack specific. Some of these rules
make it into the official Snort rule set.

Automatic rule management can be done by Oinkmaster [12]. Oinkmaster
is a BSD licenced perl script to update Snort rules. Sourcefire provides means
for subscribers and registered users to use Oinkmaster to obtain their rules.

3.4 Snort performance

Snort performance in Mbits isn’t stated very clearly. There are reports of
throughput of 100Mbit without package loss. Recent research [13] on improving
performance for libpcap based application achieved a throughput of 125Mbit
without packet loss. This was done with a standard Snort configuration with
all preprocessors and rules and the original libpcap.

Snort performance can be improved by using a modified version of libpcap
that implements a shared memory ring buffer [26]. This implementation of libp-
cap improves Snorts performance by limiting the number of times an IP-packet
is copied before Snort can perform its operations on it. For more information
on this see the Snort manual [14]. Unfortunately no information is available on
how much performance gain can be achieved.

Offloading Snort by transferring the logging to another application is an-
other way to improve performance [4]. Especially when one wants to log all

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

15

information to a database. Snort has to contact the database, perform an oper-
ation and wait for an acknowledgement which can be time consuming on a busy
network. Snort offers the unified output plugin which outputs all information
in a unified binary format, which decouples the output stage from Snort. This
method is used by Barnyard [3] a program which sole purpose is to read the
Snort unified binary format and output it to another format like a database.

3.4.1 Barnyard

Barnyard reads unified binary format and writes it to a resource. The advantage
of using Barnyard is evident in situations when one is using a database. When
the database server becomes temporarily unavailable Barnyard waits until it is
up again and continues where it stopped. Snort doesn’t provide this service if
the database is unavailable Snort output is lost and a restart is required once
the database is available again.

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

16

Chapter 4

Experiments

During this research project three experiments were defined of which two were
executed. The second and third experiment were considered logically the same,
so only one of these experiments has been executed due to time and hardware
limitations. The experiments that were executed are experiments 1 (see [22])
and 3 (see [23]). In this chapter the experiments are explained. For a detailed
experiment description please read the experiment setup documents.

4.1 Experiment 1: Snort before Argos

In the first experiment the Snort machine was placed before Argos. This setup
was chosen to determine if Snort has an added value to Argos. In this setup
Snort is invisible to the outside world but Snort is able to analyse all traffic
intended for Argos.

To implement this setup a separate server was used. This server was config-
ured to act as a bridge. Snort was configured to listen on the bridge interface
and analyze all data. Furthermore Snort was configured to log all data as unified
(binary) files and Barnyard was used to write these logs to a database.

In figure 4.1 a schematic view of the experiment setup is shown. We expected
to run this experiment for 1 day, but in the end this experiment ran for 7 days.
The following results were expected from this experiment:

• Degrade performance with a small amount, adding a few ms RTT per
packet.

• Able to cope with the load, now and in the future.

• Difficult to manage and extend.

It was immediately assumed that this setup would function with Snort and
that Snort would be able to recognize most, if not all attacks reported by Argos.

The results of this experiment can be found in section 5.

17

Figure 4.1: Logical view of experiment 1 setup

4.2 Experiment 2: Snort next to Argos and Ne-
penthes

In experiment 2 we placed Snort on a separate server and connected this to
the switch on which Argos and Nepenthes were also connected. See figure 4.2.
With this setup Snort is able to analyse all traffic intended for both Argos and
Nepenthes without impact on the current logical setup. This also provides the
least performance impact because all systems run independently of each other.

It is important in this setup that the switchports on which Nepenthes and
Argos are connected are mirrored to the port on which Snort is connected.

For this setup to work Nepenthes has to be installed on a separate server,
and not as is currently the case on the tunnel server.

This experiment hasn’t been conducted because of time and hardware lim-
itations. The expected results are the same as experiment 3, which could be
conducted without changing the complete setup of SURFids.

4.3 Experiment 3: Snort on the tunnel server

In experiment 3 we placed Snort on the tunnel server. See figure4.3. We choose
this setup because Snort is able to analyse all traffic for both Argos and Ne-
penthes and doesn’t require any change of the physical setup.

Because of time and hardware limitations experiment 2 wasn’t executed and

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

18

Figure 4.2: Logical view of experiment 2 setup

instead experiment 3 was conducted. Because of the fact that experiment 3 is
logically the same1 as experiment 2 this should not matter.

We expected that this experiment setup would give different performance
results from experiment 2. This because Snort is in the path of the data, where
Snort would be outside the datapath in the case of experiment 2. In that case
all the data would be mirrored to the Snort server. Because of this we expected
that experiment 3 would be somewhat slower than experiment 2, but equally as
fast as experiment 1.

1With logically the same we mean that the detected attacks should be exactly the same

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

19

Figure 4.3: Logical view of experiment 3 setup

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

20

Chapter 5

Results

The experiments produced various results as well as various problems. Some
results were curious and require more attention in future work. During the ex-
periments we created specific experiment reports which contain all information
about the experiment results. These results were documented in the appendixes
to try to keep this report from becoming ‘bloated’ with unnecessary informa-
tion. Because of this the sections covering the results of the experiments will
only contain the most important information. Interested readers are referred to
[24] and [25].

5.1 Experiment 1

During experiment 1 some problems were encountered. The database wasn’t
configured correctly and the rulesets used were incomplete. When the database
was configured correctly and the rulesets were added the Snort setup functioned
perfectly. This can be seen in table 5.1. As can be seen in the table the problems
with the rulesets were solved on the 14th of January.

Date Argos Snort Overlap Perct.
12-01-2008 20 3 2 10%
13-01-2008 20 10 5 25%
14-01-2008 32 97 20 62,5%
15-01-2008 36 178 34 94%
16-01-2008 26 139 25 96%

Table 5.1: Results from Snort and Argos

5.1.1 Points of interest

During the experiment some interesting issues were noticed:

• Time skew.

• Multiple entries per attack.

• Missing payload data.

21

• Port difference between Snort and Argos.

• Attacks with source IP 192.168.25.75 (The Argos machine).

These issues will be discussed in more detail with some ideas about how they
could be solved.

Time skew

When looking at the logs from both Snort and Argos one can see a difference
in the reported time. An example of this is in log 1. The log shows that the
Argos machine logs an entry at 15:42 and the Snort machine logs the same entry
on 15:51. The solution to prevent these timeskews is to make sure all systems
have the same time. The Network Time Protocol is ideal for this. As long as
all servers use the same, trustworthy, timeserver on a regular basis –say about
every hour or every day– the timeskew will not become to big.

Log 1 Time skew between Argos and Snort
A: 12-01-2008 15:42:07 Malicious attack - Argos 212.147.79.166
65225 192.168.8.129 445 TEST lsass.exe
S: NETBIOS SMB-DS IPC$ unicode share access 2008-01-12 15:51:29.
663 212.147.79.166:65225 192.168.8.129:445 TCP

Multiple entries per attack

Snort often registers multiple entries per detected attack. According to us [24]
this is due to the fact that many attacks consist of multiple network packets.
Snort doesn’t keep track of all packets and therefore it happens that attacks that
are sent multiple times are registered as separate attacks. The Argos machine,
however, does not register all these attacks as individual attacks. This creates
a problem because it’s undesirable to register any given attack more than once.

Another reason for multiple entries is that it’s possible that multiple rules
trigger on a given attack. This results in entries that differ from each other
in the name of the attack. This complicates the possibility to compare entries
to each other because the name might differ. However, even though the name
might differ the source IP, source port, destination IP and destination port are
the same. The double entries are always close to each other in time, so when
there are multiple attacks from the same IP and port to the same IP and port
within a few seconds one can conclude this is the same attack.

Another way to make sure whether an attack is registered multiple times
is to compare the Argos log with the Snort log. When Argos reports only one
attack at a given time and Snort sees various attacks from that IP and port one
could conclude that only one attack has happened.

Missing payload data

When using Barnyard with the default configuration instead of letting Snort
write directly in the database the payload data of packets is lost. This might

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

22

not be a problem for SURFnet when it doesn’t need the payload data. However,
when SURFnet does want the payload data it’s necessary to enable logging as
wel as alerts. When this is done Barnyard will extract the payload data from
the logfiles and insert them into the database.

Port difference between Argos and Snort

On January 17 2008 an attack was logged on both Snort and Argos, but with
different ports. On Argos this attack was logged with port 6129 and on Snort
this attack was registered on port 445. This is shown in log 2. As is shown
in this log the time is correct (mind the timeskew). Furthermore the attack
originates from the same IP. In Argos there is no log of an attack around this
time from that IP on port 445. It is possible that there were multiple packets
of which Argos logged the one on port 6129 and Snort the one on port 445.
Unfortunately we don’t have a tcpdump of that time.

Log 2 Port difference between Argos and Snort
A: 16-01-2008 07:44:42 Malicious attack
- Argos 89.139.111.141 3421
192.168.8.129 6129 TEST

S: SHELLCODE x86 NOOP 2008-01-16 07:34:33
89.139.111.141:3306 192.168.8.129:445
TCP

Attacks with source IP 192.168.25.75

The IP address mentioned above is the IP address of the Argos machine itself.
During this experiment this machine has been registered 130 times. All entries
contain a reference to the Allaple worm. In log 3 a log of this attack is visible.
We suspect that the Argos image of Windows 2000 has been infected with this
virus. It is possible that this happened while creating the image. The Argos
images should be reloaded occasionally, so we expect that infection has to be in
the image because if not, the virus would disappear after a reload.

We reported this to SURFnet which conducted a research on this. SURFnet
did not detect a virus on the image. They did however find out that the Argos
image didn’t reload after every attack. It is possible that the machine got
infected but didn’t reload after this. After is was reloaded it could be enfected
again with again the problem that it didn’t reload. This is an explanation to
why Snort discoverd these attacks.

Log 3 Allaple worm
BLEEDING-EDGE WORM Allaple ICMP Sweep Reply Inbound 2008-01-17
14:17:51 192.168.25.75 58.13.12.123 ICMP

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

23

Date Nep. Snort Overlap Perct.
22-01-2008 55 52 24 43.6%
23-01-2008 88 230 62 70%
24-01-2008 52 840 52 100%
25-01-2008 28 175 28 100%

Table 5.2: Results of experiment 3

5.1.2 Results of experiment 1

Our goal with these experiments was to find out which setup of Snort in SURFids
provides the most added value to the system while not degrading performance
in a noticable way.

During the experiment the performance of the system was tested on various
occasions and the result was an added average delay of 1.354ms, which is neg-
ligible. Because the Snort machine sits in between the tunnel server and the
Argos machine and Snort is a CPU intensive process it can be expected that
this delay will grow with the load of the server. But based on other research [13]
we don’t expect it to become a problem

In this setup Snort provides a lot of added information. It is able to detect
more than 90% of all attacks (see table 5.1). Because of this the system is able
to give a name to the registered attacks. Moreover, Snort detects attacks which
aren’t detected by Argos.

5.2 Experiment 2

This experiment has not been conducted due to time and hardware limitations.
Therefore there are no results of this experiment. We expect the results of
experiment 2 to be similar to the results of experiment 3.

5.3 Experiment 3

The same as with experiment 1, problems were encountered while conducting
this experiment. There were some problems with the rulesets and with the used
Snort versions. It appears that the version of Snort included in Ubuntu 7.10
which was used in experiment 1 is version 2.7 while Debian stable uses Snort
2.3. Snort couldn’t read the rulesets because they were in a different format
than the format used by version 2.7. Because we used the configuration file we
also used in experiment 1 there were also some problems with the preprocessors.
The solution to this all was to download the Snort 2.7 sourcecode and compile
this.

Later-on a configuration fault was discovered in the configuration file. We
solved this error and since then Snort has recognized 100% of the attacks re-
ported by Nepenthes as malicious attack. This is visible in table 5.2

5.3.1 Results of experiment 3

Because Nepenthes is different from Argos and knows which attacks it detects
it is less interesting to look at the overlapping results. More interesting in this

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

24

Date Possible malicious Verified as malicious by Snort perct.
22-01-2008 15 1 7 %
23-01-2008 13 1 8 %
24-01-2008 14 2 14 %
25-01-2008 10 1 10 %

Table 5.3: Possible malicious attacks recognized by Snort

Total Possible malicious attack. Malicious attack. Snort
Closed port 10 0 0 3
Open port 10 9 1 5

Table 5.4: Summary of the Metasploit attack results

case are the results reported by Nepenthes as possible malicious attacks. These
are shown in table 5.3

Because Snort detects more than 90% of the malicious attacks reported
by Nepenthes we assume Snort will detect about 90% of the malicious attacks
which for some reason were detected by Nepenthes as possible malicious attacks.
Because of this assumption we can say for example that the 14 attacks that
Snort didn’t detect on 22-01-2008 were not malicious attacks. Only one possible
malicious attack of that day was also detected by Snort as an attack. Therefore
we say that that attack is a real malicious attack.

MetaSploit

To figure out whether Snort really does detect more attacks than Nepenthes we
used MetaSploit to attack the IDS with some less-common attacks. The results
of this are visible in table 5.4. The complete results are listed in [25].

