
UNIVERSITY OF AMSTERDAM

GRADUATE SCHOOL OF INFORMATICS
System and Network Engineering

Automated vulnerability scanning and exploitation

Thijs Houtenbos thijs.houtenbos@os3.nl
Dennis Pellikaan dennis.pellikaan@os3.nl

July 12, 2013

Supervisors
Bart Roos bart.roos@ncsc.nl
Jop van der Lelie jop.vanderlelie@ncsc.nl

University of Amsterdam
Graduate School of Informatics
Science Park 904
1098XH Amsterdam

Abstract
Automated vulnerability scanning is often used in professional development
environments to find critical security issues. But what if those techniques are
applied to scripts available on the internet? Many scripts are shared on sites
like Sourceforge and GitHub, but security might not have been a priority during
their development. Using a completely automated approach, a large number of
these scripts were downloaded, analysed for vulnerabilities, tested, and finally
websites using these scripts were searched for. Combining the information
gathered during all these steps in this approach, a list can be generated of web
servers running vulnerable code and the parameters needed to exploit these.

Because each of these steps is completely automated, it is possible to continu-
ously download new or updated scripts, and find vulnerable systems that are
open to the internet.

During this project, more than 23,000 scripts were downloaded of which more
than 2,500 were identified as containing possible vulnerable code. Using the
Google search engine, it was possible to find almost 8,000 installations of these
vulnerable scripts.

Contents

1 Introduction 1

2 Research questions 2

3 Related work 3

3.1 Common vulnerabilities . 3

3.2 Automatic generation of exploits 4

3.3 Identify websites . 4

4 Process 6

4.1 Process components . 6

4.1.1 Script sources . 6

4.1.2 Vulnerability scanning 6

4.1.3 Generate exploits . 6

4.1.4 Search engines . 7

4.1.5 Find script installations 7

4.1.6 Use found exploits on installations 7

5 Approach and methods 8

5.1 Script sources . 8

5.2 Identify exploitable vulnerability categories 8

5.2.1 Parameters . 9

5.2.2 SQL Injection . 9

5.2.3 Command Injection . 10

5.2.4 File Inclusion . 10

5.3 Vulnerability scanning . 10

5.4 Automate the exploitation . 10

5.4.1 SQL Injection . 10

5.4.2 Command Injection . 11

5.4.3 File Inclusion . 11

5.5 Search engines . 12

5.5.1 Find websites using the Google search engine 12

5.5.2 Selective results . 13

5.5.3 Throttling . 13

5.6 Identify websites using vulnerable scripts 14

5.6.1 Script installation directory 14

5.6.2 Common file types . 16

5.6.3 Compare files in the installation root with the remote host 17

5.6.4 URL validation score algorithm 17

5.7 Automate the compromisation 18

5.7.1 SQL Injection . 18

5.7.2 File Inclusion . 18

5.7.3 Command Injection . 18

6 Results 19

6.1 Collect scripts . 19

6.2 Identify vulnerabilities . 19

6.3 Generate exploits . 19

6.4 Find websites . 20

6.5 Validate search results . 20

6.5.1 Installation root . 20

6.5.2 File types . 21

6.5.3 Search result scores . 21

7 Conclusion 22

8 Future work 23

8.1 Component improvements . 23

8.1.1 Collect scripts . 23

8.1.2 Identify vulnerabilities 23

8.1.3 Generate exploits . 23

8.1.4 Find script installation 23

9 Acknowledgements 24

A Acronyms and abbreviations i

B PERL regular expressions for finding vulnerabilities ii

1 Introduction

Many web applications that are connected to the internet are not written by
the person hosting the application. Web developers do not always have the
required skills to develop certain functionalities that they need for their web-
sites. An answer to this high demand of generic web scripts is provided by
large community driven sources, such as Sourceforge. They provide the web
with thousands of open source web applications. Anyone is free to upload their
code on this website and it automatically becomes available to millions of users
to download the source code. Not everyone using these scripts is able to anal-
yse how the functionality is programmed and what possible security risks are
introduced by running these scripts on their servers.

Current research mostly focuses on the highest recall of vulnerabilities in a
specific application. The methods used are often very efficient and range from
detecting very simple vulnerabilities to more complex vulnerabilities. The tools
that are often created can be used by software developers to improve the secu-
rity of their applications.

Figure 1.1: Concept

This research project is not about finding complex vulnerabilities in one specific
application, but it targets simple vulnerabilities in a large number of applica-
tions of which the source code is readily available on the internet. Figure 1.1
visualises the concept behind this research, in which large amount of source
code enters the black box, and it returns a list of vulnerable web servers.

1

2 Research questions

The main research question for this report is the following:

How feasible is an automated approach to compromise servers using
a known source code attack on a large scale?

This question can be split up in to the following sub-question:

• How can a large amount of source code be audited in an automatic way?
• How can exploits be automatically generated for discovered vulnerabili-

ties?
• How can installations of vulnerable scripts be found and how can this

process be automated?
• How can the previous steps be combined to create a system to automat-

ically audit scripts, create exploits for found vulnerabilities and run the
exploits on found installations?

2

3 Related work

3.1 Common vulnerabilities

Much effort has been devoted to classify and categorise vulnerabilities. Com-
mon Vulnerabilities and Exposures (CVE) [6] was launched in 1999 to address
the problem of different information security tools using their own databases
with their own name for security vulnerabilities. At the time it was hard to
tell when the different databases were referring to the same vulnerabilities, and
there was no effective interoperability between the different databases. CVE
is now the industry standard for sharing vulnerabilities and their exposure
names. CVE allows for good insight in current vulnerabilities and possibly
existing exploits, which can often be found on websites, such as the Exploit
Database 1. Exploit sources, such as the Exploit Database, often link exploits
to vulnerabilities or exposures in the CVE database. The CVE database gives
insight in the types of vulnerabilities that currently have a prominent role in
web applications, and it provides a starting point for selecting the vulnerability
categories that are relevant to this research.

Related to CVE, the Open Web Application Security Project (OWASP) was
created to make software security visible, such that users and developers can
become familiar with these vulnerabilities and that they can make an edu-
cated decision on how to solve these problems. Different from CVE is that the
OWASP top 10 project focuses on the general aspect of common vulnerabil-
ities. OWASP provides, amongst other material, literature to educate users
and developers about these top 10 vulnerabilities and how to deal with them.
OWASP revises their top 10 every few years. The latest top 10 was updated on
June 12, 2013 [2]. Compared to the previous top 10 list of April 19, 2010 [1], an
interesting observation shows that on both lists the number one vulnerability
is Injection. Injection is a general term, which means that it is possible for an
attacker to inject code into the web application to change the behaviour of the
application. Often, injection is thought of only as SQL Injection, but other
attack vectors are also possible, such as shell injection. Because both CVE
and OWASP aim at openness, they allow for good insight in the vulnerability
categories that are interesting for targeting in this research.