Snort detects 3 of the attacks aimed at a closed port. Nepenthes detects
none of these attacks. On the other hand Nepenthes detects all 10 of the attacks
aimed at open ports while Snort detects only 5 of those. It is not strange for
Nepenthes to register all attacks on its open ports, as can be seen in the table 9 of
the 10 attacks are listed as possible malicious attack. Nepenthes registers every
connection attempt on an open port as possible malicious. It is possible that
an attacker launches an attack and that the attack itself aborts after the initial
connection because the attack is not able to attack the running service. For
example, an IIS attack is launched on an Apache server. The attack recognizes
the Apache server and aborts the attack. Until this moment the traffic has been
legitimate, so Snort does not detect the attack. Snort recognizes more attacks
than Nepenthes. Nepenthes does report 9 possible malicious attacks, but only
1 malicious attack where Snort reports 8 malicious attacks. Snort only detects
malicious attacks and because of this won’t report possible malicious attacks.

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

25

Chapter 6

Integrating Snort output
into SURFids

For the integration of Snort into SURFids it is important that the Snort output
can be integrated into the current SURFids database. To determine whether
this is possible this question has been divided into three steps:

1. Determine if the Snort output is compatible with the SURFids database.
Could these values be inserted directly into the database, is conversion
required or are extra tables needed.

2. How can SURFids use the Snort data?

3. Look into the possibilities to insert Snort output into the SURFids database.

6.1 Snort output compatibility with SURFids

In order to determine if Snort output is compatible with the SURFids database
the Snort output values [14] were compared to the SURFids database schema [20].
The SURFids database has multiple tables, the ones used to compare to the
Snort output are: attacks and details. In these tables SURFids stores the at-
tack information and extra details on those attacks.

Attack table fields [20]:

• id : Unique identifier.

• timestamp: Timestamp in epoch format.

• severity : Severity of the attack (Nepenthes defines possible values: 0, 1,
16, 32). Possible malicious attack, Malicious attack, Malware offered or
Malware downloaded.

• source: Source IP address.

• sport : Source port.

• dest : Destination IP address.

• dport : Destination port.

26

• sensorid : Identifier of the sensor that logged the attack.

• src mac: The MAC address of the attacker if known.

• dst mac: The MAC address of the destination.

• atype: Type of malicious attack: Nepenthes, Argos, ARP poisoning or
Rogue DHCP.

Detail table fields [20]:

• id : Unique identifier.

• attackid : Identifier of the related attack.

• sensorid : Identifier of the sensor that logged the related attack.

• type: Type of attack (Nepenthes defines possible values: 1, 2, 4, 8). Type
of detailed info, one attack can have multiple types.

• text : Detailed info.

The fields of the SURFids tables have been compared to all possible Snort
output values. The overlap of the two can be found in table 6.1. Some of the
SURFids fields are not found in the Snort output, these are: severity, atype,
sensorid and type. These values are SURFids specific values and can be added
to the Snort data.

The Snort output values that are non overlapping with the SURFids database
fields are the IP packet headers and IP packet payload.

SURFids field name Snort field name Additional information
timestamp timestamp Conversion may be required

depending on the Snort output module
source src
sport srcport
dest dst
dport dstport
src mac ethsrc
dst mac ethdst
text msg, sig id and url

Table 6.1: Overlapping Snort and SURFids values

6.2 Using the Snort data in SURFids

The main reason for using Snort within the SURFids project is to give a more
detailed view into Argos information. It is not desirable to log all the attacks
twice in the attack table. To give more insight in the Argos attacks the extra
Snort information can be logged into the detail table. In order to log the in-
formation there will have to be type values defined for the Snort information.
Type values will have to be defined for the following Snort output fields:

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

27

• msg : The type of attack that Snort logged.

• sig id : The signature identifier of the Snort rule, can be used to reference
attack information on the Snort website. Enter the sig id at the end of
the following URL: http://www.snort.org/pub-bin/sigs.cgi?sid=

• url1: Some rules come with a URL to extra information on the attack.

SURFids defines a type value for every specific attack detail. To add the Snort
information three extra type values will have to be defined for the values msg,
sig id and url.

In the experimental setup Snort detected attacks that Nepenthes and Argos
did not. This information can be used in SURFids in the same way the Ne-
penthes and Argos data is presented today. It is important to check if an attack
already has been detected by Nepenthes or Argos before adding the data to the
database. An attack type or atype id has to be defined to use the Snort data
independently.

6.2.1 Severity of an attack

SURFids registers attacks with a severity value, this can be: possible malicious
attack, malicious attack, malware offered or malware downloaded. Snort doesn’t
distinguish between these levels, all registered attacks can be seen as malicious
attacks. When a Snort rule is triggered by an IP packet it is considered mali-
cious, if an IP packet is not malicious it shouldn’t trigger a rule.

Snort does not provide rules that register if malware is offered or down-
loaded. During experiment three we did register ATTACK-RESPONSES Mi-
crosoft cmd.exe banner messages in Snort when Nepenthes registered: malware
downloaded. Snort only confirms what Nepenthes registers.

6.3 Possibilities to integrate data

We have defined three options to get the Snort output from the Snort machine
into the SURFids database:

• Import Snort tables into the SURFids database.

• Develop a Snort or Barnyard output plugin.

• Use a Snort or Barnyard output plugin.

We will discuss three options for integrating Snort data and points that have
to be considered when chosing an integration method.

6.3.1 Import Snort tables into the SURFids database

Using the Snort database schema [6] all the Snort tables can be added into the
SURFids database. The advantage of this implementation is that one can use
the standard Snort database output plugin. It could also be useful if SURFnet

1Not all plugins provide this information but it can be extracted from the Snort rules using
the sig id

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

28

is interested in the data that doesn’t correlate with the SURFids database like
IP headers and packet payload, which could be useful for analyzing attacks.

The downside of this option is that parts of the SURFids web engine will
have to be rewritten in order to process the data.

6.3.2 Develop a Snort output plugin

Snort has a modular setup which allows developers to write custom output
plugins, this has been confirmed by the Snort 2.0 Intrusion Detection book [4].
Snort is open source software which enables a developer to use an existing
output plugin as a template. The C sources and header files are all included in
the /src/output-plugins directory. Snort already comes with its own database
module (spo database) for the Snort database schema. This plugin could be a
perfect candidate for a template.

The Snort complementary program Barnyard has a similar modular setup
which enables an user to develop custom plugins.

6.3.3 Using a Snort output plugin

Snort provides a number of plugins to write output to a specific format. It is
possible to develop a program or script to read this data and write it, conform
the SURFids schema, to the SURFids database. This has also been confirmed
by the Snort 2.0 Intrusion Detection book [4].

Possible Snort modules to use:

• alert unixsock : writes the data to an UNIX socket.

• alert fastlog : output minimal data in ASCII format to a file. Also sup-
ported by Barnyard

• csv : output the data in comma separated value ASCII format to a file.
Also supported by Barnyard.

• unified : writes the data in unified binary format.

Besides the standard Snort output plugins there is also a third party plugin,
created by CERT.org [5], which outputs the Snort data in a XML format. The
plugin can write the data to a XML file or send it, with the HTTP POST option,
to a script on a web server.

6.3.4 Multiple Snort output by one attack

Snort logs all attacks it registers. In practice this means that if an attacker
sends multiple IP packets which trigger a Snort rule all the IP packets will
trigger a separate log/alert action. With a custom output plugin or processing
script/program this can be handled and logged to the SURFids database only
once.

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

29

6.3.5 Snort logs and alerts

Snort knows two output options, log and alert [16]. The alert facility provides
information on the events that happened, basically the information in the SUR-
Fids attack and detail tables. The log facility outputs the full IP packets. With
the use of output plugins one can use separate plugins for both types or use
one plugin that can handle both. Plugins that can handle both alert and log
information are the database and XML plugin. It’s important to consider these
output options if SURFnet intends to use IP payload information for analyzing
attacks.

6.4 Conclusion

Snort output can be inserted in the SURFids database with a few minor changes.
There will have to be type values defined for the Snort attack information. In
order to use Snort data independent from Argos and Nepenthes an atype will
also have to be defined for Snort.

The most practical option to insert the Snort output into the SURFids
database is to develop an output plugin or process data from a standard Snort
output plugin. Both options provide the same benefits:

• Snort output can be inserted conform the SURFids database schema.

• Checks can be done before inserting the data. To determine if the data
is to be used complementary to Nepenthes or Argos or as an individual
attack. Make sure an attack is not logged to the database multiple times.

The Snort output values IP packet headers and IP packet payload can be in-
tegrated into the SURFids database by adding a table to the database or adding
type values for the detail table. To be able to use full IP packet and payload
information one has to use log information. If SURFids chooses to use this
information they can modify the Snort database plugin or extract information
from an other log format, like XML, with a program or script.

The severity of an attack registered by Snort can be registered as a malicious
attack. Snort does not provide enough information to detect malware offers or
downloads. The registered ATTACK-RESPONSES Microsoft cmd.exe banner
message can also be detected for other reasons for example after a successful
DCOM attack.

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

30

Chapter 7

Conclusion

Implementing Snort in SURFids is not only possible, it will add very interesting
data into the system, while it won’t degrade performance in a noticeable way.
We strongly advise implementing Snort into SURFids. The following benefits
will be achieved:

• It will be possible to classify possible malicious attacks as reported by
Nepenthes as malicious attacks.

• More information about Argos attacks.

• A whole range of previously undetected attacks.

The only way to get all these benefits is to implement Snort in the way
described in experiment 2 or 3. Our preference would be experiment 2. The
reason for this is that in experiment 2 the Snort machine is placed completely
outside the normal traffic flow, therefore the Snort machine won’t delay the
traffic at all. This also improves the manageability of the system because all
servers have one specific task. This setup would require moving the Nepenthes
and database installation from the tunnel server to separate servers. This is
shown in image 2.1.

To be able to work with Snort in SURFids it must first be possible to insert
the Snort data into the SURFids database before it is of any use. To be able to
do this some issues need to be solved:

• Snort often logs attacks more than once. This needs to be detected to
prevent double attacks from being recorded in the database.

• The output from Snort needs to be adapted so it can be inserted into the
SURFids database (see chapter 6).

We advise SURFnet to use Snort unified binary output and to use Barnyard
to processes that output. With the use of Barnyard Snort is offloaded and
database connection problems can be dealt with in an appropriate way. There
are two possibilities with Barnyard; develop a custom database output plugin
or use the csv output plugin.

The Barnyard csv output plugin provides a format that can be parsed easily
and the format is well documented in the Barnyard configuration file. This

31

solution does not deal with payload information which is not used in the current
SURFids setup. Developing a program or script to deal with csv provides an
extra step in the data processing process and an extra point of failure. It is
however relatively easy to develop.

Developing a custom Barnyard database plugin is the shortest output pro-
cess but the development process is longer and relatively more difficult than
developing a csv parser program or script. A custom database plugin also pro-
vides the ability to deal with IP payload data should SURFnet be interested in
this, now or in the future.

Based on the conclusions made we can determine that Snort can offer a real
added value to SURFids.

7.1 Future work

Before Snort can be integrated into SURFids an output plugin or parser has to
be developed for Barnyard. This plugin needs to be able to detect double entries
from Snort and remove them. Furthermore it needs to be able to recognize Argos
and Nepenthes registrations so it can update them, or drop a Snort alert in order
to prevent double registrations of attacks.

We also advice to implement the logical setup in a physical way. This means
changing the current setup of SURFids to the setup as shown in figure 4.2.

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

32

Bibliography

[1] Andrés Felipe Arboleda and Charles Edwared Bedón. SnortTM diagrams for
developers. Universidad del Cauca - Colombia, 2005. http://afrodita.
unicauca.edu.co/~cbedon/snort/snortdevdiagrams.html.

[2] Argos. Argos official website. http://www.few.vu.nl/argos/.

[3] Andrew Baker. Barnyard. http://sourceforge.net/projects/
barnyard.

[4] Brian Caswell, Jay Beale, James C. Foster, and Jeremy Faircloth. Snort
2.0 Intrusion Detection. Syngress, 2003.

[5] CERT.org. Snort XML output plugin. http://www.cert.org/kb/
snortxml/.

[6] Roman Danyliw. Snort and ACID database ER diagram. http://www.
andrew.cmu.edu/user/rdanyliw/snort/acid_db_er_v102.html.

[7] Bleeding Edge Threats. Bleeding Edge Threats website. http://www.
bleedingthreats.net/.

[8] SURFnet homepage. http://www.surfnet.nl.

[9] Van Jacobson, Craig Leres, and Steven McCanne. libpcap. Lawrence Berke-
ley National Laboratory, 1994. http://www-nrg.ee.lbl.gov/.

[10] Jack Koziol. Intrusion Detection with Snort. Sams, 2003.

[11] Nepenthes. Nepenthes official website. http://nepenthes.mwcollect.
org.

[12] Andreas Östling. Oinkmaster. http://oinkmaster.sourceforge.net/.

[13] Antonis Papadogiannakis, Demetres Antoniades, Michalis Polychronakis,
and Evangelos P. Markatos. Improving the Performance of Passive Network
Monitoring Applications using Locality Buffering. Institute of Computer
Science Foundation for Research & Technology - Hellas, 2007. http://
dcs.ics.forth.gr/Activities/papers/pcapLB-paper.pdf.

[14] The SnortTM Project. Snort users manual. 2007. http://www.snort.org/
docs/snort_manual/2.8.0/snort_manual.pdf.

[15] The SnortTM Project. The official Snort website. http://www.snort.org/.

33

[16] The SnortTM Project. What is the difference between “Alerting” and “Log-
ging”? http://snort.org/docs/faq/1Q05/node72.html.

[17] Thomas H. Ptacek and Timoth N. Newsham. Insertion, Evasion, and De-
nial of Service: Elluding Network Intrusion Detection. Secure Networks,
Inc., 1998. http://www.snort.org/docs/idspaper/.

[18] Martin Roesch. Snort - Lightweigth Intrusion Detection for Net-
works. LISA, 1999. http://www.usenix.org/event/lisa99/full_
papers/roesch/roesch_html/.

[19] Sourcefire. Sourcefire official website. http://www.sourcefire.com/
company/.

[20] SURFnet. SURFids database tables. http://ids.surfnet.nl/wiki/
doku.php?id=docs:2.00:debug.

[21] Sourcefire Vunerability Research Team. SnortTM Rules. http://www.
sourcefire.com/products/snort/rules/.

[22] Michael van Kleij. Experiment 1: Snort before argos. https://www.os3.
nl/2007-2008/students/michael_van_kleij/rp1-logbook, 2008.

[23] Michael van Kleij. Experiment 3: Snort on the tunnelserver. https://www.
os3.nl/2007-2008/students/michael_van_kleij/rp1-logbook, 2008.

[24] Michael van Kleij & Sander Keemink. Results of experiment
1. https://www.os3.nl/2007-2008/students/michael_van_kleij/
rp1-logbook, 2008.

[25] Michael van Kleij & Sander Keemink. Results of experiment
3. https://www.os3.nl/2007-2008/students/michael_van_kleij/
rp1-logbook, 2008.

[26] Phil Woods. MMAPed pcap. http://public.lanl.gov/cpw/.

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

34

Appendix A

List of Appendixes

This section contains a list of the appendixes included with this report.

A.1 Project plan

The project plan contains the project guideline as well as the project definition.

A.2 Experiment setup 1

Experiment 1 is focussed on analyzing the added value of Snort in addition to
Argos. This is done by placing Snort in between the SURFids tunnel server and
the Argos machine.

A.3 Experiment setup 2

Experiment 2 focusses on analyzing both Nepenthes and Argos data by attaching
Snort to the switch where Argos and Nepenthes are connected to and placing
the port in monitoring mode.

A.4 Experiment setup 3

Experiment 3 has the same focus as experiment number two but in a different
setup. Snort is placed on the tunnel server and analyzes all the data coming
through the tunnels to Nepenthes or Argos.

A.5 Experiment results 1

The results of experiment 1 show that Snort is able to recognize over 90% of the
attacks made to Argos and that Snort is able to recognize attacks that Argos
does not recognize.

35

A.6 Experiment results 3

Experiment 3 shows that Snort is able to recognize over 90% of the reported
malicious attacks by Nepenthes and a minority of the possible malicious attacks.
Further more we explain why Snort only detects a minority of the possible
malicious attacks and why we consider the remaining possible malicious attacks
false positives.

Implementing Snort into SURFids
Sander Keemink & Michael van Kleij

36

.

Implementing Snort into SURFids

Sander Keemink, Michael van Kleij
January 9, 2008

Masteropleiding System and Network Engineering

Contents

1 Preliminary tasks 1
1.1 Reading into subject matter 2
1.2 Writing this document . 2
1.3 Preparing the experiments . 2
1.4 Installing and configuring the test environment 2

2 Research 2

3 Concluding research 3
3.1 Finishing the research . 3
3.2 Writing the report . 3
3.3 Making a presentation of our results 3

Introduction

This document is meant to be a guideline in our research of the integration
of Snort into SURFids. In this research we try to find the best way to
implement Snort into SURFids. At this moment multiple questions arise as
to which implementation is the best.

We’ve got four weeks to complete this research. We start on 07-01-2008
and we should be finished on 01-02-2008. These four weeks are divided as
follows:

1. Preliminary tasks

2. Research

3. Research

4. Concluding research and writing paper

This document is organised in the same way as the available time. First
we’ll describe the preliminary tasks, then the research itself followed by the
concluding tasks.

1 Preliminary tasks

The preliminary tasks consist of the following tasks:

• Reading into subject matter

• Writing this document

• Preparing the experiments

1

• Installing and configuring the test environment

We’ll further specify these tasks below.

1.1 Reading into subject matter

We’re going to read the available documentation of SURFids, Snort and
Argos. Nepenthes will be touched, but only on the surface. The goal of this
task is to get a better understanding of how these programs work and how
we might be able to let these programs cooperate with each other.

1.2 Writing this document

As stated in the introduction this document is meant to serve as a sort of
guideline for us in this project. This document makes it clear what we will
do and, more importantly what we won’t do.

1.3 Preparing the experiments

For each experiment we will make a detailed overview of what we will do
during this experiment. We will give all the points of interest and the way
we will test these points of interest. Part of preparing the experiments is
designing the test setup for each experiment.

1.4 Installing and configuring the test environment

This task might be repeated multiple times if the test environment differs
between tests. In that case only the first test environment will be installed in
the preliminary tasks period. The other test environments will be installed
when necessary.

2 Research

During the research period we will try to answer all the questions we’ve
asked ourselves during the preparation of these experiments. The research
goal is to be able to answer the following question:

Which implementation of Snort into SURFids gives the most added value
to the customer while not degrading performance in a noticable way.

We will research the following possible implementations:

1. Placing Snort on the tunnel server

2. Placing Snort before Argos

3. Implementing Snort as a stand-alone honeypot (much like the way
Argos and Nepenthes are deployed)

2

To find out which of the above implementations is the best we’ll look at
the following characteristics of the system:

• Performance

• Informational value

• Added value to the existing system

• Ease of administration

Because of the time limitation of one month we won’t do the following:

• Implementing Snort into the live SURFids

• Creating a step-by-step manual to implement Snort

When we’re done with the project SURFnet should be able to use our
results and the documentation about how we’ve set up our test environment
to start a project to implement Snort into the live SURFids.

3 Concluding research

During this final fase of our research we’ll do the following tasks:

• Finishing the research

• Writing the report

• Making a presentation of our results

3.1 Finishing the research

It’s possible that the research period has not been fully completed at the
end of the third week. Therefore we have some time scheduled to finish the
research.

3.2 Writing the report

When all experiments are finished we can write the report containing the
results of the experiments and our conclusion.

3.3 Making a presentation of our results

We will make a presentation containing our results and conclusion for SURFnet
and the UvA.

3

Experiment 1: Snort before Argos

Goal

The goal of this experiment is to determine whether the setup as displayed in
figure 2 will work and wheter it adds any value to the existing setup.

Setup

For this experiment we need a Snort server which is configured like a transparant
proxy. The Snort machine will be placed in between the Tunnelserver and the
Argos server. In figure 1 on page 1 the current situation is depicted. In figure
2 on page 2 the situation during the experiment is depicted.

Figure 1: Schematic view of the current situation of SURFids

1

Figure 2: Schematic view of SURFids during the experiment

Requirements

For this experiment the following is required:

• A server with at least 3 network interface cards

• A Debian based OS

• Snort with PostgreSQL support

• Real data

• An extra UTP cable

• A SURFids implementation

2

Setting up the Snort server

1. Install a Debian based OS on a server with at least 3 network interface
cards.

2. Install Snort and PostgreSQL. Make sure you select the eth0 interface as
the interface on which Snort will listen. [2] [3]

apt-get install snort snort-pgsql postgresql-8.1

3. Configure the database

su postgres
createdb snort
zcat /usr/share/doc/snort-pgsql/create_postgresql.gz | psql snort
createuser -P snort

Enter password for new user: snort-password
Enter it again: snort-password
Shall the new user be a superuser? (y/n) n
Shall the new user be allowed to create databases? (y/n) n
Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

4. Log into the database

psql snort

5. Give the snort user the correct privileges

grant all privileges on database snort to snort;

6. Edit the Snort configuration. Find the line that says #output plugins and
insert the following line:

output database: alert, postgresql, user=snort
password=snort-password dbname=snort host=postgresql-host-ip

7. Make sure PostgreSQL is correctly configured to accept connections from
Snort

8. Create a bridge interface [1]

3

/usr/sbin/brctl addbr br0

9. Add the real network interfaces to the bridge

/usr/sbin/brctl addif br0 eth0
/usr/sbin/brctl addif br0 eth1

10. Start the network interfaces

/sbin/ifconfig eth0 0.0.0.0
/sbin/ifconfig eth1 0.0.0.0

We will use the default Snort ruleset and some of the bleeding edge Snort
rulesets for this experiment, the reason for this is that we don’t have access to
the paid ruleset.

Running the experiment

Snort must now run for about a day to gather information about the incoming
traffic. We expect to gather information of about 100 attacks during this day.
If we gather less than this amount we might need to extend the test period
to 2 or 3 days. To make sure that we gather enough information it might
be possible to configure the SURFids system to send all possible attacks to
the Argos machine. This should cause more known attacks to be sent to Argos.
Because Argos doesn’t recognise known attacks and Snort does, we can compare
the alerts that both systems give.

Expected results

We expect to gather at least 100 alarms from Snort. These results must be
compared to alarms from Argos. We expect that we will be able to recognise
all known attacks and hope to provide more information in attacks that are as
yet unknown.

Furthermore we expect this setup of Snort to:

• Degrade performance with a small amount, adding a few ms RTT1 per
packet.

• Be able to cope with the load very well, now and in the future.

• Difficult to manage and extend.
1RTT: Round Trip Time

4

Degrade performance Because of the added (but invisible) hop in the net-
work about 5ms of RTT latency will be added.

Load Because only the traffic destined for Argos is passed through Snort we
don’t expect a heavy load on the Snort server. As long as the average network
throughput to the Argos machine doesn’t become to high2 Snort should be very
well able to manage the load. Especially in a Snort - Barnyard setup – which
we won’t test –

Difficult to manage and extend Because the Snort machine is a bridge
between the tunnel server and Argos it’s a high risk machine. When this machine
fails the Argos machine won’t be available. It will also be difficult to extend the
Snort server when the load for this machine becomes to high. Adding a second
bridge should be possible, but brings a whole range of other (management)
problems with it.

References

[1] Francois Bayart. Setting up a bridge firewall. http://www.debian.org/
doc/manuals/securing-debian-howto/ap-bridge-fw.en.html, 2008.

[2] Anton Chuvakin and Vladislav V. Myasnyankin. Complete snort-based ids
architecture. http://www.securityfocus.com/infocus/1640, 2002.

[3] unknown. Perfect setup of snort + base + postgresql on ubuntu 6.06
lts. http://www.howtoforge.com/intrusion_detection_snort_base_
postgresql_ubuntu6.06, 2007.

2We expect that to high is around 50Mbit+, but that’s only a guess.

5

Experiment 2: Snort next to Argos and Nepenthes

Goal

The goal of this experiment is to give insight in the data Snort provides in
comparison to Nepenthes and Argos. The focus of this experiment is to give
insight if Snort provides an added value to the data Argos provides. With this
setup one can also compare Nepenthes and Snort data, does Snort give more
information, does Snort detect more/less intrusions?

Setup

In this experiment Snort will be implemented on a stand alone machine. Snort
will listen to all traffic on it’s interface. Configure the switch, to which the
Argos and Nepenthes machines are connected, to echo all it’s data to the Snort
machine. This way Snort will be able to analyse all data coming through the
switch. This will not effect the running configuration of both systems and
gives insight in the data Snort collects in comparison to the data Argos and
Nepenthes provide. In the current situation the tunnel server sends the data to
either Nepenthes or Argos see figure 1.

Figure 1: Schematic view of the current SURFids setup

The new situation as seen in figure 2 shows Snort being placed next to Argos
and Nepenthes. Unfortunately this picture is the logical situation. Nepenthes is
physically located on the tunnel server. Because of this setup Snort won’t be able

1

to analyse Nepenthes data. In a future setup where Nepenthes is located next to
Argos this data can also be analysed by Snort.

Figure 2: Schematic view of SURFids during the experiment

Requirements

For this experiment the following is required:

• A server with at least two network interface card

• A Debian based OS

• Snort with PostgresSQL support

• Real data

• A SURFids implementation

Setting up the Snort server

Setting up Snort and PostgreSQL will not be handled thoroughly for more
information see the description of experiment 1 [1]

1. Configure the switch to echo all traffic to the port on which the Snort ma-
chine is connected. On most switches this is also referred to as monitoring
data.