Automatically finding vulnerabilities in web scripts are commonly approached
in two different manners. First, there is the black box method, which looks
at the application from a functional point of view without looking into its
internal structure [3]. Second, there is the white box method. White box
testing is done by looking at the source code of the application, which requires
an understanding of the application. A survey of these techniques is made by
Vigna et al [7]. The techniques described in that paper are useful for a web
developer or auditor to test the security of a single application. However, these
methods often require some form of interaction with the user of these tools.
Automatically analysing source code requires a different approach in which it
is allowed to have false positives, but that there is an extra step to verify the
results. Within this research, a solution is provided to automatically verify if
a potential vulnerability can be exploited.

1 http://http://www.exploit-db.com/

3

3.2 Automatic generation of exploits

The automatic generation of exploits depends greatly on the category of the
vulnerability.

SQL Injections are often targeted by attackers, and the automatic generation
of SQL Injections is thoroughly researched. The automatic generation of SQL
Injections can be divided into two categories. First, their goal is to expose
vulnerabilities. Research by Kieżun et al. [10] shows a method to automatically
generate SQL injections that expose the vulnerability when it exists. The goal
however is not to automatically compromise web server that are prone to SQL
Injections. Another problem with their approach is that they require of fully
installed and working application. Their strategy is to query the web server
with malicious code and monitor the output of the system. From there on
they can deduce if the web server is prone to SQL injections. However, to
automatically analyse large amounts of web scripts, it is not possible to also
automatically install the web scripts as fully functional applications. The steps
that need to be taken can vary enormously between different scripts. Therefore,
their methods do not fit the process in this research to automate the analysis
of large amount of source code.

Automatically compromising web servers is the second category of the auto-
matic generation of SQL Injection exploits. A popular penetration testing tool
is sqlmap 2. Sqlmap not only generates SQL injections to expose vulnerabili-
ties, but it actually tries to take over the database and execute commands on
the operating system of the database server. Sqlmap’s approach to find SQL
Injection vulnerabilities is similar to the research done by Kieżun et al., as de-
scribed above. This makes sqlmap not suitable for automatically finding SQL
injections without installing the scripts, but when an SQL Injection is found,
it makes it suitable for automatically compromising web servers using these
vulnerable scripts.

3.3 Identify websites

Search engines are often used to find vulnerable websites that make very com-
mon mistakes. Search engines crawl the internet for websites and store informa-
tion such as the title of the web page and the Uniform Resource Locator (URL)
used to access the web page. The information that can be found in the URL
may hold valuable information with regards to finding vulnerabilities. The
Google search engine is known to be used intensively for finding vulnerable
websites. It is used so intensively that the term Google hacking now refers to
very process described above. Research done by Billig et al. [4], uses the infor-
mation that Google indiscriminately stores for finding vulnerable websites. In
their research they show how to form URLs to efficiently find websites. The
URLs often not only contain the location and the file name of the website,
but also the parameters that are passed to the web server. Gathering the
parameters that are found in vulnerable web scripts allows for the automatic
generation of search queries.

Because of the usefulness of Google for finding vulnerabilities, another initia-
tive was started, called Google Dorks 3. Google Dorks serves as an open portal
for users to add Google search queries that lists vulnerable web pages. Very
simple design mistakes by popular web applications can result in thousands
of vulnerable hits on Google. However, Google does not allow for automatic
crawling of their search engine, and Google blocks the automated search with
a CAPTCHA when it detects this. Google also provides an Application pro-
gramming interface (API) to use their search engine, but the API is linked to a
user account and limits the number of queries to 100 per day. This hard limit

2 http://sqlmap.org/
3 http://www.exploit-db.com/google-dorks/

4

does not apply when using the Google web interface, but when Google sus-
pects that an automated process is crawling their website, then the user needs
to solve a CAPTCHA challenge. To overcome this problem, Pelizzi et al. [12]
provide a solution that allows for uninterrupted search, but it still requires the
user to manually solve the CAPTCHA challenge. Although their method does
not provide a way to query the search results as fast a possible, it is adequate
enough for this research.

5

4 Process

The goal of this research project is to demonstrate whether open source scripts
available for download on the internet can be used to automatically find and
exploit a large number of scripts. This automated approach can be seen as a
black box system. The user of the black box provides the system with source
code as input and could get access to vulnerable systems as the output. The
processes executed inside the black box consist of several independent compo-
nents. Linked together these complete the process. A schematic overview of
the different components in the black box are shown in Figure 4.1. This process
is different from other approaches in that it does not target any specific server,
but rather focuses on the complete process of finding exploitable code and an
installation base of servers running this code.

4.1 Process components

Figure 4.1: Process overview

4.1.1 Script sources

The process starts with the gathering of script sources. Since the entire ap-
proach is automated, the results improve as the amount of different source code
packages increases. Popular script sharing sites can be used as input to collect
a large number of scripts.

4.1.2 Vulnerability scanning

All script files in the source code are automatically analysed for any poten-
tial vulnerabilities. Depending on the type of program these can vary. For
web applications there is a higher chance of problems in sanitizing user input,
creating possibilities for injection. In desktop programs this focus can shift
towards lower level problems, such as buffer overflows.

4.1.3 Generate exploits

The amount of vulnerabilities found in the analysed source code can be very
large, depending on the number of input scripts. Part of the process is to
exploit the vulnerabilities in an automated way. A local installation can be
used to test behaviour of the program.

6

4.1.4 Search engines

Once exploits for vulnerable code are created, an overview of locations where
this code is running is required to use these exploits. Search engines crawl
and index as much of the internet as possible to give users the ability to find
specific websites. The database of these search engines can be used to gather
this overview of installation locations of vulnerable scripts.

4.1.5 Find script installations

The search results that are produced by search engines are validated to deter-
mine if the vulnerable script is actually installed on the remote server. Several
methods that can be used to perform this comparison accurately is described
later in this paper.

4.1.6 Use found exploits on installations

The final component of the process is to run the created exploits on the installed
vulnerable scripts. Depending on the amount of installations, the amount of
found exploits and the efficiency of the previous components it is suspected
that a large number of servers can be compromised. During the research no
servers not taking part in this research project are attacked.

7

5 Approach and methods

During this research project a proof of concept of the black box system is made
and tested. The source code of the proof of code is not publicly available, but
it is available upon request. Contact information can be found on the front
page of this paper.

The implementation of the several components are discussed in this chapter.
For the proof of concept the focus is placed on PHP scripts and three types of
vulnerabilities. PHP is a scripting language very popular among web develop-
ers. The easy learning curve makes it attractive for new developers who can
share their scripts without performing a security review.