2

2. Install a Debian based OS on a server with at least tow network interface
cards.

3. Install Snort and PostgreSQL

4. Configure the database

Running the experiments

Based on the information from the SURFids environment where we will conduct
our experiment we expect around 100 possible malicious attacks on the SURFids
sensors per day. If a possible hostile source tries to conduct multiple malicious
attacks those attacks will be send to Argos. At this moment there aren’t many
(any) Argos results, this could influence the length of the experiment.

Expected results

Depending on the amount of positive attacks on Argos (that will log data) we
will be able to conclude whether Snort provides added value to the current
setup. Running the experiment for one day we expect to get around 100 alerts
which can be compared to the Argos data. If one day doesn’t provide enough
data we will have to run the experiment for two or three.

Expected results from Snort:

• Snort will log all known attacks.

• No impact on the running setup.

• The Snort machine will be able to cope with the load very well, now and
in the future [1].

References

[1] M. van Kleij. Expirement 1: Snort before argos. http://www.os3.nl/
2007-2008/students/michael_van_kleij/rp1-logbookl, 2008.

3

Experiment 3: Snort on the Tunnel server

Goal

The goal of this experiment is to determine whether it is possible to install Snort
on the tunnel server and if this setup has any added value to the current system
as depicted in figure 1.

Setup

The current SURFids situation is depicted in figure 1. In the experiment this
situation will not be changed. Snort can be installed on the tunnel server and
configured to listen on the interface which connects to the honeypot systems.

Unfortunately image 1 is only a schematic view. In reality Nepenthes is
installed on the tunnel server. For this experiment to be succesfull there are
several options. Easiest of which would be installing Nepenthes on a seperate
machine. In which case this setup would logically be the same as the setup in
experiment 2 [1].

Requirements

For this experiment the following is required:

• full access to a SURFids setup and thus the tunnel server

• Real data

• Snort with PostgreSQL support

Setting up the Snort server

Install Snort on the tunnelserver as described in experiment 1 [2]

Running the experiment

This experiment must run for about one day to gather enough information.
because this experiment will capture both data from Argos and Nepenthes the
gathering of data will go faster than in experiment 1.

Expected results

We expect this experiment to gather exactly the same information as experiment
2. We expect the management, expandability and performance of this setup to
be less than experiment 2.

1

Figure 1: Schematic view of the current situation of SURFids

References

[1] Sander Keemink. Experiment 2: Snort next to argos and nepenthes. https:
//www.os3.nl/2007-2008/students/sander_keemink/rp1, 2008.

[2] Michael van Kleij. Experiment 1: Snort before argos. https://www.os3.
nl/2007-2008/students/michael_van_kleij/rp1-logbook, 2008.

2

Results of Experiment 1

Sander Keemink, Michael van Kleij

January 30, 2008

1 Introduction

This document describes the results of the first ex-
periment executed for SURFnet in the “Implement-
ing Snort into SURFids” project. The experiment
itself is described in [4]. During this experiment
we’ve seen various results and problems. These are
described in this document.

2 Running the experiment

We began working on this experiment on the 11th
of January 2008. We configured the server to be
able to function as a bridge. For this we needed
to add two network interface cards into the server.
When the bridge was fully functional we inserted
this server in between the tunnel server and the
Argos server.

2.1 Snort

During the installation of Snort we encountered
some problems. The first one was a database prob-
lem. Later on we had some problems with the rule-
sets. These problems have all been solved. In the
following paragraphs we describe the problems and
their solutions.

Database As database we installed PostgreSQL
version 8.2. In Ubuntu this server is configured to
run on port 5433. Snort however, is configured to
connect to the PostgreSQL database on port 5432.
This gave us some problems because we couldn’t
get Snort to connect on port 5433. When we con-
figured the PostgreSQL database to listen on port
5432 instead of port 5433 this problem was solved.

The next database related problem was a rights
problem. Even though we granted the user Snort
all privileges as described in [4] Snort couldn’t write

in the database. Using phppgadmin the rights
were changed1 to let the Snort user write to the
database. This solved some of the problems, but
eventually we changed the owner of the database to
the Snort user and hereby solving all the remaining
problems with writing to the database.

Rulesets The rulesets are the core of Snort.
These rulesets are created to catch the exploits and
report these to the user. In our case with Snort be-
fore Argos we wanted to see at least the attacks
Argos reported, but preferrably more.

When we analysed the results for the first time
something caught our attention. Not all of the at-
tacks reported by Argos were reported by Snort,
but other attacks that were not reported by Argos
were reported by Snort. We wanted to make sure
that Snort recognised at least the attacks Argos
saw so we added some rules like the following rule:
1. These rules were specific for DCOM attacks on
port 135 [2]. We also enabled the shellcode rule-
set as included in Snort to be able to see shellcode
attacks.

Example 1 Snort rule
alert tcp any any -> any 135 (msg:"DCOM
Exploit (MS03-026) targeting Windows 2000
SP0"; content:"|74 16 e8 77 cc e0 fd 7f
cc e0 fd 7f|";
classtype:attempted-admin; sid:1100001;
reference:URL,www.microsoft.com/security/
security_bulletins/ms03-026.asp;
reference:URL,jackhammer.org/rules/1100001;
rev:1;)

1Thanks to Kees who changed the rights in the database

1

2.2 Barnyard

Even though we didn’t mention Barnyard in the
experiment setup we thought Barnyard might have
some added value in this setup. Barnyard is a pro-
gram which analyses the unified logs Snort supplies
and handles these. In our case Barnyard writes the
data into the database instead of Snort. The ad-
vantage of this is that Barnyard takes a part of
the load off Snort. Especially in a setup where the
data needs to be written to a database on another
host. This insures Snort registers all attack at-
tempts. Barnyard is also able to recognise wheter
the database is available, and if it isn’t it won’t
send updates to the database untill the database is
available again [1].

Because we use Bleeding Edge Snort rules and
some special rules for dcom attacks Barnyard
wasn’t able to recognise all attacks. Barnyard uses
the files gen-msg.map and sid-msg.map to find the
attack names from the attack signature in the log-
file we had to use a script [5] which is able to gen-
erate these maps.

3 Results

During the days we’ve run this experiment we’ve
gathered a lot of information. As of 16 January
2008 we’ve collected almost 300 ‘attacks’, whereas
Argos has collected only 108 attacks. Of these 108
attacks 61 were also discovered by Snort. Since 15
January however, we detect more than 90% of all
attacks discovered by Argos. In table 1 you can see
the amount of attacks discovered by Argos, Snort
and their overlap. On 16 January we saw an attack
registered in Argos and Snort of which we’re sure
it’s the same attack. Argos reports this attack on
different ports than Snort, so we didn’t count this
attack as an overlapping attack. See section 3.1
and log 1 for more information.

Date Argos Snort Overlap Perct.
12-01-2008 20 3 2 10%
13-01-2008 20 10 5 25%
14-01-2008 32 97 20 62,5%
15-01-2008 36 178 34 94%
16-01-2008 26 139 25 96%

Table 1: Results from Snort and Argos

A lot of the results from Snort in the table are
attacks which don’t register at Argos because of
Argos not running those services – like MS-SQL –.
Another reason of the high amount of results from
Snort is that Snort is a network ids which inspects
packets. Some attacks are executed in a way that
multiple packets with the same payload are sent to
the attacked host. Snort sees each of these packets
as an individual attack where Argos sees this as
a single attack. In Appendix A you can find all
the overlapping attacks and some of the attacks on
which only Snort triggered.

3.1 Points of interest

During this experiment we found some things which
were strange. Here we specify these strange results:

• Time skew: There is a clock skew between
Argos and Snort. Argos is about 10 minutes
ahead of our Snort machine. The time in the
Snort machine is synced with ntp.ubuntu.com.
So our guess would be the Argos machine being
10 minutes ahead. At the moment of writing
this time skew flipped over and now Argos is
behind.

• Multiple entries per attack As we’ve already
said in section 2 Snort enters multiple entries
in the database in some attacks. To be able
to reliably implement Snort into SURFids it
would be best to be able to recognise these
double entries and filter them out of the re-
sults. We can recognise these results using the
timestamp, source port, destination port and
name of the attack. When the timestamp is
within 1 or 2 seconds from earlier entries this
entry can be seen as a duplicate. The names
however might differ because it’s possible that
multiple rules trigger on an attack.

• Missing payload data When using Barnyard
the payload data is lost. This data might not
be interesting for most of the customers, and at
the moment SURFids might not even be able
to store this data, but in analysis of attacks
this data might come in handy.

• Port difference between Argos and Snort On
the 16th of January we saw an attack reported
by both Snort and Argos. Argos reported this

Results of Experiment 1
Sander Keemink & Michael van Kleij

2

attack on port 6129 while Snort reported this
attack on port 445. The attack logs of this
attack can be seen in log 1. Keep in mind
that the timestamps between Argos and Snort
differ with aproximately 10 minutes. For an
explanation of the logformat you can look at
table 2.

• Attacks with source ip 192.168.8.75 This ip ad-
dress is the ip address of the Argos machine.
The attacks are almost always directed out-
ward to the internet. it appears that an Argos
image might be infected with a virus.

Log 1 Port difference between Argos and Snort
A: 16-01-2008 07:44:42 Malicious attack
- Argos 89.139.111.141 3421
192.168.8.129 6129 TEST

S: SHELLCODE x86 NOOP 2008-01-16 07:34:33
89.139.111.141:3306 192.168.8.129:445
TCP

3.2 Performance

During the experiment we’ve looked closely to the
performance of the system. Our main focus was
on the performance of the complete SURFids sys-
tem and not so much of the system running Snort.
However, we do expect the overall SURFids system
will experience degradation of performance when
the Snort machine runs with a heavy load. At this
moment performance loss because of the load on
the server is neglible, therefore we’ve only looked
to the ping averages of the system with the Snort
machine and the system wthout the Snort machine.
You can see these results in log 2 and log 3. As
can be seen in these results there is a small added
delay caused by the Snort machine. The average
added delay is 1.354ms, which is a neglible differ-
ence. When the Snort machine has a higher load we
expect this difference to grow, because the load on
Snort influences the speed with which the machine
can handle the packets for the Argos machine.

Log 2 Ping averages with Snort
30 packets transmitted, 30 received,
0% packet loss, time 29001ms
rtt min/avg/max/mdev =
5.911/8.391/34.333/5.171 ms

30 packets transmitted, 30 received,
0% packet loss, time 29000ms
rtt min/avg/max/mdev =
5.845/9.220/44.890/7.453 ms

30 packets transmitted, 30 received,
0% packet loss, time 28997ms
rtt min/avg/max/mdev =
5.839/9.394/33.939/6.313 ms

30 packets transmitted, 30 received,
0% packet loss, time 29021ms
rtt min/avg/max/mdev =
5.654/7.842/28.170/4.413 ms

3.3 Informational and Added Value

Snort in the current situation will add some value
to the current SURFids system. It registers more
than 90% of the attacks which are reported by Ar-
gos. In these situations Snort is often able to tell
which attack it is, as can be seen in appendix A.
Because of this we can see when an attack appears
to be a new attack. It is possible that an existing
attack isn’t recognised by Snort, but with the cur-
rent rulesets we don’t expect this to be a common
issue. One of the ways to be more sure that rela-
tively new attacks will be recognised is buying the
paid rulesets. These contain rules that are newer
than the public rulesets. Updating these rules can
be done automatically using Oinkmaster [3].

When using Barnyard the amount of informa-
tion gathered from Snort decreases somewhat as
it doesn’t have the payload data anymore. This
might or might not be an issue depending wheter
SURFnet wants this information.

3.4 Ease of administration

As we’ve described in the experiment setup [4] we
expected this setup to be difficult to manage and
extend. There are some reasons for this.

Results of Experiment 1
Sander Keemink & Michael van Kleij

3

Log 3 Ping averages without Snort
30 packets transmitted, 30 received,
0% packet loss, time 29001ms
rtt min/avg/max/mdev =
5.808/7.354/30.453/4.411 ms

30 packets transmitted, 30 received,
0% packet loss, time 29002ms
rtt min/avg/max/mdev =
5.880/7.220/12.821/2.060 ms

30 packets transmitted, 30 received,
0% packet loss, time 29000ms
rtt min/avg/max/mdev =
5.885/8.518/36.331/5.862 ms

30 packets transmitted, 30 received,
0% packet loss, time 28998ms
rtt min/avg/max/mdev =
5.902/6.339/8.575/0.608 ms

1. The system can only be reached using a special
management network interface card.

2. When the Snort machine’s load becomes to
high it needs to be replaced, or there must be
a second Snort machine added. When this is
the case an Argos machine must also be added.
Another possibility is using a loadbalancer be-
fore Snort and converging the traffic to one
Argos machine.

The management issue won’t be such a problem
as we thought at first. As long as it’s possible to
have 3 network interface cards in the server it is
possible to create a bridge and a network interface.
Because the interfaces within the bridge don’t have
an ip address they’re in no way directly reachable.
The interface with an ip adres will be heavily fire-
walled. See example 2 for the used firewall rules.

Extending the setup is possible, but must be
thought through extensively before being done.
One of the questions that need to be answered be-
fore extending the setup is whether it is necessary
to add an extra Argos machine to the setup or if it’s
enough to just add another Snort machine. When
it’s necessary to add an Argos machine it might
also be necessary to add a Snort machine, or add a

loadbalancer behind the Snort machine.

Example 2 iptables rules
iptables -A INPUT -i eth0 -s 192.168.7.0/24
-p tcp --dport 22 -j ACCEPT
iptables -A INPUT -i eth0 -s 192.168.7.0/24
-p tcp --dport 80 -j ACCEPT
iptables -A INPUT -i eth0 -m state --state
ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -i eth0 -j REJECT

Conclusion

We believe this setup of Snort is able to bring inter-
esting data into SURFids. When this data is stored
in a good, intelligent way it is possible to add rel-
evant information to the Argos reports. Because
Snort registers more attacks than Argos does we
think it might be even better to add this informa-
tion to the database as well. With this information
SURFids is better able to detect various attacks
that might previously have gone unnoticed. How-
ever, there are some issues that need to be resolved
before Snort can be integrated in SURFids. There
needs to be a way to recognise double alerts for one
attack, and the time skew needs to be solved.

References

[1] Snort core team. Snort faq. http://www.
snort.org/docs/faq/1Q05/node86.html.

[2] BT Counterpane. Security alert: Mi-
crosoft rpc dcom remote shell vulnera-
bility. http://www.counterpane.com/
alert-v20030801-001.html.

[3] Andreas Östling. Oinkmaster. http://
oinkmaster.sourceforge.net/.

[4] Michael van Kleij. Experiment 1: Snort before
argos. https://www.os3.nl/2007-2008/
students/michael_van_kleij/rp1-logbook,
2008.

[5] Phil Wood. One liner to generate map files
from rules. http://www.mcabee.org/lists/
snort-users/Aug-02/msg00758.html.

Results of Experiment 1
Sander Keemink & Michael van Kleij

4

A Results

This appendix contains a subsection of the results gathered from Snort. We will show all the overlapping
results and some of the Snort results of which there was no Argos result.

A.1 Overlapping results

The layout of the results is as displayed in table 2

Argos: date attack source ip source port dest. ip dest. port Sensor info
Snort: attack date source ip source port dest. ip dest. port protocol

Table 2: Results layout

A: 12-01-2008 15:42:07 Malicious attack - Argos 212.147.79.166
65225 192.168.8.129 445 TEST lsass.exe
S: NETBIOS SMB-DS IPC$ unicode share access 2008-01-12 15:51:29.663
212.147.79.166:65225 192.168.8.129:445 TCP

A: 12-01-2008 18:35:55 Malicious attack - Argos 91.35.236.128
2875 192.168.8.129 445 TEST lsass.exe
S: NETBIOS SMB-DS IPC$ unicode share access 2008-01-12 18:46:10.804
91.35.236.128:2875 192.168.8.129:445 TCP

A: 13-01-2008 04:43:40 Malicious attack - Argos 194.203.40.52
38590 192.168.8.129 445 TEST services.exe
S: NETBIOS SMB-DS IPC$ unicode share access 2008-01-13 04:53:57.23
194.203.40.52:38590 192.168.8.129:445 TCP

A: 13-01-2008 11:55:28 Malicious attack - Argos 220.145.105.163
1990 192.168.8.129 445 TEST lsass.exe
S: NETBIOS SMB-DS IPC$ unicode share access 2008-01-13 12:05:43.888
220.145.105.163:1990 192.168.8.129:445 TCP

A: 13-01-2008 17:51:49 Malicious attack - Argos 82.233.196.6
1689 192.168.8.129 445 TEST lsass.exe
S: NETBIOS SMB-DS IPC$ unicode share access 2008-01-13 18:02:06.951
82.233.196.6:1689 192.168.8.129:445 TCP

A: 13-01-2008 19:06:55 Malicious attack - Argos 86.147.233.54
62512 192.168.8.129 445 TEST lsass.exe
S: NETBIOS SMB-DS IPC$ unicode share access 2008-01-13 19:17:12.952
86.147.233.54:62512 192.168.8.129:445 TCP

A: 13-01-2008 20:55:13 Malicious attack - Argos 89.61.252.93
3446 192.168.8.129 445 TEST lsass.exe
S: NETBIOS SMB-DS IPC$ unicode share access 2008-01-13 21:05:31.80
89.61.252.93:3446 192.168.8.129:445 TCP

A: 14-01-2008 04:23:40 Malicious attack - Argos 71.49.152.204

Results of Experiment 1
Sander Keemink & Michael van Kleij

5

22130 192.168.8.129 445 TEST lsass.exe
S: NETBIOS SMB-DS IPC$ unicode share access 2008-01-14 04:33:56.73
71.49.152.204:22130 192.168.8.129:445 TCP

A: 14-01-2008 04:30:27 Malicious attack - Argos 72.89.186.108
3931 192.168.8.129 445 TEST services.exe
S: NETBIOS SMB-DS IPC$ unicode share access 2008-01-14 04:40:45.86
72.89.186.108:3931 192.168.8.129:445 TCP

A: 14-01-2008 06:53:39 Malicious attack - Argos 124.87.104.6
1402 192.168.8.129 445 TEST lsass.exe
S: NETBIOS SMB-DS IPC$ unicode share access 2008-01-14 07:03:56.62
124.87.104.6:1402 192.168.8.129:445 TCP

A: 14-01-2008 14:29:13 Malicious attack - Argos 84.151.122.120
1807 192.168.8.129 445 TEST lsass.exe
S: BLEEDING-EDGE EXPLOIT MS04011 Lsasrv.dll RPC exploit (Win2k)
2008-01-14 14:39:33.513 84.151.122.120:1807
192.168.8.129:445 TCP

A: 14-01-2008 15:07:31 Malicious attack - Argos 192.168.7.149
48270 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-14 15:17:50.335
192.168.7.149:48270 192.168.8.129:135 TCP

A: 14-01-2008 15:23:47 Malicious attack - Argos 116.4.34.112
17665 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-14 15:34:03.19
116.4.34.112:17665 192.168.8.129:135 TCP

A: 14-01-2008 15:32:23 Malicious attack - Argos 66.228.18.20
4631 192.168.8.129 445 TEST lsass.exe
S: BLEEDING-EDGE EXPLOIT MS04011 Lsasrv.dll RPC exploit (Win2k)
2008-01-14 15:42:42.474 66.228.18.20:4631
192.168.8.129:445 TCP

A: 14-01-2008 16:01:17 Malicious attack - Argos 83.71.89.114
63825 192.168.8.129 445 TEST lsass.exe
S: BLEEDING-EDGE EXPLOIT MS04011 Lsasrv.dll RPC exploit (Win2k)
2008-01-14 16:11:36.92 83.71.89.114:63825 192.168.8.129:445
TCP

A: 14-01-2008 16:34:15 Malicious attack - Argos 192.168.7.149
60077 192.168.8.129 135 TEST svchost.exe
S: DCOM Exploit (MS03-026) targeting Windows2000 SP0 2008-01-14
16:44:34.48 192.168.7.149:60077 192.168.8.129:135 TCP

A: 14-01-2008 16:50:40 Malicious attack - Argos 192.168.7.149
46596 192.168.8.129 135 TEST svchost.exe
S: DCOM Exploit (MS03-026) targeting WindowsXP SP1 2008-01-14

Results of Experiment 1
Sander Keemink & Michael van Kleij

6

17:00:59.277 192.168.7.149:46596 192.168.8.129:135 TCP

A: 14-01-2008 18:20:24 Malicious attack - Argos 89.244.255.237
3514 192.168.8.129 135 TEST
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-14
18:30:41.427 89.244.255.237:3514 192.168.8.129:135 TCP

A: 14-01-2008 18:31:40 Malicious attack - Argos 41.221.16.208
62437 192.168.8.129 445 TEST
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-14 18:42:00.163 41.221.16.208:62437
192.168.8.129:445 TCP

A: 14-01-2008 19:01:46 Malicious attack - Argos 85.104.253.108
3763 192.168.8.129 445 TEST
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-14 19:12:05.93 85.104.253.108:3763 192.168.8.129:445
TCP

A: 14-01-2008 19:16:53 Malicious attack - Argos 81.152.77.3
3192 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-14 19:27:13.538
81.152.77.3:3192 192.168.8.129:135 TCP

A: 14-01-2008 19:37:29 Malicious attack - Argos 75.42.232.84
63835 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-14 19:47:48.579
75.42.232.84:63835 192.168.8.129:135 TCP

A: 14-01-2008 20:00:58 Malicious attack - Argos 213.151.234.234
2421 192.168.8.129 445 TEST
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-14 20:11:18.714 213.151.234.234:2421
192.168.8.129:445 TCP

A: 14-01-2008 20:38:17 Malicious attack - Argos 89.244.255.237
3633 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-14 20:48:37.404
89.244.255.237:3633 192.168.8.129:135 TCP

A: 14-01-2008 21:14:39 Malicious attack - Argos 64.223.62.105
50498 192.168.8.129 445 TEST lsass.exe
S: BLEEDING-EDGE EXPLOIT MS04011 Lsasrv.dll RPC exploit (Win2k)
2008-01-14 21:24:59.185 64.223.62.105:50498
192.168.8.129:445 TCP

A: 14-01-2008 21:59:37 Malicious attack - Argos 86.155.151.246
61855 192.168.8.129 445 TEST lsass.exe
S: BLEEDING-EDGE EXPLOIT MS04011 Lsasrv.dll RPC exploit (Win2k)
2008-01-14 22:09:58.273 86.155.151.246:61855

Results of Experiment 1
Sander Keemink & Michael van Kleij

7

192.168.8.129:445 TCP

A: 14-01-2008 23:18:52 Malicious attack - Argos 212.84.122.247
1400 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-14 23:29:12.135
212.84.122.247:1400 192.168.8.129:135 TCP

A: 15-01-2008 00:45:23 Malicious attack - Argos 212.80.64.90
14855 192.168.8.129 445 TEST
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-15 00:55:42.983 212.80.64.90:14855
192.168.8.129:445 TCP

A: 15-01-2008 01:41:27 Malicious attack - Argos 96.229.5.225
1919 192.168.8.129 135 TEST svchost.exe
Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 01:51:47.408
96.229.5.225:1919 192.168.8.129:135 TCP

A: 15-01-2008 06:14:21 Malicious attack - Argos 89.244.255.237
4563 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 06:24:42.399
89.244.255.237:4563 192.168.8.129:135 TCP

A: 15-01-2008 09:49:12 Malicious attack - Argos 79.187.16.50
3312 192.168.8.129 445 TEST lsass.exe
S: BLEEDING-EDGE EXPLOIT MS04011 Lsasrv.dll RPC exploit (Win2k)
2008-01-15 09:59:33.416 79.187.16.50:3312
192.168.8.129:445 TCP

A: 15-01-2008 10:34:44 Malicious attack - Argos 89.244.255.237
3343 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 10:45:04.854
89.244.255.237:3343 192.168.8.129:135 TCP

A: 15-01-2008 10:45:44 Malicious attack - Argos 91.154.29.68
1717 192.168.8.129 139 TEST
S: SHELLCODE x86 inc ebx NOOP 2008-01-15 10:56:05.794
91.154.29.68:1717 192.168.8.129:139 TCP

A: 15-01-2008 10:53:19 Malicious attack - Argos 192.168.7.149
42957 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 11:03:40.094
192.168.7.149:42957 192.168.8.129:135 TCP

A: 15-01-2008 10:56:59 Malicious attack - Argos 192.168.7.149
60687 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15
11:06:46.582 192.168.7.149:60687 192.168.8.129:135 TCP

A: 15-01-2008 11:41:33 Malicious attack - Argos 192.168.7.222

Results of Experiment 1
Sander Keemink & Michael van Kleij

8

50553 192.168.8.129 135 TEST svchost.exe
S: DCOM Exploit (MS03-026) targeting Windows2000 SP0 2008-01-15
11:51:54.54 192.168.7.222:50553 192.168.8.129:135 TCP

A: 15-01-2008 11:55:24 Malicious attack - Argos 192.168.7.149
54076 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 12:05:46.211
192.168.7.149:54076 192.168.8.129:135 TCP

A: 15-01-2008 12:01:38 Malicious attack - Argos 79.193.240.108
1382 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 12:12:00.07
79.193.240.108:1382 192.168.8.129:135 TCP

A: 15-01-2008 12:19:42 Malicious attack - Argos 79.15.87.183
2298 192.168.8.129 139 TEST
S: SHELLCODE x86 inc ebx NOOP 2008-01-15 12:30:03.466
79.15.87.183:2298 192.168.8.129:139 TCP

A: 15-01-2008 12:28:41 Malicious attack - Argos 79.193.240.108
2897 192.168.8.129 135 TEST svchost.exe
S:Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 12:39:02.827
79.193.240.108:2897 192.168.8.129:135 TCP

A: 15-01-2008 12:54:06 Malicious attack - Argos 87.161.212.83
2449 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 13:04:27.787
87.161.212.83:2449 192.168.8.129:135 TCP