5.1 Script sources

Two sources are used to gather a large amount of scripts. Sourceforge1 is a site
offering free hosting for open source projects. More than 440,000 projects are
available on Sourceforge. The site features tags to indicate the platform and
languages used. Of those projects, more than 33,000 indicated that the PHP
scripting language is used. There is an API available to request information
about projects and the available files, but it cannot be used to filter for PHP
projects.

GitHub2 is a site extending on the great popularity of the git version man-
agement software. It provides web access to the managed code and an issue
tracking system. Searching for ’PHP’ results in more than 50,000 individual
projects, or repositories as it is called in git.

5.2 Identify exploitable vulnerability categories

Automatically exploiting vulnerable websites requires for the exploit to be triv-
ial. Within this research the focus goes out to what is referred here as ”the
low hanging fruit”. These types of vulnerabilities are simple mistakes that are
still made by web developers. As described by Scholte et al. [13], SQL injec-
tions and cross-site scripting vulnerabilities are still increasing. Their research
focused on web vulnerabilities that were categorised in the CVE database from
2004 until 2009. The OWASP Top 10 Project [16] identifies similar vulnera-
bilities. The goal of the top 10 project is to raise awareness about application
security. Beside the more generic top 10 list, OWASP also provides a top 5
that specifically focuses on the PHP scripting language 3. A research that is
done by Fonseca et al. [9], is by looking at attacks from the attacker’s perspec-
tive, as opposed to that from a defensive perspective. They identified other
high risk vulnerabilities that are often used by attackers. Their research aims
at the most effective result, which often includes the execution of their code
on a web server. Based on the CVE statistics, the OWASP PHP top 5 and
the research done by Fonseca et al., a subset of these categories is selected
to be further used in this research, as shown in table 5.1. Other categories,
such as cross-site scripting (XSS) and cross-site request forgery (CSRF), are
also very popular, but they are not suitable for taking over web servers. These
types of vulnerabilities are targeted at clients visiting the website, and require
a different approach on how to automatically detect them, as described in [5].

1 http://sourceforge.net/
2 https://github.com
3 https://www.owasp.org/index.php/PHP_Top_5

8

Table 5.1: Vulnerability
categories

Category
SQL injection
File Inclusion
Command Injection

5.2.1 Parameters

When requesting a web page, several dynamic parameters can be passed to the
web server. There are two main request types called GET and POST. Each
type is explained shortly using an example request to website
http://www.example.com and a parameter user set to value admin.

With a GET request type the parameters are passed in the request URL,
behind the name of the web page. This combines to http://www.example.

com/?user=admin.

In a POST request the parameters are passed as body in the request of the
website. The normal script URL is requested (http://www.example.com) and
the parameter body is sent after the headers (user=admin).

To identify the input parameters in this paper, the PHP notation is used. Mean-
ing $ GET and $ POST represent arrays containing respectively the GET and
POST request parameters, and $ GET[user] represents the value of parameter
user in a GET request.

5.2.2 SQL Injection

Web pages are now often dynamically generated on request using scripting
languages like PHP. To store the data used in these sites, a connection to a
database server can be used. A popular database engine used in combination
with PHP is MySQL. To be able to query the database from inside a script
special run-time functions are available. These functions are provided by load-
ing a module in PHP. Typically used functions for simple database questions
are listed in Table 5.2.

Table 5.2: PHP functions for
MySQL databases

Function Use
mysql connect() Initialize a connection to the database
mysql select db() Select the database to use
mysql query() Execute a query on the database
mysql fetch assoc() Return one row of query results

To craft a page to a specific user, the input parameters can be used in the
database queries. By combining these parameters and queries in an improper
way, a possibility for exploitation is created.

1) mysql_query("SELECT * FROM ‘Users‘ WHERE ‘ID‘ = ’$_GET[user]’");

2) http://www.example.com/?user=admin

mysql_query("SELECT * FROM ‘Users‘ WHERE ‘ID‘ = ’admin’");

3) http://www.example.com/?user=admin’ or 1=1--

mysql_query("SELECT * FROM ‘Users‘ WHERE ‘ID‘ = ’admin’ or 1=1-- ’");

When the request parameter is used directly in the query (1) the content of
the query can be altered by the user. Normally, the parameter contains only
normal characters and it works as expected (2), but with specially designed
parameter values the query can be adjusted in such a way that different data
is returned from the database (3).

9

5.2.3 Command Injection

PHP 4 allows scripts to run code on the web server. When a dynamic parameter
is passed to the execution function, and no, or insufficient input validation is
done, then this may allow an attacker to execute malicious code. Command
Injection is explained in detail in [14, 15]. An overview of the PHP functions
that are prone to command injection is shown in table 5.3.

5.2.4 File Inclusion

Besides the functions that allow for executing programs outside of the scripting
language, PHP also has functions that allow inclusion of other PHP files, or
directly interpreting input data as PHP code. Web developers sometimes allow
user input via parameters to these functions to allow for a dynamic feel of their
web applications. An overview of the file inclusion functions that are looked at
in this research, is shown in table 5.3. A survey done by Ami and Malav [11]
explains this type of vulnerability and others more in depth.

Table 5.3: PHP functions prone
to command injection and file

inclusion

Command Injection File Inclusion
backtick operator include
exec require
passthru include once
popen require once
proc open eval
shell exec assert
system preg replace
pcntl exec

5.3 Vulnerability scanning

To identify possible vulnerable scripts in the downloaded projects, all files
are scanned for known common programming problems. Using the regular
expressions in Appendix B, all files with extension .php are scanned on a line-
by-line base. All lines matching one of the expressions are marked for further
analysis. The regular expressions include detection for the three described
categories. Custom functions outside the matched line can be used in the script
to escape any user input parameters. This and other run-time script changes
make that the results of the scanning process can include false positives. This
calls for a need to automatically verify if the identified line is indeed vulnerable
and if the exploitation can be done without user intervention.

5.4 Automate the exploitation

When one or more possible vulnerabilities are found in a script, it needs to be
determined if the detection was correct or that it was a false positive. In this
case, a false positive does not necessary mean that a script is not vulnerable,
but that automatically exploiting the vulnerability did not succeed. A common
scenario of not being able to automatically detect if a script is vulnerable, could
be that the vulnerability itself is found in a part of an application that can
only be accessed after the user has applied the right credentials. This type of
scenario is very complex to automate. The process of validating each found
vulnerability is discussed below.

5.4.1 SQL Injection

As part of the vulnerability scanning process the scripts are analysed for a
combination of query functions and direct parameter usage inside those func-

4 http://www.php.net/manual/en/ref.exec.php

10

tions. This results in potentially vulnerable scripts. To be able to exploit such
a vulnerability it first has to be verified that the scanning results are correct
and the code can be misused.

To perform this verification a test environment is created with specifically de-
signed database functions, overriding the default ones listed in table 5.2. By
overriding these built-in functions the complete query can be analysed for pos-
sible injections in an automated way.