A: 15-01-2008 13:06:54 Malicious attack - Argos 91.154.29.68
3911 192.168.8.129 139 TEST
S: SHELLCODE x86 inc ebx NOOP 2008-01-15 13:17:15.822
91.154.29.68:3911 192.168.8.129:139 TCP

A: 15-01-2008 14:10:29 Malicious attack - Argos 192.168.7.222
59395 192.168.8.129 135 TEST svchost.exe
S: Snort Alert [1:1100001:0] 2008-01-15 14:21:03
192.168.7.222:59395i 192.168.8.129:135 TCP
A: 15-01-2008 14:30:59 Malicious attack - Argos 192.168.7.222
42386 192.168.8.129 135 TEST svchost.exe
S: Snort Alert [1:1101000:0] 2008-01-15 14:41:11
192.168.7.222:42386 192.168.8.129:135 TCP

A: 15-01-2008 14:35:15 Malicious attack - Argos 192.168.7.149
55489 192.168.8.129 135 TEST svchost.exe
S: Snort Alert [1:1101000:0] 2008-01-15 14:45:35
192.168.7.149:55489 192.168.8.129:135 TCP

A: 15-01-2008 14:39:12 Malicious attack - Argos 192.168.7.222
46461 192.168.8.129 135 TEST svchost.exe

Results of Experiment 1
Sander Keemink & Michael van Kleij

9

S: Snort Alert [1:1100001:0] 2008-01-15 14:49:33
192.168.7.222:46461 192.168.8.129:135 TCP

A: 15-01-2008 14:42:51 Malicious attack - Argos 192.168.7.222
33764 192.168.8.129 135 TEST svchost.exe
S: Snort Alert [1:1100001:0] 2008-01-15 14:53:11
192.168.7.222:33764 192.168.8.129:135 TCP

A: 15-01-2008 14:47:43 Malicious attack - Argos 192.168.7.222
52576 192.168.8.129 135 TEST svchost.exe
S: Snort Alert [1:1100001:0] 2008-01-15 14:58:03
192.168.7.222:52576 192.168.8.129:135 TCP

A: 15-01-2008 14:51:15 Malicious attack - Argos 192.168.7.222
58949 192.168.8.129 135 TEST svchost.exe
S: Snort Alert [1:1100001:0] 2008-01-15 15:01:37
192.168.7.222:58949 192.168.8.129:135 TCP

A: 15-01-2008 16:15:42 Malicious attack - Argos 192.168.7.149
49507 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 16:26:04
192.168.7.149:49507 192.168.8.129:135 TCP

A: 15-01-2008 16:28:08 Malicious attack - Argos 192.168.7.222
35195 192.168.8.129 135 TEST svchost.exe
S: DCOM Exploit (MS03-026) targeting Windows 2000 SP0 2008-01-15
16:38:29 192.168.7.222:35195 192.168.8.129:135 TCP

A: 15-01-2008 16:48:35 Malicious attack - Argos 89.122.56.4
61590 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 16:58:57
89.122.56.4:61590 192.168.8.129:135 TCP

A: 15-01-2008 16:58:49 Malicious attack - Argos 121.119.76.193
4778 192.168.8.129 139 TEST
S: SHELLCODE x86 inc ebx NOOP 2008-01-15 17:09:11
121.119.76.193:4778 192.168.8.129:139 TCP

A: 15-01-2008 17:34:14 Malicious attack - Argos 116.30.147.128
4367 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 17:44:34
116.30.147.128:4367 192.168.8.129:135 TCP

A: 15-01-2008 17:47:27 Malicious attack - Argos 83.36.149.69
1191 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 17:57:49
83.36.149.69:1191 192.168.8.129:135 TCP

Results of Experiment 1
Sander Keemink & Michael van Kleij

10

A: 15-01-2008 19:02:38 Malicious attack - Argos 88.122.11.130
3045 192.168.8.129 445 TEST lsass.exe
S: BLEEDING-EDGE EXPLOIT MS04011 Lsasrv.dll RPC exploit (Win2k)
2008-01-15 19:12:59 88.122.11.130:3045 192.168.8.129:445
TCP

A: 15-01-2008 19:06:57 Malicious attack - Argos 87.210.214.249
1893 192.168.8.129 445 TEST lsass.exe
S: BLEEDING-EDGE EXPLOIT MS04011 Lsasrv.dll RPC exploit (Win2k)
2008-01-15 19:17:19 87.210.214.249:1893 192.168.8.129:445
TCP

A: 15-01-2008 19:16:49 Malicious attack - Argos 87.209.193.86
1437 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 19:27:11
87.209.193.86:1437 192.168.8.129:135 TCP

A: 15-01-2008 19:28:49 Malicious attack - Argos 83.36.149.69
4286 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 19:39:11
83.36.149.69:4286 192.168.8.129:135 TCP

A: 15-01-2008 22:53:42 Malicious attack - Argos 83.135.140.187
4935 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 23:04:04
83.135.140.187:4935 192.168.8.129:135 TCP

A: 15-01-2008 23:32:35 Malicious attack - Argos 83.135.140.187
2480 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-15 23:42:54
83.135.140.187:2480 192.168.8.129:135 TCP

A: 16-01-2008 03:28:20 Malicious attack - Argos 70.226.173.146
56667 192.168.8.129 139 TEST
S: SHELLCODE x86 inc ebx NOOP 2008-01-16 03:38:43
70.226.173.146:56667 192.168.8.129:139 TCP

A: 16-01-2008 04:34:30 Malicious attack - Argos 60.40.195.117
1847 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-16 04:44:53
60.40.195.117:1847 192.168.8.129:135 TCP

A: 16-01-2008 04:45:56 Malicious attack - Argos 70.226.173.146
49737 192.168.8.129 139 TEST
S: SHELLCODE x86 inc ebx NOOP 2008-01-16 04:56:18
70.226.173.146:49737 192.168.8.129:139 TCP

A: 16-01-2008 06:18:12 Malicious attack - Argos 70.226.173.146
62193 192.168.8.129 139 TEST
S: SHELLCODE x86 inc ebx NOOP 2008-01-16 06:28:35

Results of Experiment 1
Sander Keemink & Michael van Kleij

11

70.226.173.146:62193 192.168.8.129:139 TCP

A: 16-01-2008 06:45:45 Malicious attack - Argos 70.226.173.146
63991 192.168.8.129 139 TEST
S: SHELLCODE x86 inc ebx NOOP 2008-01-16 06:56:07
70.226.173.146:63991 192.168.8.129:139 TCP

A: 16-01-2008 07:12:43 Malicious attack - Argos 70.226.173.146
64250 192.168.8.129 139 TEST
S: SHELLCODE x86 inc ebx NOOP 2008-01-16 07:23:05
70.226.173.146:64250 192.168.8.129:139 TCP

A: 16-01-2008 07:25:31 Malicious attack - Argos 89.139.111.141
2815 192.168.8.129 445 TEST dwDrvInst.exe
S: SHELLCODE x86 NOOP 2008-01-16 07:29:11 89.139.111.141:2815
192.168.8.129:445 TCP

A: 16-01-2008 08:00:53 Malicious attack - Argos 75.171.136.47
2595 192.168.8.129 445 TEST services.exe
S: BLEEDING-EDGE EXPLOIT x86 PexFnstenvMov/Sub Encoder 2008-01-16
08:11:16 75.171.136.47:2595 192.168.8.129:445 TCP

A: 16-01-2008 10:26:06 Malicious attack - Argos 91.11.247.92
2250 192.168.8.129 445 TEST lsass.exe
S: SHELLCODE x86 0x90 unicode NOOP 2008-01-16 10:36:30
91.11.247.92:2250 192.168.8.129:445 TCP

A: 16-01-2008 10:54:31 Malicious attack - Argos 211.59.110.72
61661 192.168.8.129 139 TEST
S: SHELLCODE x86 inc ebx NOOP 2008-01-16 11:04:54
211.59.110.72:61661 192.168.8.129:139 TCP

A: 16-01-2008 11:52:48 Malicious attack - Argos 89.243.236.180
53407 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-16 12:03:11
89.243.236.180:53407 192.168.8.129:135 TCP

A: 16-01-2008 12:44:33 Malicious attack - Argos 12.25.184.29
14508 192.168.8.129 135 TEST svchost.exe
S: SHELLCODE x86 NOOP 2008-01-16 12:54:56 12.25.184.29:14508
192.168.8.129:135 TCP

A: 16-01-2008 13:36:53 Malicious attack - Argos 70.226.173.146
53609 192.168.8.129 139 TEST
S: SHELLCODE x86 inc ebx NOOP 2008-01-16 13:47:16
70.226.173.146:53609 192.168.8.129:139 TCP

A: 16-01-2008 13:57:05 Malicious attack - Argos 89.139.111.141
4435 192.168.8.129 445 TEST DWRCS.EXE
S: SHELLCODE x86 NOOP 2008-01-16 14:07:05 89.139.111.141:4435

Results of Experiment 1
Sander Keemink & Michael van Kleij

12

192.168.8.129:445 TCP

A: 16-01-2008 14:24:20 Malicious attack - Argos 217.91.64.121
36985 192.168.8.129 135 TEST svchost.exe
S: SHELLCODE x86 NOOP 2008-01-16 14:35:04 217.91.64.121:36985
192.168.8.129:135 TCP

A: 16-01-2008 14:43:17 Malicious attack - Argos 217.91.64.121
37000 192.168.8.129 135 TEST svchost.exe
S: SHELLCODE x86 NOOP 2008-01-16 14:53:58 217.91.64.121:37000
192.168.8.129:135 TCP

A: 16-01-2008 15:03:17 Malicious attack - Argos 217.91.64.121
39390 192.168.8.129 135 TEST svchost.exe
S: SHELLCODE x86 NOOP 2008-01-16 15:14:01 217.91.64.121:39390
192.168.8.129:135 TCP

A: 16-01-2008 16:25:35 Malicious attack - Argos 216.198.166.72
2301 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-16 16:36:19
216.198.166.72:2301 192.168.8.129:135 TCP

A: 16-01-2008 16:50:38 Malicious attack - Argos 86.68.240.14
2869 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-16 17:01:22
86.68.240.14:2869 192.168.8.129:135 TCP

A: 16-01-2008 19:24:35 Malicious attack - Argos 201.151.199.49
7041 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-16 19:35:19
201.151.199.49:7041 192.168.8.129:135 TCP

A: 16-01-2008 20:02:37 Malicious attack - Argos 61.218.45.185
63079 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-16 20:13:20
61.218.45.185:63079 192.168.8.129:135 TCP

A: 16-01-2008 20:15:55 Malicious attack - Argos 200.83.129.218
61813 192.168.8.129 445 TEST
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-16 20:26:39 200.83.129.218:61813 192.168.8.129:445
TCP

A: 16-01-2008 21:58:27 Malicious attack - Argos 87.20.162.120
1284 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-16 22:09:11
87.20.162.120:1284 192.168.8.129:135 TCP

A: 16-01-2008 22:31:19 Malicious attack - Argos 62.197.168.78
3450 192.168.8.129 445 TEST lsass.exe

Results of Experiment 1
Sander Keemink & Michael van Kleij

13

S: BLEEDING-EDGE EXPLOIT LSA exploit 2008-01-16 22:42:03
62.197.168.78:3450 192.168.8.129:445 TCP

A: 16-01-2008 22:45:01 Malicious attack - Argos 91.11.230.170
2211 192.168.8.129 445 TEST lsass.exe
S: SHELLCODE x86 0x90 unicode NOOP 2008-01-16 22:55:47
91.11.230.170:2211 192.168.8.129:445 TCP

A: 16-01-2008 23:20:54 Malicious attack - Argos 201.151.199.49
7809 192.168.8.129 135 TEST svchost.exe
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-16 23:31:37
201.151.199.49:7809 192.168.8.129:135 TCP

A.2 Snort attacks

As Snort logs a lot more attacks than Argos does we list some of these attacks here. These attacks are
the ones we find the most interesting for SURFnet. Snort is able to detect a lot more attacks than these
listed here, but it’s impossible to list all those attacks.

MS-SQL Worm propagation attempt 2008-01-17 14:32:44
218.64.237.219:1358 192.168.8.129:1434 UDP

BLEEDING-EDGE WORM Allaple ICMP Sweep Reply Inbound 2008-01-17
14:17:51 195.169.125.75 58.13.12.123 ICMP

BLEEDING-EDGE WORM Potential MySQL bot scanning for SQL server
2008-01-16 22:43:32 125.24.222.67:2320 192.168.8.129:3306
TCP

BLEEDING-EDGE SCAN Potential VNC Scan 5900-5920 2008-01-15
16:38:54 87.53.231.189:62439 192.168.8.129:5900 TCP

SNMP trap tcp 2008-01-14 11:53:32.27 192.168.7.222:54165
192.168.8.129:162 TCP

Results of Experiment 1
Sander Keemink & Michael van Kleij

14

Results of Experiment 3

Sander Keemink, Michael van Kleij

January 29, 2008

1 Introduction

This document describes the results of the second
experiment conducted for SURFnet in the “Imple-
menting Snort into SURFids” project. The experi-
ment itself is described in the following experiment
setup document: [1]. We’ve chosen to conduct ex-
periment 3 instead of experiment 2. The reason
for this was that Nepenthes is installed on the tun-
nelserver and it would take to much time to set up
a separate Nepenthes and Snort server.