By calling each possibly vulnerable identified script with the detected parame-
ters set to a distinguishable value, the results were verified. All queries executed
by the script are collected using the custom database functions. By comparing
the distinguishable parameter value with all values inside the database query,
a match can be made and analysis can be done on any escaping or sanitising.
When values are not escaped or sanitised, the input parameter matches the
query values exactly, and injections to alter the query are possible.

5.4.2 Command Injection

Potentially found vulnerabilities for command injection functions (table 5.3)
also have to be verified. Some of these functions are implemented at such a
core level in the scripting language the they cannot be overridden during run
time, so the method used to verify SQL Injections does not work for them.

The vulnerability scanning script collects several details about its results. These
include the identified file, function name, line number, the parameter type and
the parameter name. Using this information, a new test environment is created
where the indicated line (1) is analysed before execution. The found command
execution function is replaced with a specially created log function, while no
changes are made to the parameters (2).

(1) shell_exec ($_GET[’cmd’]);

(2) log_function ($_GET[’cmd’]);

After replacing just the name of the injectable function, the script is called
with the identified parameter set to a distinguishable value and the process is
completed in the same way as with the SQL Injections. Because only the name
of the called function is changed and only one dynamic request parameter is
tested at the same time, the flow of the script is not influenced by this change
and the results are reliable.

5.4.3 File Inclusion

With potential file inclusion vulnerabilities some of the same issues arise as with
command injection. These functions are defined at a core level and cannot be
overridden at run time either. To overcome this, the same approach is used as
with command injection.

(1) require_once "includes/" . $_GET[’page’];

(2) log_function ("includes/" . $_GET[’page’]);

An extra point of attention is that some of the functions are so called ’control
structures’. This means that they do not necessarily have to be called as func-
tions, but that they can also be used as statements (1). Where the parameters
for a function are between parentheses, this is not always the case with state-
ments, and this has to be taken into account when replacing the statement
name with the logger function (2).

After the called function is replaced, the same verification method as with SQL
Injections is used.

11

5.5 Search engines

The Google search engine is used to find installations of vulnerable scripts. For
this research Google is chosen as the most effective search engine by comparing
possible advanced search operators and the number of results. This section
describes how search queries are constructed and what limits are encountered
while performing a large amount of search queries.

5.5.1 Find websites using the Google search engine

Search engines are designed such that the results relate as much as possible to
the search query that the user provides. With advanced operators5 the Google
database can be queried on information other than the page content. This
can produce many results, but not necessarily accurate. Getting only accurate
results from Google is not very likely, therefore there are two ways in which
the search queries are constructed. The first approach is to find sites that have
the vulnerable script file name in combination with the GET parameter that
is used in that file. Second, sites are found by their titles that are found in the
scripts. Both approaches are described in this chapter.

Find websites with URL parameters

By using the Google search engine, it is possible to specify what a URL must
contain. The allinurl search operator allows for search results that must contain
specific text in the URLs. Of the websites that contain vulnerabilities it is
known in what file name the vulnerability exists and if the vulnerability is
triggered by the GET parameter. For example, when a vulnerable file page.php
uses the GET parameter page_id, this could be translated into the following
search query:

allinurl:"/page.php?page_id="

Google returns all URLs that it has indexed that contain the file name in
combination with the GET parameter in the URL. However, the results do not
take the path before the file name into account. It is therefore possible that
Google returns the following results:

http://example1.com/page.php?page_id=

http://example2.com/admin/page.php?page_id=

http://example3.com/somesite/somefolder/page.php?page_id=

Find websites with titles

Another operator in the advanced Google search queries is allintitle. Similar
to the allinurl operator, this operator searches for websites having all words
of the search term in the HTML <title> element of the website. All projects
containing possible exploitable scripts are analysed for page titles.

The results for the title scanning process are listed in table 5.4. The amount
of titles found per project greatly differs. For more than half of the projects
between 1 and 10 titles were found but there are also projects with more than
2000 titles. Since it cannot automatically be determined what titles give the
best results before querying the search engine, projects with a large amount of
titles are excluded from the search.

To efficiently query the search engine a selection is made of what titles to
include in the search process as a trade-off between number of search queries
and amount of projects covered in the search process.

5 https://sites.google.com/site/gwebsearcheducation/advanced-operators

12

Table 5.4: Titles collection Produced
titles

Scripts Titles

Abs. Rel. Rel. cum. Abs. Rel. Rel. cum.
1 - 10 1,219 59 % 59 % 4,267 7 % 7 %

11 - 25 356 17 % 76 % 5,737 9 % 16 %
26 - 50 238 12 % 88 % 8,378 14 % 30 %

51 - 100 129 6 % 94 % 8,918 15 % 45 %
101 - 150 36 2 % 96 % 4,399 7 % 52 %

> 150 80 4 % 100 % 29,268 48 % 100 %
Total 2,058 100 % 100 % 60,967 100 % 100 %

As a result, only projects with twenty-five titles or less are included in the
search. This includes more than 75% of the projects in the search process while
only querying the search engine for 16% of the found titles, greatly reducing
the total amount of search engine queries.

5.5.2 Selective results

Some of the automatically generated queries are so generic that a large amount
of items in the search engine’s database are a match. To prevent the gathering
of lots of false positive, result filtering is done depending based on the total
amount of results available, as indicated by the Google search engine. All search
queries where the search engine indicates more than 750 results are flagged as
too generic. During the search process this initial indication on the estimated
amount of results as returned by the search engine turned out to be a very
unreliable source for the actual number of search results.

A better indicator is found in the links to the number of pages at the bottom
of the search result page. With each page returning ten results, this can be
used to calculate another estimated amount of results for the search query.
For some queries, the indicated amount of results was set to numbers close to
50,000, while the amount of result pages indicated less than 100 results. The
number of pages turns out to be much more reliable and is eventually used as
the filtering selector.

5.5.3 Throttling

Google has built in rate limiting integrated into their search engine. Espe-
cially for the advanced search queries, which are more resource demanding,
these limits are well within reach when using automated scripts to execute the
searches.

Pelizzi et al. [12] describe the use of proxy servers and a throttling system
to automatically perform a large number of search queries. Their paper does
not describe the exact limits for the throttling system and their approach is
to circumvent the throttling by manually solving the presented CAPTCHA
images.

During this research attempts were made to extend on this and perform a large
number of search queries without interruption and without user interference.
After several attempts an optimum was found in the amount of queries executed
over time and the blocking behaviour, allowing for a continuous search process.
Using a total of twenty-six different IP-addresses distributed across two servers
it was possible to run over 20,000 queries per day.

As an addition, the use of IP version 6 addresses for the search queries was
investigated. By using a random address from a 64-bit subnet for each query it
was not possible to circumvent the rate-limit blocking. The blocking behaviour
for the entire 64-bit IPv6 network could be matched with that of a single host
on IPv4, indicating the single host IPv4 limits are equal to the limits for an
entire 64-bit network in IPv6.

13

5.6 Identify websites using vulnerable scripts

Figure 5.1: Finding installed
scripts

When all vulnerable scripts are identified, the next step is to identify the web-
sites that are using these scripts. By zooming in on step 5 of figure 4.1, this
part of the whole process is explained more in depth. Section 5.5.1 discusses
the methods that are use to find websites that are using the identified vulner-
able scripts (5.1). The next step (5.2), is to determine the installation root
of the script, which is described in section 5.6.1. By knowing the installation
root of a script, it is possible to deduce the relative path of files within that
script. When the installation root of the script is determined, the frequency
of each file type that is used within that script, is used to determine what file
types are more common. For each script, a selection of maximum six files is
made to be used for validation (5.3). The most common file types are used to
support the selection process. Section 5.6.3 discusses the comparison method
that is used to compare the selected files with the remote host (5.4). Finally, in
section 5.6.4, the method is described of how the score is calculated to indicate
the accuracy of the search result (5.5).

5.6.1 Script installation directory

When the Google search results are gathered, it is still uncertain if these re-
sults contain false positives. When common file names and parameters are
used, such as login.php?id=, it is very likely that many results are not related
to the vulnerable script. The installation root of the vulnerable script needs to
be determined before something useful can be said about the files that reside
within this directory or subdirectories. Two methods are designed to deter-
mine the installation root of the vulnerable script. The first method is a more
deterministic approach, and it uses the absolute path of the local vulnerable
PHP file when the search results are found with the allinurl Google search
operator. The second method is more probabilistic approach, which is used
when the first method does not suffice. The results of the second method are
less likely to be successful, but it may still hold positive results. The second
method goes through all the directories in the vulnerable script and tries to
find an index file or a PHP file in the subdirectory that is closest to the root
directory. This directory is then considered to be the installation root.

Deterministic approach

Of the files that are selected to validate the installation of vulnerable scripts,
it is still unknown in what location the file is located on the remote server.
The installation directory of the web script, greatly depends on where the web
master places the files. In a shared hosting environment it is very common
that the directory where the files are stored have a prefix that is specific to
that website, for example: http://example.com/script/ or
http://example.com/username/webapps/script/. To solve this problem,
the absolute path of the vulnerable PHP scripts is used to find the possible
root of the installation. When the Google search results are found by using the
allinurl operator, the results also include the PHP file name that was used to
find the URLs. The installation root is found by first removing the file name
part of the URL and the local file path, and then comparing the subdirectory
names from right to left. When the local subdirectory does not match with

14

the remote subdirectory, then it can be concluded that this is where the root
of script is. An example of this process is shown in table 5.5.

Table 5.5: Example of finding
the script installation root

Step Local path Remote path
1 /script/admin/login.php /example.com/user/www/admin/login.php
2 /script/admin/ /example.com/user/www/admin/
3 /script/ /example.com/user/www/

In this example it can be concluded that the local installation root is /script/
and the remote installation root is http://example.com/user/www/. As shown
in algorithm 1, the installation root always starts where the local and remote
subdirectory do not match.

Algorithm 1: Deterministic method to find the script installation root

Output: Script installation root
initialization;
local dir = split (’/’, remove filename (local path));
remote dir = split (’/’, remove filename (remote path));
j = count(remote dir);
for i← count(local dir) to 0 do

if local dir[i] <> remote dir[j] then
local install dir = join (’/’, local dir);
remote install dir = join (’/’, remote dir);
exit for;

end
splice (local dir, i, 1);
splice (remote dir, j, 1);
j −−;

end

Both the local installation root and the remote installation root are important
to further determine if the script is installed on the remote server or not. This
is explained in section 5.6.2

Probabilistic approach

When the method described above does not have any results, or the script is
not suitable for that particular method, then a more optimistic approach is
used to find the installation root.

Determining the root of the script is done by looking at the name of the files.
The first attempt is to look for a file with the name index.php, index.html or
index.htm. When one of these files is found, then the directory wherein this
file resides is considered to be the installation root of the script. When none
of these file names exists within the script, a second search attempt is started
to look for a file with the php extension. The directory in which a file is found
with this extension is considered to be the installation root of the script.

For each find attempt the directories are traversed one level at a time, starting
at the root of the script in which it is downloaded. This means that the find
process goes through each layer of subdirectories and only moves up one level
when no files are found. This way it prevents the find algorithm from going
into many subdirectories. It is not expected that the installation root lies deep
within the script directory structure. Table 5.6 explains this problem with an
example.

Table 5.6: Example for
traversing subdirectories

Step Level Path
1 1 /backup/
2 1 /www/index.php
3 2 /backup/www/index.php

15

In the first step, when the level is one, the first subdirectory is search through
is backup. Because within this directory there is no index file, the find process
continues on to the next step, which is also at level one. In step two the process
is finished, because it has found an index.php file in /www/. If the find level
would not limit itself to the current search directory, then the find process
would continue in the backup directory and very likely identifies the wrong file.
Algorithm 2 describes this process more formally.

Algorithm 2: Probabilistic method to find the script installation root

Output: Script installation root
initialization;
for i← 1 to 10 do

foreach files do
if filename (file) = ’index.[(htm[l]?|php)’ then

install root = dirname (filename);
return;

end

end

end
for i← 1 to 10 do

foreach files do
if filename (file) = ’ṗhp$’ then

install root = dirname (filename);
return;

end

end

end

The reason this method has probabilistic characteristic is that there is no known
other method to validate the result of this process. The outcome of this process
is taken as a basis for further validation.

5.6.2 Common file types

The next step is to validate if the Google search results indeed contain the
websites that are using the vulnerable scripts. Because PHP files are server
side scripts and cannot be compared by simply downloading them from the
web servers, another approach is used to validate the Google search results.
Most web applications have more files than only PHP scripts. Images, text files
and client-side scripts, such as JavaScript, are often part of a web application.
Because of the copy and paste behaviour that many web developers have, it is
very likely that these files are also installed on the web server. A selection of
these files is made from the vulnerable scripts to see if they exist on the remote
web servers, and if they exist, to what extend they compare. The comparison
process is explained further in section 5.6.3.

A frequency table of the most commonly used file types is generated by going
through each file of all vulnerable scripts and count the number of occurrences
per file type. Based on their frequency and the file type, a subset of this list is
selected and is used for validating the Google search results. Of the file types
that are selected it is known that web servers normally do not block access to
them and that they are not expected to change frequently, such as JPG, PNG
and GIF. But also CSS, JavaScript and HTML files are not excluded, because
of their popularity. For each script, a maximum of six files is selected. The
installation directory of each script is searched through, selecting one file for
each file type. This way it assured that the validation process does not focus
only on one file type. When all file types have been searched for and there are
less than six selected files, this process is reiterated until there are six selected
files, or until there are no more files to be found in the installation directory.
It could also mean that there may not be any files to select.