2 Running the experiment

The work on this experiment began on Monday
the 21st of January. On this day we set up the
experiment. During this setup a problem was en-
countered, the tunnel-server, on which Snort was
supposed to be installed, ran Debian stable instead
of Ubuntu 7.10 which we used in our previous ex-
periment. Debian stable containes Snort version
2.3 and Ubuntu 7.10 containes Snort 2.7. These
versions use another rule format and the version
installed on the Debian machine wasn’t able to use
the preprocessors we had configured. The solu-
tion to this problem was downloading the source
code of version 2.7 and compiling this. Because we
use Barnyard it isn’t necessary to give any config-
ure options to the configure program. When Snort
was compiled and ready to run Barnyard had to
be installed. This program was also compiled from
source, with the –enable-postgres option.

Because external connections to the database
were blocked Barnyard wasn’t able to connect to
the database, but when the iptables rules were
modified Barnyard was able to run.

2.1 Snort Rulesets

Soon after Snort was running it became clear that
Snort didn’t recognize all attacks. Specifically the
NetDDE and Symantec AV attacks. Even though
there are rules included in the default Snort rulesets
Snort doesn’t trigger on these attacks.

On the 23rd of January we discovered that in the
Snort configuration file the HOME NET variable
wasn’t configured correctly. Because many rules
only trigger when an attack is aimed at the homenet
these rules didn’t trigger. This solved the problems
we have had with the NetDDE and Symantec AV
attacks. See example 1 for the correct definition of
the HOME NET variable. It is important to spec-
ify all protected1 IP ranges as the HOME NET.
Otherwise the problems as mentioned above will
arise.

Example 1 snort.conf
var HOME_NET [192.168.3.0/24,192.168.8.0/24]

3 Results

During this experiment we’ve seen that the amount
of attacks registered by Nepenthes is much higher
than the amount of attacks registered by Argos. On
top of that Nepenthes knows which type of attack
it is when it classifies an attack as a malicious at-
tack. Snort detects almost all the attacks that are
reported by Nepenthes as malicious attack. Of the
possible malicious attacks it doesn’t register that
much. This is not a problem because Nepenthes

1Protected IP ranges are the ranges that you want to
protect. In most cases these will be all the IP ranges on
your network

1

–DRAFT–

Date Nep. Snort Overlap Perct.
22-01-2008 55 52 24 43.6%
23-01-2008 88 230 62 70%
24-01-2008 52 840 52 100%
25-01-2008 28 175 28 100%

Table 1: Results experiment 3

registers every connection on an open port as pos-
sible malicious. More about this is discussed in
section 3.1 and section 3.3. In table 1 you can see
the attacks registered by Nepenthes and Snort.

Since we’ve corrected the configuration error the
overlap has grown significantly. At this moment
we’ve got an overlap of above 90%. The same as
the Argos situation. We don’t expect it to be 100%
on a long interval, but on occasion a 100% overlap
must be possible on a given day.

The same as with experiment 1[2] Snort registers
some attacks that aren’t registered by Nepenthes.
These attacks are primarily SQL attacks, but we’ve
also seen some attacks on port 137 which contained
shellcode. The name of this attack is not known,
however, when you read the references Snort gives
you can find out more about this attack. Log 1
shows an alarm from Snort on this attack.

Log 1 Attack on port 137
SHELLCODE x86 NOOP 2008-01-23 20:09:22
192.168.98.225:3768 192.168.8.129:137
UDP

We’ve also seen some attacks being registered by
Nepenthes as a possible malicious attack. While
most of these possible malicious attacks are not reg-
istered by Snort, some are.

Snort registered the following attacks. These at-
tacks were either registered by Nepenthes as possi-
ble malicious, or not at all.

1. NETBIOS DCERPC NCACN-IP-TCP IActi-
vation remoteactivation overflow attempt on
port 135

2. MS-SQL Worm propagation attempt on port
1434

3. IMAP MDaemon authentication overflow sin-
gle packet attempt on port 143

4. WEB-IIS w3who.dll buffer overflow attempt
on port 80

5. FTP USER overflow attempt on port 21

6. SHELLCODE x86 NOOP on UDP port 137

7. Back Orifice Snort Buffer Attack on port 9080

8. WEB-IIS nsiislog.dll access on port 80

9. WEB-MISC PCT Client Hello overflow at-
tempt on port 443

10. XML-RPC for PHP Remote Code Injection on
port 80

11. Sentinel LM attack on UDP port 5093

Of these attacks numbers 1, 3, 4, 5, 8, 9 and 10
are recognized by Nepenthes as possible malicious
attacks. The other attacks are not registered by
Nepenthes.

3.1 Metasploit

SURFnet asked us if Snort is able to detect attacks
that Nepenthes doesn’t register. Nepenthes regis-
ters all incoming connections on an open port as
possible malicious attacks (see example 2). This
has been confirmed by making telnet connections
to those open ports, all these connections are reg-
istered as possible malicious. If an attack is made
on an open port and Nepenthes is able to recognize
this attack the attack is registered as a malicious
attack. On closed ports Nepenthes never registers
anything because it doesn’t simulate a known vul-
nerability for it.

Snort is able to detect and analyze attacks to
closed ports, however in some cases bidirectional
traffic is required to detect an attack. Bidirectional
traffic only occurs when the attacked host answers
on the attack, and thus only when a service runs
on the correct port. Therefore Snort won’t detect
all attacks on closed ports.

To get a better insight if Snort is complementary
to Nepenthes we used Metasploit 2 [?] to run twenty
known attacks. These are mostly attacks that we
didn’t register during the experimental period with
either Snort or Nepenthes.

2Metasploit is a framework for running known attacks.

Results of Experiment 3
Sander Keemink & Michael van Kleij

2

–DRAFT–

Total Poss. Mal. Snort
Closed port 10 0 0 3
Open port 10 9 1 5

Table 2: Summary of the Metasploit attack results

The results of the experiment can be seen in ta-
ble 5 in appendix B, a summary of this table is ta-
ble 2. For the complete Snort and Nepenthes logs
on the attacks see appendix B.1. The table consists
of the Metasploit name for the attack, whether the
attack was on an open or closed port, the regis-
tration of Nepenthes and Snort. Nepenthes always
registers a connection on an open port as malicious.
Only when Nepenthes recognizes the attack will the
attack be registered as a malicious attack. When
an attack is made on a closed port Nepenthes won’t
register this attack. Snort registers an attack only
if that attack triggered a rule, sometimes an attack
can trigger multiple rules. In table 5 we show the
amount different rules triggered.

3.2 Performance

Due to circumstances we have conducted experi-
ment 3 instead of experiment 2. In our project
setup of experiment 3 [1] we described that we ex-
pect the performance of experiment 3 to be about
the same as experiment 1. This because Snort sits
in between the honeypot and the tunnelserver even
though we installed Snort on the tunnelserver on
which Nepenthes is also installed. The performance
in ping replies can be seen in log 2.

As can be seen the average ping reply in this
setup is 8.029ms. In experiment 1 this was 8.711ms.
The difference between the two experiments is
0.682ms. The difference between these two is so
small that it could also be a measurement error.
On the other hand however, this difference is al-
most half of the difference between SURFids with
Snort and SURFids without Snort.

3.3 Informational and Added Value

One of the big questions when conducting these
experiments is whether this setup provides addi-
tional information to the current setup and if this
information adds any value to it. This question is
answered by looking at the results and comparing

Log 2 Ping averages with Snort
30 packets transmitted, 30 received,
0% packet loss, time 29001ms
rtt min/avg/max/mdev =
5.842/7.911/20.058/3.242 ms

30 packets transmitted, 30 received,
0% packet loss, time 29001ms
rtt min/avg/max/mdev =
5.890/8.675/42.962/6.605 ms

30 packets transmitted, 30 received,
0% packet loss, time 28998ms
rtt min/avg/max/mdev =
5.797/8.178/16.167/3.005 ms

30 packets transmitted, 30 received,
0% packet loss, time 28999ms
rtt min/avg/max/mdev =
5.840/7.352/16.813/2.303 ms

these results to the setup normally used.
As we’ve already said in section 3 Snort de-

tects some attacks which aren’t recognized by Ne-
penthes. This information is, in our opinion, valu-
able to the system. Attacks which are normally not
registered, or registered as possible malicious at-
tack by Nepenthes can be detected by Snort. This
causes the system to detect more attacks than it
would normally do.

Unlike experiment 1 [2] the results on which both
Snort and Nepenthes trigger don’t give any added
value to the system. Nepenthes provides sufficient
information when it detects an attack. The infor-
mation Snort provides in these attacks is the same
as the information Nepenthes provides. Therefore
only attacks that are recognized as possible mali-
cious or attacks that aren’t registered at all are in-
teresting. Snort is able to verify whether a possible
malicious attack is in fact a real malicious attack.
The same goes for attacks that aren’t recognized
at all by Nepenthes. Table 3 shows the amount of
possible malicious attacks that are recognized by
Nepenthes and the amount of those that are veri-
fied by Snort.

Nepenthes reports every connection on it’s ports
as a possible malicious attack. If Snort triggers on

Results of Experiment 3
Sander Keemink & Michael van Kleij

3

–DRAFT–

Date Nep. Snort perct.
22-01-2008 15 1 6.66%
23-01-2008 13 1 7.69%
24-01-2008 14 2 14.28%
25-01-2008 10 1 10%

Table 3: Possible malicious attacks recognized by
Snort

one of these attacks we’re sure it really is a ma-
licious attack. An example of this sensitivity for
attacks by Nepenthes is demonstrated in example
2. Snort analyzes the network packets and matches
them to the used rulesets. These rulesets are de-
signed to only trigger on real exploits. Network
packets which are not extraordinary won’t trigger
an alarm. The example in example 2 won’t trigger
a Snort alarm because it’s ‘normal’ network traffic.
When Snort does trigger on a possible malicious
attack, it is most likely that this possible malicious
attack is a real malicious attack.

Example 2 Sensitivity of Nepenthes
tempest@marath:~$ telnet 192.168.8.129 80
Trying 192.168.8.129...
Connected to 192.168.8.129.
Escape character is ’^]’.
GET index.html
Connection closed by foreign host.

25-01-2008 11:32:36 Possible malicious attack
192.168.7.222 40398 192.168.8.129 80 TEST

4 Conclusion

We believe this setup, whether it be with Snort in-
stalled on the tunnelserver or it being installed on
a separate server with mirroring mode enabled on
it’s switchport, will have an added value to SUR-
Fids. This setup would be able to recognize attacks
reported by Argos, and attacks which are reported
by Nepenthes as possible malicious. Furthermore it
is able to recognize attacks which aren’t discovered
by either Argos or Nepenthes.

References

[1] Michael van Kleij. Experiment 3: Snort
on the tunnelserver. https://www.os3.nl/
2007-2008/students/michael_van_kleij/
rp1-logbook, 2008.

[2] Michael van Kleij & Sander Keemink.
Results of experiment 1. https:
//www.os3.nl/2007-2008/students/
michael_van_kleij/rp1-logbook, 2008.

Results of Experiment 3
Sander Keemink & Michael van Kleij

4

–DRAFT–

A Results

As there are to many results to include in this document we’ve selected a subsection of all the results.
There is an SQL dump available of all the results. This dump can be requested via e-mail. E-mail to
sander.keemink@os3.nl or michael.vankleij@os3.nl.

A.1 Overlapping results

This section contains the attacks that were registered by Nepenthes as a malicious attack and of which
Snort had a corresponding log. In table 4 the layout of these logs is explained.