16

5.6.3 Compare files in the installation root with the remote host

Comparing local files with remote files is done in two ways. First, an MD5
hash is calculated for the local file and the remote file and then both hashes
are compared. Second, when the hashes do not match, the files are compared
for similarity when the files contain text, such as HTML and JavaScript. The
differences between both files is looked at from a local point of view and a
remote point of view. This means that it is looked at how much text of the
local file is found in the remote file, and how much text of the remote file is
found in the local file. Both values show a percentage of how much text of
one file occurs in the other file. The method used to calculate this is explained
in the research done by Grune and Huntjens [8]. The local file score and the
remote file score are later used to calculate a final score value that indicates
how likely it is that the remote server has the vulnerable script installed.

Each URL that is found during the Google search process is contacted with
a request for the files that are selected. After which it is tried to download
each selected file and compare the remote file with the local file. Depending
on the number of hashes that match with the local file, a score is assigned to
a URL. URLs containing a score above a certain threshold are considered pos-
itive search results, all other URLs are considered false positives. The scoring
algorithm is explained following section.

5.6.4 URL validation score algorithm

When the Google search results are validated, the total score of how accurate
the URL is needs to be determined. There are three different states in which
a search result can be after it is validated.

1. The search result could not be validated, because the installation root of
the script could not be determined.

2. The search result could not be validated, because there are no files avail-
able to compare with the remote host.

3. The search result is validated based on file comparison and each file has
a score assigned to it.

In the first case, the search result cannot be validated and therefore it is consid-
ered to have a good change of not being correct. In the second case the script
does not contain any of the common file types. Very small scripts may only
be intended to be included as part of larger applications, or have very simple
functionality. This makes it very hard to validate the correctness of the search
result. The last case allows for files to be compared with the remote host. As
explained in section 5.6.2, each file has several scores assigned to it. These
subscores are used to calculate a final score, which indicates the accuracy of
the search result.

For each script there is a maximum of six files that are selected to validate if the
vulnerable script is installed on the remote host. When there is a hash match
between a local file and a remote file, both the local score and the remote score
have a value of 100. When there is no hash match, then both scores can be
different, as explained in the previous section. Comparing differences between
files is only done when the files contain text, and thus are not binary. When
there is no hash match and the file contains binary data, then both scores are
set to 0. The final score is calculated as shown in equation 5.1.

Score =

∑N
i=1 Si

N
+

N∑
i=1

Si ∗
1

6 (5.1)

N = Total number of selected files

Si = LocalScorei+RemoteScorei
4

17

Within this equation it is taken into account how many files can be used for
validating the search result. When there is only one file available and it has
a hash match with the remote file, meaning a local score of 100 and a remote
score of 100, then the final score is 58. This way, validating a search result
with only one file does not get a perfect score. When three files are available
and all of them have a hash match with the remote file, then the final score is
75. When more than one file is used for validating a search result, it increases
the changes of being correct. Therefore, it is considered that three or more
files give an accurate indication if a vulnerable script is installed on the remote
host.

When the score is less than 50, it is considered to be a false positive. When the
score is equal or greater than 50 and less than 75, the search result is considered
to be plausible. A score of 75 or higher is considered to be accurate. A score
of 100 means that six files are available and all have a local score and a remote
score of 100. This is considered to be a perfect score.

5.7 Automate the compromisation

Once the vulnerabilities in the scripts are found and the installations of those
scripts are identified, then the last step is to automatically complete the pro-
cess of exploitation. The way vulnerabilities can be exploited depends on the
category.

5.7.1 SQL Injection

After the search process is completed, all parameters are available to run au-
tomated SQL Injections. The open source penetration testing tool sqlmap is
designed specifically for this purpose. It can be called by passing a URL of
the web page and the vulnerable parameter and can then perform automatic
analysis of the page and complete the exploitation. Access can be gained to
the database behind the website, and depending on the configuration of the
server, shell access on the system is also possible.

5.7.2 File Inclusion

File Inclusion vulnerabilities are harder to exploit. With Local File Inclusion
vulnerabilities, the attacker first needs to upload a file to the server before it can
be included. Because of the low number of found File Inclusion vulnerabilities
and the complexity of automatically completing the exploitation of this type
of vulnerability it has not been automated during this research. To execute
an attack, specific script and system parameters need to be analysed by the
attacker before a successful attack can be launched.

5.7.3 Command Injection

Command injection vulnerabilities are the easiest to exploit from the three
categories discussed in this paper. The calling of a page allows direct execution
of shell commands on the remote server, running as the same user as the web
server is running. With direct shell commands execution it is possible to start
processes listening for incoming shell connections or install custom programs
on the remote machine.

18

6 Results

6.1 Collect scripts

Over a period of two weeks, a total of 23, 291 PHP scripts were downloaded.
9, 668 scripts were downloaded from GitHub and 13, 623 scripts were down-
loaded from Sourceforge. The SourceForge website claims that they have over
33, 000 PHP scripts, but many of those scripts did not actually contain any PHP
files. Some of those projects were incorrectly tagged as being PHP projects,
or the projects were just simply empty. Both sources provided a website that
allowed for automatic crawling for scripts. GitHub however, uses rate limiting
to prevent users from hammering their servers. It appeared to be the case
that GitHub only checked the number of requests in a specific time frame, and
therefore this could easily be solved by introducing a 60 second pause between
every 20 requests. This allows to continuously crawl GitHub for new reposi-
tories. GitHub provides advanced search features that can be set in the GET
parameters of the URL when requesting the GitHub web page. This way it is
possible to continuously ask GitHub for the latest updated repositories and it
provides an interesting method to constantly analyse the source that is added
to GitHub.

6.2 Identify vulnerabilities

Of all 23, 291 PHP scripts, ≈ 11% contained one or more vulnerabilities that
were found using the regular expression as listed in appendix B. Table 6.1
shows the number of vulnerabilities found per category. The total number of
vulnerabilities found exceeds the number of vulnerable scripts. This is because
a single script can have vulnerabilities of one or more categories.

Table 6.1: Vulnerabilities per
category

Category Frequency
Absolute Relative

SQL Injection 2,333 84.59 %
File Inclusion 376 13.63 %
Command Injection 49 1.78 %
Total 2,758 100.00 %

An interesting observation that can be made is that of the 9, 668 GitHub scripts,
only ≈ 5% is identified as having a vulnerability. Whereas, of the 13, 623
Sourceforge scripts, ≈ 18% is identified of having a vulnerability. This dif-
ference does not necessarily mean that the source code on GitHub is better.
Because the source code that was pulled from GitHub were recently updated
repositories. The source code of Sourceforge still contains old code that is not
maintained any more, but it is still used by web developers.

6.3 Generate exploits

Section 5.4 describes the methods that are used to automatically determine if a
vulnerability is automatically exploitable. Of over 14 % of all found vulnerabili-
ties it is certain that the vulnerability is exploitable. This means that the script
is indeed vulnerable, but it cannot be concluded with absolute certainty that
each installation of an automatically exploitable script can be compromised.

19

This depends on the environment in which the script is installed. However, in
normal conditions, these vulnerabilities are automatically exploitable.

Table 6.2: Automatically
exploitable vulnerabilities

Category Frequency
Absolute Relative

SQL Injection 334 85.20 %
File Inclusion 49 12.50 %
Command Injection 9 2.30 %
Total 392 100.00 %

6.4 Find websites

Of the 2, 552 vulnerable scripts, 2, 217 were suitable for creating Google search
queries. The scripts that could not be used for the generation of search queries
only contained PHP files that did not produce a title or used a GET parameter.
Of those 2, 217 scripts it was possible to construct 22, 469 Google search queries.
Table 6.3 shows how many search results were produced by finding sites with a
title and finding sites with the vulnerable PHP file name in combination with
the associated GET parameter.

Table 6.3: Google search results
Category Total
Search results found by title 71,622
Search results found by GET parameter 47,535
Total 119,157

6.5 Validate search results

Validating search queries is done by comparing common files that are locally
available with those on the remote system. Section 6.5.1 describes the effec-
tiveness of both methods that are used for finding the installation root of the
script. The frequency of common file types in the vulnerable script, and of
which is known that web server normally allow access to them, is discussed in
section 6.5.2. Finally, the results of validation process of the search results is
discussed in section 6.5.3.

6.5.1 Installation root

The installation root was first tried to be determined with the file name of
the vulnerable script in combination with the Google search results associated
to that scripts. All search results that were found with the file name of the
vulnerable script were used in this process. When the installation root could
not be determined, then a probabilistic method was used to determine the
installation root. Table 6.4 shows the effectiveness per method for determining
the installation root of each search result. When the deterministic method was
not successful in determining the installation root, then in all other cases the
probabilistic method was successful. Therefore, in all cases each vulnerable
script contained at least an index.htm, index.html, or a PHP file.

Table 6.4: Effectiveness of
determining the installation root

Method Total
Deterministic 9,813
Probabilistic 109,344
Total 119,157

20

6.5.2 File types

The frequency per file type is counted for all 2, 552 vulnerable scripts. In total
there were 3, 117, 901 files. A large amount of these files were related to how
git manages repositories, those files can safely be ignored. Table 6.5 shows the
most commonly used file types of all vulnerable scripts. Of these file types it is
known that most web servers do no block access to them by default, and that
they are not expected to change regularly. Therefore, these file types are good
candidates for validating the Google search results. More than 25% of all files
found in the vulnerable scripts were PHP files, but those files cannot be used
for comparison, as explained in section 5.6.2.

Table 6.5: Most common file
types

Rank File type Frequency
Absolute Relative Relative cumulative

1 gif 405,056 12.99 % 12.99 %
2 png 358,119 11.49 % 24.48 %
3 js 237,648 7.60 % 32.08 %
4 html 158,764 5.09 % 37.17 %
5 jpg 156,490 5.02 % 42.19 %
6 txt 52,477 1.68 % 43.87 %

6.5.3 Search result scores

Table 6.5.3 shows the final results of the search results that were returned by
Google. The number of search results that have a score of zero is still very
high. These results are very likely false positives. None of the files that were
used for comparison matched with the local files. A large amount of scripts
do not have any of the common file types that can be used for validating the
search results. These type of scripts are expected to be very small or to be still
in development.

Table 6.6: Search result scores Score Frequency
Absolute Relative Relative cumulative

0 58,520 49.11 % 49.11 %
1 - 24 3,490 2.93 % 52.04 %

25 - 49 1,969 1.65 % 53.69 %
50 - 74 6,511 5.47 % 59.16 %
75 - 99 1,018 0.85 % 60.01 %

100 324 0.27 % 60.28 %
No common file types 47,325 39.72 % 100.00 %

Total 119,157 100.00 % 100.00 %

Of the results with a score of zero or higher, it is also looked at which search
operator proved to be most effective. Table 6.7 shows the search results related
to the Google search operator. Although the majority of the search results that
could be validated were produced with the allinurl Google search operator, the
effectiveness of the search operator does not show to have more accurate results
than the allintitle search operator.

Table 6.7: Search results related
to the Google search operator

Score allinurl allintitle
Absolute Relative Absolute Relative

0 38,837 84.54 % 19,683 76.02 %
1-24 2,002 4.36 % 1,488 5.75 %

25-49 928 2.02 % 1,041 4.02 %
50-74 3,643 7.93 % 2,868 11.07 %
75-99 450 0.98 % 568 2.19 %

100 79 0.17 % 245 0.95 %
Total 45,939 100.00 % 25,893 100.00 %

21

7 Conclusion

This research focused on an automated approach for analysing web scripts for
vulnerabilities, finding the websites that are using these scripts, and finding
methods for compromising these websites. The different processes that were
defined to automate this approach were combined into a black box system.

Large scale automated source code analysis is possible when the type of vul-
nerability is trivial. As described in section 5.3, source code can be audited
automatically using regular expressions. In total, approximately 11% of the
audited scripts contained one or more possible vulnerabilities. For more reliable
results, this can be extended to static code analysis, which takes statements
spread over multiple lines into account.

In section 5.4, a method is described to automatically confirm the possibility for
exploitation of given parameters by replacing built-in functions of the scripting
language. By comparing the input of the parameters that are used to call the
script with the output of the replaced functions, any escaping or sanitising can
be detected. Using this method, it was possible to automatically verify almost
14% of the found vulnerabilities.

To find installations of the vulnerable scripts, the Google search engine was
used. It was possible to tune the scraping of the search script in such a way
that the search process could run completely automatic, without any user in-
tervention to circumvent rate limiting. A total of more than 22,000 search
queries were constructed from the vulnerable scripts, which resulted in al-
most 120,000 search results. The search results that were collected using the
methods described in section 5.5 are not very accurate. Therefore, a method
to verify if the results match the original script is included in section 5.6. After
verification of the search result, almost 8,000 search results were considered to
be a match with the vulnerable script.

By running the complete system on the collected scripts, it was confirmed that
the proposed automated approach to analyse available scripts is considered
feasible. Especially the automated aspect, which makes it possible to run the
system on a large scale, makes it interesting to use such a system. With a
continuous flow of new scripts, it can run unattended for an extensive time to
increase the results.

22

8 Future work

The components that are defined in figure 4.1 all proved to have their own
challenges. For each component their is room for improved and further work.
Therefore, this chapter describes future work related to these components.

8.1 Component improvements

8.1.1 Collect scripts

Automatically downloading scripts from GitHub and Sourceforge has proven to
be a relative easy task. Other similar sources may also allow for automatically
crawling of their websites. This could easily result in more source code to be
analysed, and this might expose more installations with vulnerable scripts.