Nepenthes: date attack source IP source port dest. IP dest. port Sensor info
Snort: attack date source IP source port dest. IP dest. port protocol

Table 4: Results layout

N: 22-01-2008 00:01:43 Malicious attack - Nepenthes 77.4.148.39
1237 192.168.8.129 445 TEST LSASS
S: BLEEDING-EDGE EXPLOIT MS04011 Lsasrv.dll RPC exploit (WinXP)
2008-01-22 00:01:43 77.4.148.39:1237 192.168.8.129:445
TCP

N: 22-01-2008 01:38:13 Malicious attack - Nepenthes 76.66.57.229
25870 192.168.8.129 135 TEST DCOM
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-22 01:38:13
76.66.57.229:25870 192.168.8.129:135 TCP

N: 22-01-2008 02:39:36 Malicious attack - Nepenthes 70.131.129.167
53670 192.168.8.129 445 TEST ASN1
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-22 02:39:45 70.131.129.167:53670 192.168.8.129:445
TCP

N: 22-01-2008 04:06:27 Malicious attack - Nepenthes 70.131.129.167
59343 192.168.8.129 445 TEST ASN1
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-22 04:06:25 70.131.129.167:58855 192.168.8.129:445
TCP

N: 22-01-2008 09:14:38 Malicious attack - Nepenthes 77.133.16.33
1239 192.168.8.129 135 TEST DCOM
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-22 09:14:38
77.133.16.33:1239 192.168.8.129:135 TCP

N: 22-01-2008 09:43:59 Malicious attack - Nepenthes 86.68.28.27
2843 192.168.8.129 445 TEST LSASS
S: BLEEDING-EDGE EXPLOIT MS04011 Lsasrv.dll RPC exploit (WinXP)
2008-01-22 09:43:59 86.68.28.27:2843 192.168.8.129:445
TCP

Results of Experiment 3
Sander Keemink & Michael van Kleij

5

–DRAFT–

N: 22-01-2008 10:41:38 Malicious attack - Nepenthes 220.97.211.153
4090 192.168.8.129 135 TEST DCOM
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-22 10:41:38
220.97.211.153:4090 192.168.8.129:135 TCP

N: 22-01-2008 18:21:55 Malicious attack - Nepenthes 85.60.158.104
2358 192.168.8.129 135 TEST DCOM
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-22 18:21:54
85.60.158.104:2358 192.168.8.129:135 TCP

N: 22-01-2008 18:25:14 Malicious attack - Nepenthes 77.45.194.213
2066 192.168.8.129 135 TEST DCOM
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-22 18:25:14
77.45.194.213:2066 192.168.8.129:135 TCP

N: 22-01-2008 18:31:50 Malicious attack - Nepenthes 90.194.6.167
1699 192.168.8.129 135 TEST DCOM
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-22 18:31:50
90.194.6.167:1699 192.168.8.129:135 TCP

N: 22-01-2008 18:33:19 Malicious attack - Nepenthes 91.155.203.228
2964 192.168.8.129 135 TEST DCOM
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-22 18:33:19
91.155.203.228:2964 192.168.8.129:135 TCP

N: 23-01-2008 06:09:15 Malicious attack - Nepenthes 70.131.129.167
54795 192.168.8.129 445 TEST ASN1
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-23 06:09:25 70.131.129.167:54795 192.168.8.129:445
TCP

N: 23-01-2008 06:37:54 Malicious attack - Nepenthes 80.53.15.251
3476 192.168.8.129 135 TEST DCOM
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-23 06:37:53
80.53.15.251:3476 192.168.8.129:135 TCP

N: 23-01-2008 10:39:33 Malicious attack - Nepenthes 70.131.129.167
55181 192.168.8.129 445 TEST ASN1
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-23 10:39:42 70.131.129.167:55181 192.168.8.129:445
TCP

N: 23-01-2008 10:49:57 Malicious attack - Nepenthes 91.195.96.229
61259 192.168.8.129 135 TEST DCOM
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-23 10:49:57
91.195.96.229:61259 192.168.8.129:135 TCP

N: 23-01-2008 16:57:21 Malicious attack - Nepenthes 66.153.237.204
50314 192.168.8.129 2967 TEST Symantec AV

Results of Experiment 3
Sander Keemink & Michael van Kleij

6

–DRAFT–

S: EXPLOIT symantec antivirus realtime virusscan overflow attempt
2008-01-23 16:57:21 66.153.237.204:50314 192.168.8.129:2967
TCP

N: 23-01-2008 17:02:53 Malicious attack - Nepenthes 70.131.129.167
50585 192.168.8.129 445 TEST ASN1
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-23 17:03:02 70.131.129.167:50585 192.168.8.129:445
TCP

N: 23-01-2008 17:19:49 Malicious attack - Nepenthes 217.231.191.29
3722 192.168.8.129 135 TEST DCOM
S: NETBIOS DCERPC NCACN-IP-TCP ISystemActivator RemoteCreateInstance
little endian attempt 2008-01-23 17:19:48 217.231.191.29:3722
192.168.8.129:135 TCP

N: 23-01-2008 17:32:47 Malicious attack - Nepenthes 70.131.129.167
57015 192.168.8.129 445 TEST ASN1
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-23 17:32:56 70.131.129.167:57015 192.168.8.129:445
TCP

N: 23-01-2008 20:43:52 Malicious attack - Nepenthes 66.153.237.204
62709 192.168.8.129 2967 TEST Symantec AV
S: EXPLOIT symantec antivirus realtime virusscan overflow attempt
2008-01-23 20:43:52 66.153.237.204:62709 192.168.8.129:2967
TCP

N: 23-01-2008 20:47:12 Malicious attack - Nepenthes 190.128.124.208
3810 192.168.8.129 135 TEST DCOM
S: Possible dcom*.c EXPLOIT ATTEMPT to 135-139 2008-01-23 20:47:11
190.128.124.208:3810 192.168.8.129:135 TCP

N: 23-01-2008 20:59:22 Malicious attack - Nepenthes 79.22.244.181
1410 192.168.8.129 139 TEST NetDDE
S: SHELLCODE x86 inc ebx NOOP 2008-01-23 20:59:28
79.22.244.181:1410 192.168.8.129:139 TCP

N: 23-01-2008 21:10:00 Malicious attack - Nepenthes 190.67.236.122
3302 192.168.8.129 2967 TEST Symantec AV
S: EXPLOIT symantec antivirus realtime virusscan overflow attempt
2008-01-23 21:10:00 190.67.236.122:3302 192.168.8.129:2967
TCP

N: 23-01-2008 21:35:27 Malicious attack - Nepenthes 70.131.129.167
52062 192.168.8.129 445 TEST ASN1
S: BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
2008-01-23 21:35:36 70.131.129.167:52062 192.168.8.129:445
TCP

Results of Experiment 3
Sander Keemink & Michael van Kleij

7

–DRAFT–

N: 23-01-2008 21:36:37 Malicious attack - Nepenthes 190.67.236.122
3836 192.168.8.129 2967 TEST Symantec AV
S: EXPLOIT symantec antivirus realtime virusscan overflow attempt
2008-01-23 21:36:36 190.67.236.122:3836 192.168.8.129:2967
TCP

N: 23-01-2008 23:12:26 Malicious attack - Nepenthes 79.22.244.181
3634 192.168.8.129 139 TEST NetDDE
S: SHELLCODE x86 inc ebx NOOP 2008-01-23 23:12:27
79.22.244.181:3634 192.168.8.129:139 TCP

N: 23-01-2008 23:24:52 Malicious attack - Nepenthes 200.40.49.222
3980 192.168.8.129 2967 TEST Symantec AV
S: EXPLOIT symantec antivirus realtime virusscan overflow attempt
2008-01-23 23:24:52 200.40.49.222:3980 192.168.8.129:2967
TCP

B Metasploit

Attack name Open port Nepenthes Snort
Microsoft RPC DCOM attack Yes Possible 1
Microsoft Message Queueing Service Path Overflow Yes Possible 0
Microsoft IIS 5.0 Printer Host Header Overflow Yes Malicious 4
Microsoft IIS ISAPI nsiislog.dll ISAPI POST Overflow Yes Possible 1
Microsoft SQL Server Resolution Overflow No 0 1
Microsoft Plug and Play Service Overflow Yes Possible 0
Microsoft Private Communications Transport Overflow Yes Possible 1
HP OpenView Omniback II Command Execution No 0 0
PHP XML-RPC Arbitrary Code Execution Yes Possible 2
Serv-U FTPD MDTM Overflow Yes Possible 1
Novell eDirectory NDS Server Host Header Overflow No 0 0
Novell NetMail IMAP APPEND Buffer Overflow Yes Possible 0
Solaris sadmind Command Execution No 0 2
AppleFileServer LoginExt PathName Overflow No 0 0
Veritas Backup Exec Name Service Overflow No 0 0
Hummingbird Connectivity LPD Buffer Overflow No 0 0
Microsoft WINS Service Memory Overwrite Yes Possible 0
SentinelLM UDP Buffer Overflow No 0 1
Sun Solaris Telnet Remote Auth. Bypass Vulnerability No 0 0
RealServer Describe Buffer Overflow No 0 0

Table 5: The results of the Metasploit attacks

Results of Experiment 3
Sander Keemink & Michael van Kleij

8

–DRAFT–

B.1 Metasploit experiment results

Microsoft RPC DCOM attack
24-01-2008 13:25:59 Possible malicious attack 192.168.7.149 35370 192.168.8.129 135 TEST
NETBIOS DCERPC NCACN-IP-TCP IActivation remoteactivation overflow attempt 2008-01-24
13:25:58 192.168.7.149:35370 192.168.8.129:135 TCP

Microsoft Message Queueing Service Path Overflow
24-01-2008 13:31:17 Possible malicious attack 192.168.7.149 40923 192.168.8.129 2103 TEST

Microsoft IIS 5.0 Printer Host Header Overflow
24-01-2008 13:39:05 Malicious attack - Nepenthes 192.168.7.149 35336 192.168.8.129 80 TEST IIS
BLEEDING-EDGE WEB Proxy GET Request 2008-01-24 13:39:05 192.168.7.149:35336 192.168.8.129:80
TCP
BLEEDING-EDGE EXPLOIT x86 PexFnstenvMov/Sub Encoder 2008-01-24 13:39:05
192.168.7.149:35336 192.168.8.129:80 TCP
WEB-IIS ISAPI .printer access 2008-01-24 13:39:05 192.168.7.149:35336 192.168.8.129:80 TCP
COMMUNITY WEB-MISC mod jrun overflow attempt 2008-01-24 13:39:05 192.168.7.149:35336
192.168.8.129:80 TCP

Microsoft IIS ISAPI nsiislog.dll ISAPI POST Overflow
24-01-2008 13:42:42 Possible malicious attack 192.168.7.149 51134 192.168.8.129 80 TEST
WEB-IIS nsiislog.dll access 2008-01-24 13:42:41 192.168.7.149:51134 192.168.8.129:80 TCP
http inspect: BARE BYTE UNICODE ENCODING 2008-01-24 13:42:41 192.168.7.149:51134
192.168.8.129:80 TCP

Microsoft SQL Server Resolution Overflow
MS-SQL version overflow attempt 2008-01-24 13:47:57 192.168.7.149:33967 192.168.8.129:1434 UDP

Microsoft Plug and Play Service Overflow
24-01-2008 13:51:07 Possible malicious attack 192.168.7.149 53317 192.168.8.129 445 TEST

Microsoft Private Communications Transport Overflow
24-01-2008 13:55:21 Possible malicious attack 192.168.7.149 51935 192.168.8.129 443 TEST
WEB-MISC PCT Client Hello overflow attempt 2008-01-24 13:55:21 192.168.7.149:51935
192.168.8.129:443 TCP

HP OpenView Omniback II Command Execution

PHP XML-RPC Arbitrary Code Execution
24-01-2008 14:02:55 Possible malicious attack 192.168.7.149 59008 192.168.8.129 80 TEST
WEB-PHP xmlrpc.php post attempt 2008-01-24 14:02:55 192.168.7.149:59008 192.168.8.129:80 TCP
BLEEDING-EDGE EXPLOIT XML-RPC for PHP Remote Code Injection 2008-01-24 14:02:55
192.168.7.149:59008 192.168.8.129:80 TCP
WEB-PHP xmlrpc.php post attempt 2008-01-24 14:02:55 192.168.7.149:59008 192.168.8.129:80 TCP
BLEEDING-EDGE EXPLOIT XML-RPC for PHP Remote Code Injection 2008-01-24 14:02:55
192.168.7.149:59008 192.168.8.129:80 TCP

Serv-U FTPD MDTM Overflow
24-01-2008 14:06:13 Possible malicious attack 192.168.7.149 50289 192.168.8.129 21 TEST

Results of Experiment 3
Sander Keemink & Michael van Kleij

9

–DRAFT–

ftp pp: FTP command channel encrypted 2008-01-24 14:06:12 192.168.7.149:50289 192.168.8.129:21 TCP

Novell eDirectory NDS Server Host Header Overflow

Novell NetMail IMAP APPEND Buffer Overflow
24-01-2008 14:09:31 Possible malicious attack 192.168.7.149 53663 192.168.8.129 143 TEST

Solaris sadmind Command Execution RPC portmap sadmind request UDP 2008-01-24 14:27:47
192.168.7.149:34021 192.168.8.129:111 UDP
RPC portmap Solaris sadmin port query udp request 2008-01-24 14:27:47 192.168.7.149:34021
192.168.8.129:111 UDP

AppleFileServer LoginExt PathName Overflow

Veritas Backup Exec Name Service Overflow

Hummingbird Connectivity 10 SP5 LPD Buffer Overflow

Microsoft WINS Service Memory Overwrite
24-01-2008 16:16:34 Possible malicious attack 192.168.7.149 50057 192.168.8.129 42 TEST

SentinelLM UDP Buffer Overflow
COMMUNITY EXPLOIT Sentinel LM exploit 2008-01-24 16:19:21 192.168.7.149:34028
192.168.8.129:5093 UDP

Sun Solaris Telnet Remote Authenticataion Bypass Vulnerability

RealServer Describe Buffer Overflow

Results of Experiment 3
Sander Keemink & Michael van Kleij

10