8.1.2 Identify vulnerabilities

The number of vulnerabilities found during this research show that there are
still many vulnerable scripts on the internet that are used by many web devel-
opers. The proof of concept that is part of this research only focuses on the
PHP scripting language. Other popular scripting languages, such as ASP.NET,
could allow for many more vulnerable websites to be exposed. This research
focuses on simple vulnerabilities, the so called ”low hanging fruit”. The black
box system that is shown in this research allows for a more complex vulner-
ability detection system. It is also interesting to look into other vulnerability
categories that may yield many more vulnerabilities.

8.1.3 Generate exploits

The method provided within this research to automatically determine if a vul-
nerability is exploitable has proven to be very reliable. However, this method
does not take into account simple control statements, which can determine
when a certain section of code is evaluated or not. By improving the auto-
matic verification of the found vulnerabilities it is expected the results can be
improved greatly.

8.1.4 Find script installation

The method used in this research to find vulnerable websites by using the
Google search engine, has proven to be a difficult task. The number of false
positives is still very high and further research in this field should allow for more
accurate search results. When GitHub is used for requiring source code, an
interesting approach could be to analyse the git log of a specific web application
to find the website that is using the application. This however narrows the
scope to a single installation of the vulnerable script. The git log often also
contains contact information. This information could be used to automatically
inform the author about the vulnerabilities that are found.

23

9 Acknowledgements

We would like to thank the National Cyber Security Centre (NCSC) for giving
us the opportunity to do our research there and providing us with an open
and pleasant atmosphere to work in. We would especially like to thank Bart
Roos and Jop van der Lelie for their continuous constructive criticism and their
enthusiasm. We very much appreciate all that you have done for us.

24

Bibliography

[1] OWASP top 10 - 2010. The ten most critical web application security risks.
Technical report, OWASP The Open Web Application Security Project,
2010.

[2] OWASP top 10 - 2013. The ten most critical web application security risks.
Technical report, OWASP The Open Web Application Security Project,
2013.

[3] Lauri Auronen. Tool-based approach to assessing web application security.
In Security, Seminar on Network Security, 2002.

[4] Justin Billig, Yuri Danilchenko, and Charles E. Frank. Evaluation of google
hacking. In Proceedings of the 5th annual conference on Information secu-
rity curriculum development, InfoSecCD ’08, pages 27–32, New York, NY,
USA, 2008. ACM.

[5] Christian Korscheck. Automatic detection of second-order cross-site script-
ing vulnerabilities, 2010.

[6] Common vulnerabilities and exposure. http://cve.mitre.org.

[7] M. Cova, V. Felmetsger, and G. Vigna. Vulnerability Analysis of Web
Applications. In L. Baresi and E. Dinitto, editors, Testing and Analysis
of Web Services. Springer, July 2007.

[8] Dick Grune and Matty Huntjens. Detecting copied submissions in com-
puter science workshops.

[9] Jose Fonseca, Marco Vieira, and Henrique Madeira. The web attacker
perspective - a field study. 2012 IEEE 23rd International Symposium on
Software Reliability Engineering, 0:299–308, 2010.

[10] Adam Kieżun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst.
Automatic creation of SQL injection and cross-site scripting attacks. In
ICSE’09, Proceedings of the 31st International Conference on Software
Engineering, Vancouver, BC, Canada, May 20–22, 2009.

[11] Parvin V. Ami, S. C. Malav. Top five dangerous security risks over web
application. 2013.

[12] Riccardo Pelizzi, Tung Tran, Alireza Saber. Large-scale, automatic xss
detection using google dorks.

[13] Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Have things
changed now? an empirical study on input validation vulnerabilities in
web applications. Computers & Security, 31(3):344–356, 2012.

[14] R. Sekar. An efficient black-box technique for defeating web application
attacks .

[15] Zhendong Su and Gary Wassermann. The essence of command injection
attacks in web applications. SIGPLAN Not., 41(1):372–382, January 2006.

[16] The open web application security project. https://www.owasp.org.

25

A Acronyms and
abbreviations

API Application programming interface
CSRF cross-site request forgery
CVE Common Vulnerabilities and Exposures
OWASP Open Web Application Security Project
URL Uniform Resource Locator
XSS cross-site scripting

i

B PERL regular expressions
for finding vulnerabilities

The tables in this section show the regular expressions that are used to find the
vulnerabilities in the web scripts. The regular expressions are formed such that
they work well with the PERL scripting language, which was used for analysing
the web scripts. When the column Ignore contains a ”Yes”, then that specific
line of code is ignored to lower the possibility of false positives.

Table B.1: Comments Regular expression Ignore
^# Yes
^// Yes
^/* Yes
addslashes Yes

Table B.2: SQL Injection
Regular expression Ignore
wpd->prepare Yes
wpdb->prepare Yes
wpdb->get_var Yes
mysql_real_escape_string Yes
select\ +.*\ from\ .*=.*\$_get

select\ +.*\ from\ .*=.*\$_post

insert\ +into\ +.*\$_get

insert\ +into\ +.*\$_post

delete\ +from\ +.*\ +where\ +.*=.*\$_get

delete\ +from\ +.*\ +where\ +.*=.*\$_post

update\ +.*\ +set\ +.*=.*\$_get

update\ +.*\ +set\ +.*=.*\$_post

mysql_query\ *\(.*\$_get.*\)

mysql_query\ *\(.*\$_post.*\)

Table B.3: File Inclusion Regular expression Ignore
^include\ +.*\$_get

^include\ +.*\$_post

^require\ +.*\$_get

^require\ +.*\$_post

^include_once\ +.*\$_get

^include_once\ +.*\$_post

^require_once\ +.*\$_get

^require_once\ +.*\$_post

^eval\ *\(.*\$_get.*\)

^eval\ *\(.*\$_post.*\)

^assert\ *\(.*\$_get.*\)

^assert\ *\(.*\$_post.*\)

ii

Table B.4: Command Injection
Regular expression Ignore
^\‘.*\$_get.*\‘;

^\‘.*\$_post.*\‘;

^exec\ *\(.*\$_get.*\);

^exec\ *\(.*\$_post.*\);

^passthru\ *\(.*\$_get.*\);

^passthru\ *\(.*\$_post.*\);

^popen\ *\(.*\$_get.*\);

^popen\ *\(.*\$_post.*\);

^proc_open\ \(.*\$_get.*\);

^proc_open\ \(.*\$_post.*\);

^shell_exec\ *\(.*\$_get.*\);

^shell_exec\ *\(.*\$_post.*\);

^pcntl_exec\ *\(.*\$_get.*\);

^pcntl_exec\ *\(.*\$_post.*\);

^system\ *\(.*\$_get.*\);

^system\ *\(.*\$_post.*\);

iii

